改善gmaw引弧过程的方法和设备的制作方法

文档序号:3062143阅读:167来源:国知局
专利名称:改善gmaw引弧过程的方法和设备的制作方法
技术领域
本发明涉及一种熔化极气体保护焊引弧过程的控制方法,本发明还涉及应用这种方法的设备。
背景技术
由于GMAW(熔化极气体保护焊)具有低成本、高效率、易于自动化等优点,已经成为金属加工制造中应用最广泛的连接工艺。GMAW在应用中也存在一些问题,焊接飞溅就是其中之一。因为焊接飞溅可能导致以下严重问题1、对被焊工件上的一些已加工部分,如带有螺纹孔或其它类似配合孔等,焊接飞溅可能破坏螺纹或配合孔的质量甚至导致整个工件报废;2、附着在焊枪喷嘴和导电嘴上的飞溅会影响保护气流和焊丝的正常送给,为此不得不经常停机进行清理或更换,这对于高效率自动化焊接的效率是极大的损失;3、对于大批量生产采用的焊接定位夹具,在更换工件时,一些焊接飞溅将有机会散落到焊接定位夹具上,从而影响夹具定位精度,对于机器人或其它自动化焊接系统会造成成批工件的因焊缝位置偏差过大而报废。因此,降低焊接飞溅一直是GMAW应用中备受关注的问题,尤其在汽车车身及零部件制造中。众所周知,射流过渡模式GMAW的焊接飞溅近乎为零,因此为要求高质量的焊接过程所广泛采用。然而在汽车车身机器零部件的焊接应用中,一个令人疑惑和困扰的问题是即使采用射流过渡,实际焊接飞溅量仍然比较大。研究发现,射流过渡模式下GMAW的焊接飞溅主要产生于引弧初期。因为目前工业应用的GMAW焊机,尽管都可以通过焊接参数设置使之稳定的熔滴过渡形式为射流过渡,但由焊接引弧到达到稳定的射流过渡还需要一定的过渡时间,少则数百毫秒,多则数秒。对于焊缝的焊接时间较长的长应用,数百毫秒、甚至数秒的不稳定时间相对总焊接时间来说可以忽略不计。但是对于汽车车身及零部件的焊接,一般焊缝都很短,而且焊缝数量很多。对于GMAW汽车车身焊接应用的大量短焊缝焊缝的焊接时间一般在5秒以内,所以引弧过程在整个焊接过程中所占比例很大,对整个焊接过程的影响变得格外突出。因此研究引弧过程对焊接飞溅的影响和改善GMAW引弧过程降低焊接飞溅对提高汽车车身制造水平具有特别重要的意义。由GMAW的基本原理可知,射流过渡时的焊接电流应是平滑稳定的,而电流波形在引弧初期是非常不稳定的短路过渡形态,这说明在GMAW引弧起始到稳定的射流过渡之间需要一定的时间,称为焊接引弧不稳定时间。在引弧初期是不规则的短路过渡和颗粒过渡的混合,因此在这一阶段必然产生较高的焊接飞溅率。对于稳定的射流过渡的必要条件是焊丝送丝速度与焊丝熔化速度相平衡,而焊丝的熔化速度取决于焊接电流,在GMAW引弧初期之所以不能达到稳定射流过渡的根本原因在于焊接电流不稳定。由于GMAW焊接的特点,为了保持弧长恒定要求采用恒压电源获得电弧自身调节作用,而由此带来的问题是恒压电源在引弧初期的电流是不可控的,也是不稳定的。问题反映在两个方面,一是短路引弧的初期,短路电流过大,而送丝速度较低,焊丝易于因过热而成段熔化;二是引弧初期的电弧导电性较差,对应的熔弧电流较低,不能达到射流过渡的临界电流值。

发明内容
为了克服GMAW在引弧初焊接时段焊接飞溅大的缺陷,提供一种使引弧阶段焊接飞溅量小的GMAW引弧过程的方法和设备。本发明的技术方案如下一种改善GMAW引弧过程的方法,它通过下述步骤实现(一)起动焊接设备11;(二)引弧12;(三)检测输出电流13;(四)判断输出电流i在两个给定电流值i1和i2之间的哪个区间段14;(五)如果i<i1,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式15;如果i1<i<i2,则焊接设备在原给定的电压值下保持恒压源工作模式16;如果i>i2,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式17。采用此种控制方法后,GMAW引弧后由于焊接电流稳定了,所以焊丝的熔化速度也就稳定,能够与焊丝送丝速度迅速达成平衡,因此不会产生焊接飞溅,而当GMAW达到射流过渡的稳定工作时段后,恒压源工作模式又保证了电弧弧长的恒定,在引弧初期即可提供合适的短路电流,又可提供稳定的焊接电流。
本发明还提供了应用上述方法的设备一种改善GMAW引弧过程的设备,它由可控电压源6、负载(焊接电弧)7、电流/电压变换器8和负反馈控制电路5组成,负载7和电流/电压变换器8串联在可控电源6的两个输出端间,电流/电压变换器8的输出端连接负反馈控制电路5的输入端,负反馈控制电路5的输出端连接在可控电压源6的控制端上。本设备在工作时,电流/电压变换器8采集输出电流的信号,并把该信号转变为电压信号输入负反馈控制电路5进行比较、放大和反馈,从而输出与本发明的方法所对应的控制信号,来控制可控电压源6的工作模式,从而改善GMAW在引弧时段的飞溅状况。本发明具有设计新颖、工作可靠和有较大推广价值的优点。


图1是本发明方法的步骤流程图,图2是本发明设备的结构示意图,图3是实施方式三的结构示意图,图4是本发明设备的输出特性图,图5是实施方式四的结构示意图,图6是实施方式五的结构示意图。
具体实施例方式
一下面结合图1具体说明本实施方式。它通过下述步骤实现(一)起动焊接设备11;(二)引弧12;(三)检测输出电流13;(四)判断输出电流i在两个给定电流值i1和i2之间的哪个区间段14;(五)如果i<i1,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式15;如果i1<i<i2,则焊接设备在原给定的电压值下保持恒压源工作模式16;如果i>i2,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式17。
具体实施方式
二下面结合图2具体说明本实施方式。本实施方式由可控电压源6、负载7、电流/电压变换器8和负反馈控制电路5组成,负载7和电流/电压变换器8串联在可控电源6的两个输出端间,电流/电压变换器8的输出端连接负反馈控制电路5的输入端,负反馈控制电路5的输出端连接在可控电压源6的控制端上。
具体实施方式
三下面结合图3和图4具体说明本实施方式,本实施方式与实施方式二的不同点是,负反馈控制电路5由非线性电流反馈放大器5-1、减法器5-2、电平信号U1、电平信号U2和电平信号U3组成,电平信号U3的电平高于电平信号U2的电平,非线性电流反馈放大器5-1的一个输入端连接电流/电压变换器8的输出端,非线性电流反馈放大器5-1的另外两个输入端分别连电平信号U3和电平信号U2的输出端,非线性电流反馈放大器5-1的输出端连减法器5-2的相减端,电源U1的输出端连接减法器5-2的相加端,减法器5-2的输出端连可控电压源6的控制端。本实施方式的工作原理参见图4,图3的核心是非线性电流反馈放大器5-1,该放大器的输出由电流/电压变换器8的输出、用于电流设定的电源U2和电源U3共同决定,在不同阶段的放大倍数是不同的,故称为非线性放大器。可控电压源6的输出电压由用于电压设定的电源U1的设定值和非线性电流反馈放大器5-1输出值的和决定。电平信号U2和电平信号U3分别对应两个电流给定值i1和i2,也就是图4中的B点和C点所对应的电流值。当由电流/电压变换器8检测到的电流值大于电流设定i1,小于电流设定i2时非线性电流反馈放大器5-1的输出为零,即放大倍数为零。此时减法器5-2的输出恒等于电平信号U1的给定值,可控电源6的输出电压也由电平信号U1决定,电源外特性为恒压源,即图4中B-C段。当由电流/电压变换器8检测到的电流值小于电流设定i1时非线性电流反馈放大器5-1的输出为负,此时减法器5-2的输出等于电平信号U1的给定值与非线性电流反馈放大器5-1的输出之和,此时输出电流的降低经负反馈的作用使可控电压源的输入增加,故输出电压也增加,维持输出电流恒定,即形成A-B段的恒流特性。当由电流/电压变换器8检测到的电流值大于电流设定i2时非线性电流反馈放大器5-1的输出为正,此时减法器5-2的输出等于电平信号U1的给定值与非线性电流反馈放大器5-1的输出之差,此时输出电流的降低经负反馈的作用使可控电压源的输入降低,故输出电压也降低,维持输出电流恒定,即形成C-D段的恒流特性。本实施方式中,可控电压源6选用逆变电源,通过改变逆变电源中的有源元件(IGBT或MOSFET)导通时间能有效控制输出电压。
具体实施方式
四下面结合图5具体说明本实施方式。本实施方式与实施方式三的不同点是,减法器5-2为集成运算放大器A3,非线性电流反馈放大器5-1由集成运算放大器A1、集成运算放大器A2、二极管D1和二极管D2组成,电流/电压变换器8的输出端连集成运算放大器A1和集成运算放大器A2的同相输入端,电平信号U2和电平信号U3的输出端分别连集成运算放大器A1和集成运算放大器A2的反相输入端,集成运算放大器A1的输出端连二极管D1的负极,集成运算放大器A2的输出端连二极管D2的正极,二极管D2的负极连二极管D1的正极和集成运算放大器A3的反相输入端,集成运算放大器A3的同相输入端连电源U1的输出端,集成运算放大器A3的输出端连可控电压源6的控制端。图中A1、A2和A3为差动放大器。电流反馈信号Uif同时加到A1和A2的同相输入端。当U2<Uif<U3时,A1输出为正,A2输出为负,此时二极管D1、D2均为截止,故输出电压=0,可控电压源6的控制电压与电流无关为恒压特性;当Uif<U2时,A1、A2输出均为负,此时二极管D1导通、D2截止,可控电压源6的控制电压随Uif下降而上升,构成电流负反馈,获得恒流特性;当Uif>U3时,A1、A2输出均为正,此时二极管D1截止、D2导通,可控电压源6的控制电压随Uif上升而下降,同样构成电流负反馈,获得恒流特性。为了可获得良好的恒流特性,上述电流负反馈环节必须有合适的增益,当取电流/电压变换器8的变换系数为1V/100A,可控电压源6的放大倍数为10,A1、A2的放大倍数K1=K2=100,A3的放大倍数K3=1时,可获得良好的恒流特性。
具体实施方式
五下面结合图6具体说明本实施方式。本实施方式与实施方式二的不同点是,负反馈控制电路5由D/A转换电路5-4、微处理器(单片机或DSP)5-5和A/D转换电路5-6组成,A/D转换电路5-6的输入端连电流/电压变换器8的输出端,A/D转换电路5-6的输出端连微处理器(单片机或DSP)5-5的输入端,微处理器(单片机或DSP)5-5的输出端连D/A转换电路5-4的输入端,D/A转换电路5-4的输出端连可控电压源6的控制端。本实施方式通过在微处理器(单片机或DSP)中运行的计算机程序来完成焊接设备输出电流的负反馈控制和恒压源与恒流恒切换的逻辑判断,从而实现本发明的目的。
权利要求
1.一种改善GMAW引弧过程的方法,其特征是它通过下述步骤实现(一)起动焊接设备(11);(二)引弧(12);(三)检测输出电流(13);(四)判断输出电流i在两个给定电流值i1和i2之间的哪个区间段(14);(五)如果i<i1,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式(15);如果i1<i<i2,则焊接设备在原给定的电压值下保持恒压源工作模式(16);如果i>i2,则对焊接设备的输出电流进行负反馈控制,调节焊接设备的输出电压,从而使输出电流保持恒定,焊接设备工作在恒流源工作模式(17)。
2.一种改善GMAW引弧过程的设备,其特征是它由可控电压源(6)、负载(7)、电流/电压变换器(8)和负反馈控制电路(5)组成,负载(7)和电流/电压变换器(8)串联在可控电源(6)的两个输出端间,电流/电压变换器(8)的输出端连负反馈控制电路(5)的输入端,负反馈控制电路(5)的输出端连接在可控电压源(6)的控制端上。
3.根据权利要求2所述的一种改善GMAW引弧过程的设备,其特征是负反馈控制电路(5)由非线性电流反馈放大器(5-1)、减法器(5-2)、电平信号(U1)、电平信号(U2)和电平信号(U3)组成,电平信号(U3)的电平高于电平信号(U2)的电平,非线性电流反馈放大器(5-1)的一个输入端连电流/电压变换器(8)的输出端,非线性电流反馈放大器(5-1)的另外两个输入端分别连电平信号(U3)和电平信号(U2)的输出端,非线性电流反馈放大器(5-1)的输出端连减法器(5-2)的相减端,电平信号(U1)的输出端连减法器(5-2)的相加端,减法器(5-2)的输出端连可控电压源(6)的控制端。
4.根据权利要求3所述的一种改善GMAW引弧过程的设备,其特征是减法器(5-2)为集成运算放大器(A3),非线性电流反馈放大器(5-1)由集成运算放大器(A1)、集成运算放大器(A2)、二极管(D1)和二极管(D2)组成,电流/电压变换器(8)的输出端连集成运算放大器(A1)和集成运算放大器(A2)的同相输入端,电源(U2)和电源(U3)分别连集成运算放大器(A1)和集成运算放大器(A2)的反相输入端,集成运算放大器(A1)的输出端连二极管(D1)的负极,集成运算放大器(A2)的输出端连二极管(D2)的正极,二极管(D2)的负极连二极管(D1)的正极和集成运算放大器(A3)的反相输入端,集成运算放大器(A3)的同相输入端连电源(U1)的输出端,集成运算放大器(A3)的输出端连可控电压源(6)的控制端。
5.根据权利要求2所述的一种改善GMAW引弧过程的设备,其特征是负反馈控制电路(5)由D/A转换电路(5-4)、微处理器(5-5)和A/D转换电路(5-6)组成,A/D转换电路(5-6)的输入端连电流/电压变换器(8)的输出端,A/D转换电路(5-6)的输出端连微处理器(5-5)的输入端,微处理器(5-5)的输出端连D/A转换电路(5-4)的输入端,D/A转换电路(5-4)的输出端连可控电压源(6)的控制端。
全文摘要
本发明公开一种熔化极气体保护焊引弧过程的控制方法和设备——改善GMAW引弧过程的方法和设备。方法如下(一)起动焊接设备(11);(二)引弧(12);(三)检测输出电流(13);(四)判断输出电流i在两个给定电流值i
文档编号B23K9/10GK1559736SQ20041001359
公开日2005年1月5日 申请日期2004年3月2日 优先权日2004年3月2日
发明者耿正, 耿 正 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1