金属材料及制造方法、碳纤维复合金属材料及制造方法

文档序号:3399980阅读:103来源:国知局
专利名称:金属材料及制造方法、碳纤维复合金属材料及制造方法
技术领域
本发明涉及金属材料及其制造方法、碳纤维复合金属材料及其制造方法。
背景技术
近年来,使用碳纳米纤维的复合材料倍受注目。由于这样的复合材料包含碳纳米纤维,所以可以期待其提高机械强度等。
此外,作为金属复合材料的铸造方法,现有技术中有使镁蒸气渗透、分散在由氧化物陶瓷形成的多孔质成形体内,同时,通过导入氮气使熔融金属渗透在多孔质成形体的铸造方法(例如,参照特开平10-183269号公报)。
但是,由于碳纳米纤维相互之间具有很强的凝聚性,所以难以使碳纳米纤维均匀地分散在复合材料的基材中。因此,现在难以获得具有期望特性的碳纳米纤维,而且,无法高效利用成本高昂的碳纳米纤维。
此外,现有技术的使熔融金属渗透在由氧化物陶瓷形成的多孔质成形体中的铸造方法,也因为工艺复杂,所以难以进行工业生产。

发明内容
因此,本发明的目的在于,提供一种均匀分散碳纳米纤维的金属材料及其制造方法。此外,本发明的目的还在于,提供一种均匀分散碳纳米纤维的碳纤维复合金属材料及其制造方法。
本发明所涉及的在金属颗粒的周围分散有碳纳米纤维的金属材料的制造方法,包括工序(a),将对所述碳纳米纤维具有亲和性的具有不饱和键或基的弹性体、金属颗粒、以及碳纳米纤维混合,并利用剪切力使所述碳纳米纤维分散而获得碳纤维复合材料;以及工序(b),热处理所述碳纤维复合材料,使包含在该碳纤维复合材料中的所述弹性体气化。
根据本发明的工序(a),弹性体的不饱和键或基与碳纳米纤维的活性部分特别是碳纳米纤维的末端的原子团结合,使碳纳米纤维的凝聚力变弱,提高其分散性。另外,在通过剪切力被剪切的弹性体中生成自由原子团,该自由原子团攻击碳纳米纤维的表面,碳纳米纤维的表面被活化。另外,通过使用包含金属颗粒的弹性体,利用剪切力使碳纳米纤维分散的时候,在金属颗粒的周围发生紊流状的流动。通过该流动,本发明的碳纤维复合材料,使碳纳米纤维进一步分散在作为基体的弹性体中。特别是特别难分散的直径约为小于等于30nm的碳纳米纤维,或者弯曲纤维状的碳纳米纤维,也可以被均匀地分散在弹性体中。
根据本发明的工序(b),通过热处理气化弹性体,残留金属颗粒和碳纳米纤维,其结果可以获得在金属颗粒的周围分散碳纳米纤维的状态的金属材料。并且,该金属材料易于利用于一般的金属加工例如铸造等的加工中。
本发明的弹性体可以是橡胶系弹性体或热塑性弹性体。另外,当是橡胶系弹性体的时候,弹性体可以是交联体或未交联体。作为原料弹性体,当是橡胶系弹性体的时候,使用未交联体。
在用剪切力使所述碳纳米纤维分散在所述弹性体中的工序(a)中,采用辊间隔为小于等于0.5mm的开式辊法。
根据本发明所涉及的金属材料的制造方法,使用所述金属材料,并作为工序(c)可以采用(c’)粉末成型所述金属材料的工序;(c”)将所述金属材料混入到熔融金属中,在具有期望形状的模具内铸造的工序;(c)是熔融金属渗透到所述金属材料中,并且用熔融金属完全浸满所述金属材料的间隙的工序。
根据上述的碳纤维复合金属材料的制造方法,如上所述,通过使用分散碳纳米纤维的金属材料,可以获得均匀分散碳纳米纤维的碳纤维复合金属材料。另外,根据上述的制造方法,金属材料中的碳纳米纤维的表面被活化,因此,碳纳米纤维与金属材料的浸润性被提高,对其他金属材料的熔融金属也具有充分的浸润性,因此,降低机械性质的不均匀性,获得均质的碳纤维复合金属材料。


图1是本发明实施例中使用的开式辊法的弹性体和碳纳米纤维的混炼法的示意图。
图2通过非加压渗透法制造碳纤维复合金属材料的装置的概要构成图。
图3是通过非加压渗透法制造碳纤维复合金属材料的装置的概要构成图。
具体实施例方式
以下,参照附图对本发明的实施例进行详细说明。
本发明所涉及的在金属颗粒的周围分散有表面被活化的碳纳米纤维的金属材料的制造方法,包括工序(a),将对所述碳纳米纤维具有亲和性的具有不饱和键或基的弹性体、金属颗粒、以及碳纳米纤维混合,并利用剪切力使所述碳纳米纤维分散而获得碳纤维复合材料;以及工序(b),热处理所述碳纤维复合材料,使包含在该碳纤维复合材料中的所述弹性体气化。
在用剪切力使所述碳纳米纤维分散在所述弹性体中的工序(a)中,采用辊间隔为小于等于0.5mm的开式辊法。
根据本发明所涉及的金属材料的制造方法,使用所述金属材料,并作为工序(c)可以采用(c’)粉末成型所述金属材料的工序;(c”)将所述金属材料混入到熔融金属中,在具有期望形状的模具内铸造的工序;(c)是熔融金属渗透到所述金属材料中,并且用熔融金属完全浸满所述金属材料的间隙的工序。
弹性体优选具有例如和碳纳米纤维的亲和性高、具有一定长度的分子长度、具有柔软性等特性。此外,通过剪切力使碳纳米纤维分散在弹性体中的工序,优选用尽可能高的剪切力进行混练。
(A)弹性体弹性体分子量优选为5000至500万,更优选为2万至300万。因为如果弹性体的分子量在这个范围,弹性体分子相互络合,相互连接,所以弹性体容易侵入到凝结的碳纳米纤维的相互之间,因此分离碳纳米纤维的效果显著。当弹性体的分子量小于5000时,弹性体分子不能相互充分地络合,即便在后面工序中施加剪切力,分散碳纳米纤维的效果也较小。另外,当弹性体的分子量大于500万时,弹性体太硬,加工较困难。
通过采用脉冲NMR的哈恩回波法,弹性体在30℃下测定的未交联体的网络成分的自旋-自旋驰豫时间(T2n/30℃)优选为100至3000μ秒,更优选为200至1000μ秒。因为具有上述范围的自旋-自旋驰豫时间(T2n/30℃),所以弹性体可以很柔软而且具有很高的分子运动性。因此,在混合弹性体和碳纳米纤维时,弹性体可以通过较高的分子运动容易地侵入到碳纳米纤维的相互的缝隙之间。自旋-自旋驰豫时间(T2n/30℃)如果比100μ秒短,弹性体就不能具有充分的分子运动性。此外,自旋-自旋驰豫时间(T2n/30℃)如果比3000μ秒长,弹性体就会变得象液体一样容易流动,从而难以使碳纳米纤维分散。
另外,通过采用脉冲NMR的哈恩回波法,弹性体在30℃下测定的交联体的网络成分的自旋-自旋驰豫时间(T2n)优选为100至2000μ秒。其原因与上述未交联体相同。即,具有上述条件的未交联体通过本发明的制造方法进行交联化,得到的交联体的T2n大致被包含在上述范围内。
通过采用脉冲NMR的哈恩回波法得到的自旋-自旋驰豫时间,是表示物质的分子运动性的尺度。具体地说,如果通过采用脉冲NMR的哈恩回波法对弹性体的自旋-自旋驰豫时间进行测定,则会检测出具有驰豫时间较短的自旋-自旋驰豫时间(T2sn)的第一成分,以及具有驰豫时间较长的自旋-自旋驰豫时间(T2nn)的第二成分。第一成分相当于高分子的网络成分(骨架分子),第二成分相当于高分子的非网络成分(末端链等枝叶的成分)。而且,可以说第一成分的自旋-自旋驰豫时间越短分子运动性越低,弹性体越硬。此外,第一成分的自旋-自旋驰豫时间越长分子运动性越高,弹性体越柔软。
作为脉冲法NMR中的测定法,不仅可以是哈恩回波法,也可以适用立体回波法、CPMG法(Carr-Purcell-Meiboom-Gill法)或者90℃脉冲法。但是,因为本发明所涉及的碳纤维复合材料具有适中的自旋-自旋驰豫时间(T2),所以哈恩回波法是最为合适的。一般的立体回波法以及90℃脉冲法适合于测定短T2,哈恩回波法适合于测定适中的T2,CPMG法适合于测定长T2。
弹性体在主链、侧链以及末端链的至少一个具有对碳纳米纤维特别是其末端的原子团具有亲和性的不饱和键或基,或具有容易生成这些原子团或基的性质。不饱和键或基是从双键、三键、α氢、羰基、羧基、羟基、氨基、氰基、酮基、酰氨基、环氧基、酯基、乙烯基、卤基、聚氨酯基、缩二脲基、脲基甲酸酯基、脲基等官能基中选择的至少一种。
碳纳米纤维通常其侧面由碳原子的六元环构成、末端导入五元环并闭合的结构,但是,因为因为存在结构上的不合理之处,所以实际中容易产生缺陷,在其部分上容易生成原子团或官能团。在本实施例中,由于弹性体的主链、侧链以及末端链中的至少一个具有和碳纳米纤维的原子团亲和性很高的极性基团,所以可以实现弹性体与碳纳米纤维的结合。从而,可以克服碳纳米纤维的凝聚力使其更加易于分散。
作为弹性体,可以使用天然橡胶(NR)、环氧化天然橡胶(ENR)、丁苯橡胶(SBR)、丁腈橡胶(NBR)、氯丁橡胶(CR)、乙丙橡胶(EPR,EPDM)、丁基橡胶(IIR)、氯丁基橡胶(CIIR)、丙烯酸橡胶(ACM)、硅橡胶(Q)、氟橡胶(FKM)、丁二烯橡胶(BR)、环氧化丁二烯橡胶(EBR)、表氯醇橡胶(CO,CEO)、尿烷橡胶(U)、聚硫橡胶(T)等弹性体类;烯烃系(TPO)、聚氯乙稀系(TPVC)、聚酯系(TPEE)、聚亚胺酯系(TPU)、聚酰胺系(TPEA)、苯乙烯系(SBS)等热塑性弹性体;以及这些物质的混合物。根据本发明的研究,特别是在乙丙橡胶(EPR,EPDM)中难以分散碳纳米纤维。
(B)金属颗粒使金属颗粒混合、分散在弹性体中,可以在使碳纳米纤维混合时促进碳纳米纤维在弹性体中的分散,使其更加良好地实现分散。作为金属颗粒可以采用铝及其合金、镁及其合金、钛及其合金、铁及其合金等的颗粒单体或者其组合。为促进碳纳米纤维的分散,金属颗粒的平均粒径优选大于所使用的碳纳米纤维的平均直径。此外,金属颗粒的平均粒径为500μm以下,优选为1~300μm。此外,金属颗粒的形状不仅限于球形颗粒状,只要是混合时在金属颗粒的周围发生紊流状流动的形状,还可以是平板状、鳞片状。
(C)碳纳米纤维碳纳米纤维平均直径优选为0.5至500nm,为提高碳纤维复合材料的强度更优选为0.5至30nm。而且,碳纳米纤维既可以是直纤维状也可以是弯曲纤维状。
碳纳米纤维的配合量(加入量)没有特别限定,可以根据用途来设定。本实施例的碳纤维复合材料可以将交联弹性体、未交联弹性体或直接将热塑性聚合物作为弹性体系材料使用。本实施例的碳纤维复合材料,可以包含0.01~50重量百分比的碳纳米纤维。在金属基体材料中混合碳纳米纤维时,将所涉及的碳纤维复合材料的弹性体气化的金属材料可以作为碳纳米纤维的供给源,即作为所谓的母体混合物使用。
作为碳纳米纤维可以列举所谓的碳纳米管等。碳纳米管包括碳六角网面的石墨片材闭合成圆筒状的单层结构或者这些圆筒结构配置成套管状的多层结构。即,碳纳米管既可以只由单层结构构成,也可以只由多层结构构成,还可以同时包括单层结构和多层结构。并且,还可以使用部分包括碳纳米管结构的碳材料。另外,除碳纳米管这样的名称外,还可以用石墨原纤维纳米管这样的名称来命名。
单层碳纳米管或多层碳纳米管可以通过电弧放电法、激光消融法、气相沉积法等制成期望的尺寸。
电弧放电法是一种在压力稍低于大气压的的氩或氢氛围下,在用碳棒制成的电极材料之间进行电弧放电,从而得到堆积于阴极上的多层碳纳米管的方法。另外,单层碳纳米管是从在所述碳棒中混合镍/钴等催化剂并进行电弧放电后,附着到处理容器内侧面上的碳黑中获得的。
激光消融法是一种在稀有气体(例如氩)中,通过向作为目标的混合有镍/钴等催化剂的碳表面照射YAG激光的强脉冲激光使碳表面熔融、蒸发,从而获得单层碳纳米管的方法。
气相沉积法是在气相中热解苯、甲苯等碳氢化合物,合成碳纳米管,更具体地,可以列举流动催化剂法、沸石载体催化剂法等。
碳纳米纤维在与弹性体混练之前预先进行表面处理,例如,通过进行离子注入处理、溅射蚀刻处理、等离子处理等,可以改善与弹性体的粘合性、浸润性。
(D)在弹性体中混合碳纳米纤维,并通过剪切力使其分散的工序(b)在本实施例中,作为使金属颗粒以及碳纳米纤维混合在弹性体中的工序,对采用了辊间隔为小于等于0.5mm的开式辊法的例子进行叙述。
图1是使用两个辊的开式辊法的示意图。在图1中,符号10表示第一辊,符号20表示第二辊。第一辊10和第二辊20以预定的间隔d、优选为小于等于1.0mm、更优选为0.1至0.5mm的间隔配置。第一辊10和第二辊20以正转或反转进行旋转。在图示的例中,第一辊10和第二辊20按箭头所示的方向旋转。将第一辊10的表面速度作为V1、将第二辊20的表面速度作为V2,那么两者的表面速度比(V1/V2)优选为1.05至3.00,更优选为1.05至1.2。通过使用这样的表面速度比,可以获得期望的剪切力。首先,在第一辊10和第二辊20旋转的状态下,向第二辊20卷绕弹性体30,形成在第一辊10和第二辊20之间积存弹性体的所谓贮料器(bank,储料所)32。在贮料器32中加入金属颗粒50,再旋转第一辊10和第二辊20,进行混合弹性体30和金属颗粒50的工序。接着,在混合该弹性体30和金属颗粒50的贮料器32中,加入碳纳米纤维40,旋转第一辊10和第二辊20。并且,使第一辊10和第二辊20的间隔变窄而成为上述的间隔d,在该状态下,将第一辊10和第二辊20以预定的表面速度比旋转。这样,强的剪切力作用于弹性体30,通过该剪切力使已经凝聚的碳纳米纤维可以被一根一根地抽出似的相互分离,从而分散在弹性体30中。另外,通过辊产生的剪切力使分散在弹性体内的金属颗粒的周围发生紊流状的流动。通过该复杂的流动碳纳米纤维进一步分散在弹性体30中。此外,在混合金属颗粒50之前,如果先将弹性体30和碳纳米纤维40进行混合,弹性体30的运动就会被碳纳米纤维40所限制,所以,混合金属颗粒50就会变得困难。因此,优选在弹性体30中加入碳纳米纤维40之前实施混合金属颗粒50的工序。
此外,在工序(a)中,在通过剪切力被剪切的弹性体中生成自由原子团(基团),该自由原子团攻击碳纳米纤维的表面,碳纳米纤维的表面被活化。例如,弹性体使用天然橡胶(NR)的时候,各个天然橡胶(NR)分子在辊中混炼时被切断,分子量比加入到开式辊之前小。这样被切断的天然橡胶(NR)分子中生成原子团,在混炼时原子团攻击碳纳米纤维的表面,碳纳米纤维的表面被活化。被活化的碳纳米纤维与氛围中的氧等结合,与金属颗粒铝的浸润性良好。
此外,在工序(a)中,为了获得尽可能高的剪切力,弹性体和碳纳米纤维的混合,优选在0至50℃、更优选在5至30℃的比较低的温度下进行。使用开式辊法的时候,将辊的温度优选设定为上述的温度。通过将第一辊10和第二辊20的间隔d设定为即使在最窄的状态下也比金属颗粒50的平均粒径宽,可以很好地实施在弹性体30中碳纳米纤维40的分散。
这时,由于本实施例的弹性体具有上述特征,即弹性体的分子形态(分子长度)、分子运动等的特征,从而可以容易地实现碳纳米纤维的分散,因此,可以获得具有良好的分散性以及分散稳定性(碳纳米纤维难以再度凝聚)的碳纤维复合材料。更具体地说,将弹性体与碳纳米纤维进行混合时,具有适度的分子长度以及较高的分子运动性的弹性体侵入到碳纳米纤维的相互之间,弹性体的特定部分通过化学相互作用与碳纳米纤维的活性高的部分结合。在这种状态下,如果将强的剪切力作用于弹性体与碳纳米纤维的混合物,伴随着弹性体的移动碳纳米纤维也发生移动,已经凝聚的碳纳米纤维被分离,分散在弹性体中。另外,这种预分散的碳纳米纤维通过与弹性体分子的化学相互作用可以防止再次凝聚,从而具有良好的分散稳定性。
此外,由于弹性体中包含预定量的金属颗粒,通过生成于金属颗粒周围的弹性体的象紊流似的几股复杂的流动,剪切力在拉开每个碳纳米纤维的方向上也发生作用。因此,即使是直径约为小于等于30nm的碳纳米纤维或弯曲纤维状的碳纳米纤维,由于向分别通过化学相互作用结合的弹性体分子的各个流动方向移动,因此均匀地分散在弹性体中。
通过剪切力使碳纳米纤维分散在弹性体中的工序,并不只限定于上述开式辊法,也可以采用密闭式混炼法或多轴挤压混炼法。总之,只要是在该工序中,对弹性体施加能够分离已经凝聚的碳纳米纤维的剪切力就可以。
通过上述的使金属颗粒与碳纳米纤维分散在弹性体中并混合两者的混合工序(混合、分散工序)获得的碳纤维复合材料,可以通过交联剂交联成型,或不进行交联而成型。此时的成型方法例如可以采用压缩成型工序、挤压成型工序等。压缩成型工序例如具有下述的工序将分散了金属颗粒和碳纳米纤维的碳纤维复合材料,放置在具有期望形状的被设定为一定温度(例如为175℃)的成型模具中以加压状态经过一定时间(例如为20分钟)成型。
在弹性体和碳纳米纤维的混合、分散工序中,或者在后续工序中,通常可以加入在橡胶等弹性体的加工中所采用的公知的添加剂。作为添加剂可以列举出例如交联剂、硫化剂、硫化促进剂、硫化抑制剂、软化剂、增塑剂、硬化剂、增强剂、填充剂、抗老化剂、着色剂等。
(E)通过上述方法获得的碳纤维复合材料本实施例的碳纤维复合材料是碳纳米纤维均匀地分散在作为基材的弹性体中。这种状态也可以说是弹性体被碳纳米纤维限制着的状态。在这种状态下,与弹性体不受碳纳米纤维限制的情况相比,受碳纳米纤维限制的弹性体分子的运动性变小。因此,本实施例所涉及的碳纤维复合材料的第一成分的自旋-自旋驰豫时间(T2n)、第二成分的自旋-自旋驰豫时间(T2nn)以及自旋-晶格驰豫时间(T1),比不包含碳纳米纤维的弹性体单体的情况变短。特别是在包含金属颗粒的弹性体中混合碳纳米纤维时,与包含碳纳米纤维的弹性体的情况相比,第二成分的自旋-自旋驰豫时间(T2nn)变短。此外,碳纤维复合材料的自旋-晶格驰豫时间(T1)与碳纳米纤维的混合量成比例地发生变化。
此外,在弹性体分子被碳纳米纤维限制的状态下,基于以下理由,可以认为非网络成分(非网眼链成分)减少。即如果由于碳纳米纤维而弹性体的分子运动性整体性的发生降低的话,基于下列原因可以认为非网络成分减少非网络成分不能容易地进行运动的部分增加,容易和网络成分发生同等的行为;此外,因为非网络成分容易运动,所以变得容易被碳纳米纤维的活性中心吸附。因此,与不包含碳纳米纤维的弹性体单体的情况相比,具有第二自旋-自旋驰豫时间的成分的成分分率(fnn)变小。特别是与包含碳纳米纤维的弹性体的情况相比,在包含金属颗粒的弹性体中混合碳纳米纤维时,具有第二自旋-自旋驰豫时间的成分的成分分率(fnn)进一步变小。
基于以上所述,本实施例所涉及的碳纤维复合材料通过采用脉冲NMR的哈恩回波法获得的测定值优选在以下的范围内。
即,在未交联体中,在150℃测定的第一自旋-自旋驰豫时间(T2n)优选为100至3000μ秒,第二自旋-自旋驰豫时间(T2nn)或者不存在或者是1000至10000μ秒,而且,具有第二自旋-自旋驰豫时间的成分的成分分率(fnn)为小于0.2。
通过采用脉冲NMR的哈恩回波法测定出的自旋-晶格驰豫时间(T1)是和自旋-自旋驰豫时间(T2)一样是表示物质的分子运动性的尺度。具体的可以说弹性体的自旋-晶格驰豫时间越短分子的运动性越低,弹性体越硬,自旋-晶格驰豫时间越长分子的运动性越高,弹性体越柔软。
本实施例所涉及的碳纤维复合材料,在动态粘弹性的温度依存性测定中的流动温度,优选是比原料弹性体单体的流动温度高20℃以上的高温。本实施例的碳纤维复合材料是金属颗粒和碳纳米纤维非常好地分散在弹性体中。这种状态可以说是如上所述的弹性体被碳纳米纤维限制的状态。在该状态下,弹性体与不包含碳纳米纤维的情况相比,其分子运动变小,结果是流动性降低。由于具有这样的流动温度特性,本实施例的碳纤维复合材料的动态粘弹性的温度依存性变小,结果是可以具有良好的耐热性。
通常,碳纳米纤维相互络合而具有在介质中难以分散的性质。但是,如果将本实施例的碳纤维复合材料的弹性体气化的金属材料作为金属复合材料的原料使用,那么,因为碳纳米纤维已经在弹性体中以分散状态存在,所以通过将该原料和金属等介质混合,碳纳米纤维可以容易地在介质中分散。另外,碳纳米纤维的表面被活化,或与氧等发生反应,与金属等的浸润性被提高,因此,具有很好的与复合金属材料的金属的浸润性。
(F)热处理碳纤维复合材料、制造金属材料的工序(b)通过热处理碳纤维复合材料而气化包含在该碳纤维复合材料中的弹性体的工序(b),可以制造在金属颗粒的周围分散碳纳米纤维的金属材料。
这样的热处理,可以根据使用的弹性体的种类选择各种条件。工序(b),优选在惰性气体氛围中,在大于等于弹性体的气化温度、并小于金属颗粒的熔点的温度下进行热处理。作为惰性气体,可以使用氮气、包含小于等于5%氧的氮气、氩等。由于在空气中进行工序(b)的热处理,碳纳米纤维被氧化分解(燃烧),因此,采用惰性气体氛围。
在惰性气体氛围的热处理炉中放置碳纤维复合材料,将炉加热至弹性体气化的温度以上而进行热处理。通过这种加热,弹性体气化,制造在金属颗粒的周围分散碳纳米纤维的金属材料。如果该热处理温度低于金属颗粒的熔点温度,金属颗粒不熔融,保持颗粒状,获得的金属材料是粉体状或容易粉化的块状,在后续加工中容易利用。
当弹性体例如为天然橡胶(NR)、金属颗粒例如为铝颗粒的时候,工序(b)的热处理温度优选为300至650℃。热处理温度为大于等于300℃,天然橡胶被分解而气化,热处理温度为小于等于650℃,铝颗粒不会发生熔融,碳纤维复合材料被粉化,从而可以获得粉体状的金属材料。并且,热处理温度越高热处理时间越短,但为了使弹性体被分解而气化,选用1分钟至100小时。
这样获得的金属材料,在金属颗粒之间存在分散的碳纳米纤维。碳纳米纤维与金属颗粒的浸润性良好,因此,碳纳米纤维在弹性体中以接近于分散状态的状态分散在金属颗粒的周围。
(G)利用金属材料获得碳纤维复合金属材料的工序(c)本实施例中的工序(c),利用通过上述实施形式获得的金属材料,可以得到在金属材料中分散碳纳米纤维的碳纤维复合金属材料。
所述工序(c)例如可以采用以下的各种成型方法。
(粉末成型法)可以对由所述工序(b)获得的碳纤维复合材料进行粉末成型工序。具体的说例如直接将通过上述实施例获得的碳纤维复合材料直接或者再与其他金属材料进行混合后在模具内压缩,在金属颗粒的烧结温度(例如金属颗粒是铝时为550℃)下进行煅烧,从而可以获得碳纤维复合金属材料。
本实施例中的粉末成型和金属成型加工的粉末成型相同,也就是说包含所谓的金属粉末,而且不仅限于使用粉末原料的情况,也包括将碳纤维复合材料预先预压缩成型所形成的块状原料。作为烧结法除了一般的烧结法之外,还可以采用使用等离子烧结装置的放电等离子烧结法(SPS)等。
此外,金属材料与其他金属材料的颗粒的混合,可以采用干式混合、湿式混合。在湿式混合的情况下,优选对于溶剂中的其他金属材料的颗粒,混合金属材料(湿式混合)。在金属材料中,金属颗粒之间结合而基本维持碳纤维复合材料时的外形,但金属颗粒之间结合力小,容易被粉碎。因此,在进行干式混合或湿式混合时,可以使用被粉碎而成为颗粒状的金属材料,易于利用于金属加工中。
通过这样的粉末成型制造出的碳纤维复合金属材料,可以获得使碳纳米纤维分散在作为基体的金属材料中的状态。并且,该工序(c)中所使用的其他金属材料的颗粒,可以是与金属颗粒相同的材质,或不同的材质。通过调整金属材料和其他金属材料的颗粒的混合比例,可以制造期望的碳纤维复合金属材料。
(铸造法)碳纤维复合金属材料的铸造方法,可以将通过上述实施形式获得的金属材料混入到熔融金属中,在具有期望形状的模具内进行铸造的工序来实施。这样的铸造工序,可以采用例如在钢制的铸模内注入熔融金属实施的模具铸造法、压铸法、低压铸造法。此外还可以采用属于其他的特殊铸造法分类的利用高压化使其凝固的高压铸造法、对熔融液进行搅拌的触融压铸法、利用离心力将熔融液铸进铸模内的离心铸造法等。在这些铸造法中,使金属材料混合在熔融金属中,使其以这种状态直接在铸模内凝固,从而使碳纤维复合金属材料成型。
铸造工序所使用的熔融金属,可以从通常的铸造加工所使用的金属例如铝及其合金、镁及其合金、钛及其合金、铜及其合金、锌及其合金等中,根据用途适当选择单体或者其组合。此外,熔融液所采用的金属是包含与预先混合在金属材料的金属颗粒相同的金属或相同的金属元素的合金,因此,可以提高与金属颗粒的浸润性,还可以提高产品碳纤维复合金属材料的强度。此外,通过调整对于熔融金属的金属材料(金属颗粒)的混合比例,可以制造具有期望物性的碳纤维复合金属材料。
(渗透法)下面参照图2以及图3对本实施例中使熔融液渗透到金属材料中,也就是所谓的采用非加压渗透法进行铸造的工序进行说明。
图2及图3是利用非加压渗透法制造碳纤维复合金属材料的装置的结构示意图。上述实施例中获得的金属材料可以使用金属材料4,该金属材料4是在具有所期望的形状例如最终产品形状的成型模具中压缩成型的。图2示出在密闭的容器1内放入已经成型的金属材料4(例如铝颗粒50以及碳纳米纤维40)。在该金属材料4的上方放置其他金属材料块例如铝块5。接着,通过内藏于容器1中未图示的加热装置,将放置在容器1内的金属材料4以及铝块5加热至大于等于铝熔点。加热后的铝块5发生熔融成为熔融铝(熔融金属)。此外,熔融铝渗透到金属材料4中的空处。
作为本实施例的金属材料4,形成有在预压缩成型时利用毛细管现象可以使熔融铝尽快地渗透在整体的空处。另外,在预压缩成型之前,通过在金属材料4的颗粒中加入并混合镁颗粒,使容器1成为还原氛围。利用毛细现象熔融铝渗透到通过被还原而浸润性发生了改善的铝颗粒50之间,并且完全浸满金属材料的内部。然后,停止容器1的加热装置的加热,并使金属材料4中渗透的熔融金属冷却、凝固,从而可以制造如图3所示的碳纳米纤维40均匀分散了的碳纤维复合金属材料6。铸造工序所采用的金属材料4优选采用与预先铸造工序中所使用的熔融金属的材质相同的金属颗粒进行成型加工。通过这样的操作,可以获得熔融金属与金属颗粒很容易混合的均质金属。此外,当其他金属材料的块与金属颗粒的材质不同时,通过调整对于熔融金属的金属材料(金属颗粒)的混合比例,可以制造具有期望物性的碳纤维复合金属材料。
此外,在加热容器1之前,也可以通过连接在容器1的减压装置2例如真空泵进行抽气。而且,还可以从连接在容器1上的惰性气体注入装置3例如氮气瓶向容器1内导入氮气。
在本实施例中,使用将金属材料预先压缩成型为期望的形状,但并不限于此,也可以在期望形状的模具内放入粉碎的颗粒状的金属材料,在其上放置其他金属材料块而实施渗透法。
此外,以上是对在上述实施例中的非加压渗透法进行了说明,但是,只要是渗透法就并不限于此,例如也可以采用利用惰性气体等的氛围气体的压力实施加压的加压渗透法。
如上所述,金属材料中的碳纳米纤维的表面被活性化,提高了与金属材料的浸润性,对于其他金属材料的熔融金属具有充分的浸润性,因此,整体降低机械性质的不均匀性,获得均质的碳纤维复合金属材料。
实施例以下,对本发明的实施例进行叙述,但本发明并不仅限于此。
(实施例1-3,比较例1)(1)试样的制造(a)未交联试样(碳纤维复合材料)的制造第一工序在辊径为6英寸的开式辊(辊温度为10至20℃)中加入表1所示的规定量(100g)的高分子物质(100重量份(phr)),使其卷绕在辊中。
第二工序将表1所示量(重量份)的金属颗粒加入到高分子物质中。此时,辊间隔为1.5mm。并且,对于加入的金属颗粒的种类,在下面描述。
第三工序接着,将表1所示量(重量份)的碳纳米纤维(表1中记载为“CNT”)加入包含金属颗粒高分子物质中。此时,辊间隔为1.5mm。
第四工序加入完碳纳米纤维后,从辊中取出高分子物质和碳纳米纤维的混合物。
第五工序使辊间隔从1.5mm变窄为0.3mm,加入混合物,进行薄通。此时,两个辊的表面速度比是1.1。反复进行了十次薄通。
第六工序将辊间隔设定为预定的间隔(1.1mm),加入进行薄通的混合物,并取出。
这样,得到实施例1~3以及比较例1的未交联试样。
(b)金属材料的制造使上述(a)实施例1~3中获得的未交联试样(碳纤维复合材料)放置在氮气氛围的炉内,在大于等于弹性体的气化温度的温度下(500℃),进行2小时的热处理,使弹性体气化,获得粉体状的金属材料。
(c)碳纤维复合金属材料的制造将上述(b)实施例1~3中获得的金属材料试样等离子烧结,获得碳纤维复合金属材料。另外,在实施例2和3中的等离子烧结之前,以表1所示的混合量将低熔点铝合金颗粒加入到通过上述(b)获得的金属材料中并混合。更具体地,在设置于真空容器内的成型模中,放置将通过上述(b)获得的颗粒状的金属材料和低熔点铝合金颗粒混合而得到的混合物,对准孔,以作为负荷P的约50Mpa的压力从上下进行压缩之后,通过孔向混合物导通脉冲状电流。该脉冲电流使孔和成型模发热,烧结颗粒状的混合物获得碳纤维复合金属材料。并且,调整各个物质的混合量,使获得的碳纤维复合金属材料的碳纳米纤维的含量成为1.6体积百分比。
在此使用的低熔点铝合金颗粒的熔点为550℃,平均颗粒直径为50μm。
另外,通过非加压渗透法获得比较例1的碳纤维复合金属材料更具体地,将通过上述(a)获得的比较例1的未交联试样放置在容器(炉)内,将铝块(原料金属)放置在其上,在惰性气体(氮气)中加热至铝的融点。铝块发生熔融成为铝熔融液,熔融金属发生渗透,以与复合材料的弹性体置换。在使铝熔融液渗透之后,将其自然冷却使其凝固,从而获得比较例1的碳纤维复合金属材料。
此外,作为实施例1~3以及比较例1的金属颗粒,采用了铝颗粒(平均粒径28μm)。碳纳米纤维采用的是平均直径(纤维径)约为13nm、平均长度约为25μm的碳纳米纤维。
(2)采用脉冲NMR的测定对于未交联试样,通过采用脉冲NMR的哈恩回波法进行测定。该测定是采用日本电子(株)制的“JMN-MU25”进行的。测定是在观测核为1H,共振频率为25MHz,90°脉冲宽度为2μsec的条件下进行,通过哈恩法的脉冲序列(90°x-Pi-180°x)对Pi进行各种变化从而测定减弱曲线。此外,试样是插入试样管到磁场的适当范围而进行测定。测定温度是150℃。利用该测定求出原料弹性体单体以及复合材料的未交联试样的第一自旋-自旋驰豫时间(T2n)、第二自旋-自旋驰豫时间(T2nn)、具有第二自旋-自旋驰豫时间的成分的成分分率(fnn)。此外还求出在测定温度是30℃的情况下,原料弹性体单体的第一自旋-自旋驰豫时间(T2n)。测定结果如表1所示。实施例1的未交联试样的第一自旋-自旋驰豫时间(T2n)是1780(μsec)、实施例2的未交联试样的第一自旋-自旋驰豫时间(T2n)是1640(μsec)、实施例3的未交联试样的第一自旋-自旋驰豫时间(T2n)是1540(μsec)。没有检测出实施例1至3中的第二自旋-自旋驰豫时间(T2nn)。因此,具有第二自旋-自旋驰豫时间的成分的成分分率(fnn)为0(零)。
(3)流动温度的测定对于原料弹性体单体以及复合材料的未交联试样,通过动态粘弹性测定(JIS K 6394)进行了流动温度的测定。具体地,流动温度,对于宽5mm、长40mm、厚1mm的试样给予正弦振动(小于等于±0.1%),求出由此发生的应力和位相差δ。此时,将温度从-70℃开始以2℃/分钟的升温速度提高至150℃。其结果在表1中表示。在表1中,将150℃没有发现试样的流动现象的情况记载为“大于等于150℃”(4)利用电子显微镜(SEM)进行观察利用电子显微镜(SEM)对实施例1~3以及比较例1的碳纤维复合金属材料试样进行观察,观察结果在表1中表示。
(5)压缩耐力的测定对碳纤维复合金属材料试样进行了压缩耐力(Mpa)的测定。压缩耐力的测定是将10×10×5mm的试验原料以0.01mm/min压缩时的0.2%(σ0.2)耐力。其结果在表1中表示。
表1

根据本发明的实施例1~3,从表1中可以确认以下事实。即包含金属颗粒以及碳纳米纤维的未交联试样(碳纤维复合材料)在150℃下的自旋-自旋驰豫时间(T2n以及T2nn/150℃),与不包含金属颗粒以及碳纳米纤维的原料弹性体相比要短。此外,包含金属颗粒以及碳纳米纤维的未交联试样(碳纤维复合材料)的成分分率(fnn/150℃)与不包含金属颗粒以及碳纳米纤维的原料弹性体相比要小。从这些数据可以看出碳纳米纤维很好地分散在实施例所涉及的碳纤维复合材料中。
并且,包含金属颗粒以及碳纳米纤维的碳纤维复合材料(未交联试样)的流动温度,与原料弹性体相比高20℃以上,动态粘弹性的温度依存性小,具有良好的耐热性。
此外,根据实施例1~3以及比较例1的碳纤维复合材料试样(基体为铝)的电子显微镜(SEM)的观察结果,几乎没有观察到碳纳米纤维的凝聚,碳纳米纤维的分散状况良好。
而且,实施例1~3的碳纤维复合金属材料试样的压缩耐力的最小值,比比较例1的碳纤维复合金属材料试样的压缩耐力的最小值高,因此得到了机械性质的不均匀性降低的均质的碳纤维复合金属材料。另外,实施例1~3的碳纤维复合金属材料的比重比比较例1大,因此得到了全体均质的碳纤维复合金属材料。
从以上的情况可以知道,通过本发明,一般很难分散于基材中的碳纳米纤维均匀地分散在弹性体中,从而获得均匀分散碳纳米纤维的碳纤维复合金属材料。另外,通过将金属颗粒混合在弹性体中,即使是直径约为小于等于30nm的细碳纳米纤维或弯曲纤维状的易络合的碳纳米纤维,也可以被充分地分散在弹性体中。另外,通过将气化弹性体而获得的金属材料作为复合金属材料的原料使用,可以获得分散碳纳米纤维的具有均质机械性质的碳纤维复合金属材料。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
符号说明1容器2减压装置3注入装置4金属材料5铝块6碳纤维复合金属材料10第一辊20第二辊30弹性体 40碳纳米纤维50金属颗粒
权利要求
1.一种在金属颗粒的周围分散有碳纳米纤维的金属材料的制造方法,包括工序(a),将对所述碳纳米纤维具有亲和性的含有不饱和键或基团的弹性体、金属颗粒、以及碳纳米纤维混合,并利用剪切力使所述碳纳米纤维分散而获得碳纤维复合材料;以及工序(b),热处理所述碳纤维复合材料,使包含在该碳纤维复合材料中的所述弹性体气化。
2.根据权利要求1所述的金属材料的制造方法,其中相对于所述弹性体100重量份,所述金属颗粒为10~3000重量份。
3.根据权利要求1所述的金属材料的制造方法,其中所述金属颗粒具有比所述碳纳米纤维的平均直径大的平均粒径。
4.根据权利要求1所述的金属材料的制造方法,其中所述金属颗粒的平均粒径为小于等于500μm。
5.根据权利要求1所述的金属材料的制造方法,其中所述金属颗粒为铝颗粒或者铝合金颗粒。
6.根据权利要求1所述的金属材料的制造方法,其中所述弹性体的分子量为5000至500万。
7.根据权利要求1所述的金属材料的制造方法,其中所述弹性体在主链、侧链以及末端链的至少一个具有从双键、三键、α氢、羰基、羧基、羟基、氨基、氰基、酮基、酰氨基、环氧基、酯基、乙烯基、卤基、聚氨酯基、缩二脲基、脲基甲酸酯基、脲基等官能基中选择的至少一种。
8.根据权利要求1所述的金属材料的制造方法,其中通过采用脉冲NMR的哈恩回波法,所述弹性体在30℃下测定的未交联体的网络成分的自旋-自旋驰豫时间(T2n)为100至3000μ秒。
9.根据权利要求1所述的金属材料的制造方法,其中通过采用脉冲NMR的哈恩回波法,所述弹性体在30℃下测定的未交联体的网络成分的自旋-自旋驰豫时间(T2n)为100至2000μ秒。
10.根据权利要求1所述的金属材料的制造方法,其中所述碳纳米纤维的平均直径为0.5至500nm。
11.根据权利要求1所述的金属材料的制造方法,其中所述工序(a)采用辊间隔为小于等于0.5mm的开式辊法。
12.根据权利要求11所述的金属材料的制造方法,其中在所述开式辊法中,两个辊的表面速度比为1.05至3.00。
13.根据权利要求1所述的金属材料的制造方法,其中所述工序(a)在0℃至50℃下进行。
14.根据权利要求1所述的金属材料的制造方法,其中所述工序(b)为在惰性气体氛围中,在大于等于所述弹性体的气化温度、并小于所述金属颗粒的熔点的温度下进行热处理。
15.根据权利要求1所述的金属材料的制造方法,其中所述弹性体为天然橡胶(NR),所述金属颗粒为铝颗粒,所述工序(b)的热处理温度为300℃至650℃。
16.一种碳纤维复合金属材料的制造方法,其中包括粉末成型根据权利要求1获得的所述金属材料的工序。
17.一种碳纤维复合金属材料的制造方法,其中包括根据权利要求1至15中任一项获得的所述金属材料混入到熔融金属中,在具有期望形状的模具内进行铸造的工序。
18.一种碳纤维复合金属材料的制造方法,其中包括将熔融金属渗透到根据权利要求1至15中任一项获得的所述金属材料中,用所述熔融金属浸满所述金属材料的间隙的工序。
19.根据权利要求1至15中任一项制造方法获得的金属材料。
20.根据权利要求16所述的制造方法获得的碳纤维复合金属材料。
全文摘要
本发明提供一种均匀分散碳纳米纤维的金属材料及其制造方法、碳纤维复合金属材料及其制造方法。在金属颗粒(50)的周围分散有碳纳米纤维(40)的金属材料的制造方法,包括工序(a),将对所述碳纳米纤维(40)具有亲和性的含有不饱和键或基团的弹性体(30)、金属颗粒(50)、以及碳纳米纤维(40)混合,并利用剪切力使所述碳纳米纤维(40)分散而获得碳纤维复合材料;以及工序(b),热处理所述碳纤维复合材料,使包含在该碳纤维复合材料中的所述弹性体(30)气化。
文档编号C22C101/10GK1701946SQ20051007205
公开日2005年11月30日 申请日期2005年5月24日 优先权日2004年5月24日
发明者野口徹, 曲尾章 申请人:日信工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1