由液体控制的多区基片支座改进的基片温度控制的制作方法

文档序号:3360745阅读:100来源:国知局
专利名称:由液体控制的多区基片支座改进的基片温度控制的制作方法
由液体控制的多区基片支座改进的基片温度控制
背景技术
通过蚀刻、物理气相沉积(PVD)、化学气相沉积(CVD)、离子移植、防蚀涂层移除技术,等离子体处理设备应用于处理基片中。应用于等离子体处理中的一种类型的等离子体处理设备,包括下电极和顶部封闭的反应室。电极之间产生电场将工艺气体激活为等离子状态用以处理反应室中的基片。由于特征尺寸的缩小和新材料的应用,需要改进等离子体处理设备以控制等离子体处理的条件。

发明内容
在一种具体实施方式
中,提供了一种用于等离子体处理设备的反应室内的基片支座。该基片支座包括底部元件和覆盖于该底部元件上的热传递元件。该热传递元件具有多个分区,至少包括内设第一流道的第一分区和内设第二流道的第二分区,通过流道液体能够流通以单独地加热和冷却该热传递元件的第一分区和第二分区。静电卡盘覆于该热传递元件之上,该静电卡盘具有用于在等离子体处理设备的反应室内支撑基片的支撑面。冷液体源和热液体源流体连通于第一流道和第二流道。阀装置通过调整流通于第一流道和第二流道中的热液体相对于冷液体的混合比,来独立地控制第一分区和第二分区中的液体的温度。控制器通过控制阀装置来调整第一流道和第二流道中的热液体相对于冷液体的混合比,以独立地控制第一分区和第二分区中的温度。在另一种具体实施方式
中,提供了一种等离子体处理过程中控制半导体基片温度的方法。如前所述,基片支撑于基片支座上,并且与该多个分区热接触。在这种方法中,液体流经第一流道和第二流道,测量第一分区的温度,并且流经第一流道的液体的温度为(a) 如果第一分区的温度低于目标温度,则通过增加热液体相对于冷液体的混合比来提高;或者(b)如果第一分区的温度高于目标温度,则通过减少热液体相对于冷液体的混合比来降低。同样地,测量第二分区的温度,并且流经第二流道的液体的温度为(a)如果第二分区的温度低于目标温度,则通过增加热液体相对于冷液体的混合比来提高;或者(b)如果第二分区的温度高于目标温度,则通过减小热液体相对于冷液体的混合比来降低。优选地,第一分区的方位温度差小于5°C。在另一种具体实施方式
中,提供了一种应用于等离子体处理设备的反应室内的基片支座。该基片支座包括底部元件和覆盖于该底部元件上的热传递元件。该热传递元件具有设有第一流道的第一分区和设有第二流道的第二分区。该流道适用于流通流体,以单独地加热和冷却该热传递元件的每一个分区。第一共用管路与该第一流道流体连通,第二共用管路与该第二流道流体连通。第一阀与该第一共用管路和连通于热液体源的第一供应管路流体连通。该第一阀用于控制来自于该热液体源的热液体通过该第一共用管路的流量。 第二阀与该第一共用管路和连通于冷液体源的第二供应管路流体连通。该第二阀用于控制来自于该冷液体源的冷液体通过该第一共用管路的流量。第三阀与该第二共用管路和连通于该热液体源的该第一供应管路流体连通。该第三阀用于控制该热液体通过该第二共用管路的流量。第四阀与该第二共用管路和连通于该冷液体源的该第二供应管路流体连通。该第四阀用于控制该冷液体流经该第二共用管路的流量的总量。控制器用于独立地控制该第一阀和该第二阀以使该热液体相对于该冷液体的第一混合比适应于该第一流道;并且控制该第三阀和该第四阀以使该热液体相对于该冷液体的第二混合比适应于该第二流道。该热传递元件上覆盖有静电卡盘。该静电卡盘具有用于在该等离子体处理设备的反应室内支撑基片的支撑面。在另一种具体实施方式
中,提供了一种应用于等离子体处理设备的反应室内的基片支座。该基片支座包括底部元件和覆于该底部元件上的热传递元件。该热传递元件具有内设第一流道的第一分区和内设第二流道的第二分区。流道用于流通液体,以单独地加热和冷却该热传递元件的每一个分区。供应管路与该第一流道和液体源流体连通。第一加热元件沿该供应管路设置。该第一加热元件用于将来自于该液体源的液体在流通进入该第一流道之前加热到第一温度。第一流道和第二流道流体连通于第一传输管路。该第一传输管路用于使液体从该第一流道流动到该第二流道。第二加热元件沿该第一传输管路设置。该第二加热元件用于将液体在流通入该第二流道前加热到第二温度。控制器通过调整每一个加热元件的功率控制每一个加热元件以独立地控制每一个分区的温度。该热传递元件上覆盖有静电卡盘。该静电卡盘设有支撑面以在等离子体处理设备的反应室内支撑基片。


图1为等离子体处理设备的一种典型的具体实施方式
的剖视图。图2为一种电感耦合等离子体处理设备的剖视图。图3为基片支座的一种具体实施方式
的剖视图。图4为包括延伸通过热传递元件的部分层厚的隔热层的基片支座的一种附加的具体实施方式
的剖视图。图5为不包括隔热层的基片支座的一种附加的具体实施方式
的剖视图。图6为图3所示的基片沿剖切线C-C'剖切后的剖视图。图7为热传递元件的一种具体实施方式
的局部剖视图,包括冷液体源,热液体源, 阀装置和控制器。图8A为热传递元件的另一种具体实施方式
的局部剖视图,包括冷液体源,热液体源、阀装置和控制器。图8B为图8A所示的热传递元件的具体实施方式
的局部剖视图,包括与冷液体源和/或热液体源连通的回流管路。图9为热传递元件的另一种具体实施方式
的局部剖视图,包括液体源,加热元件和传输管路。图10阐释了等离子体处理中半导体基片的三种典型的中心到边缘的温度分布。
具体实施例方式为了提高等离子体处理设备中基片的等离子体处理过程的均勻性,需要在发生材料沉积和/或蚀刻的基片的暴露表面控制温度分布。在等离子体蚀刻过程中,基片温度和 /或基片暴露表面的化学反应比率的改变可能导致基片蚀刻比率以及蚀刻选择性和各向异性发生不良变化。在材料沉积过程比如CVD处理中,沉积过程中的基片的温度能够对沉积于基片上的材料的沉积速率、构成和性能产生显著的影响。图1示出了一种典型的用于蚀刻的半导体材料等离子体处理设备100。等离子体处理设备100包括反应室102,该反应室102包括基片支座104,在等离子体处理过程中基片106支撑于该基片支座104上。反应室102内部的用于支撑基片106的基片支座104可以包括固定装置,优选为静电卡盘,在处理过程中该固定装置用于固定基片支座104上的基片106。图1所示的典型的等离子体处理设备100包括喷淋电极装置,该喷淋电极装置具有形成反应室102室壁的顶板108和附着于该顶板108的喷淋电极110。气体供应112通过喷淋电极110向反应室102的内部提供工艺气体。喷淋电极110包括多个气体通道114, 气体通道114延伸穿过喷淋电极110的层厚将工艺气体注入于等离子体反应室102中的位于喷淋电极110和基片支座104之间的空间中。气体供应112可以包括内部供应管路和外部供应管路,在设置双重分区气体供应的情况下供应喷淋电极110的中心区域和外部区域。工艺气体流经喷淋电极110并且进入反应室102的内部。然后,通过能源116A比如驱动喷淋电极Iio的射频(RF)源,和/或能源116B在一个或一个以上从约0. 3MHZ到约 600MHZ (例如,2MHZ,13. 56MHZ,60MHZ)的频率下,驱动基片支座104中的频率为一个或一个以上从约0. 3MHZ到约600MHZ (例如,2MHZ,13. 56MHZ,60MHZ)的电极,将等离子体处理设备中的工艺气体激发为等离子体状态。用于喷淋电极110的射频(RF)功率能够改变以执行不同的工序,比如当不同的气体组分提供于该等离子体处理设备100中的情况。在另一种具体实施方式
中,喷淋电极110能够接地。在一种具体实施方式
中,通过将射频(RF)能量从两个射频(RF)源提供到喷淋电极110和/或基片支座104能够在等离子体处理设备100内部产生等离子体;或者,喷淋电极110能够电接地并且处于单一频率或多重频率的射频(RF)能量能够提供给基片支座 104。在另一种具体实施方式
中,如图2中所阐释的,通过在低压下(例如低于100微米汞柱)将工艺气体输入压力室并且将射频能量应用于该气体,电感耦合等离子体(ICP)处理设备200能够用于基片上材料的沉积(例如等离子体增强的化学气相沉积或者PECVD) 和等离子体蚀刻。图2为一种电感耦合等离子体(ICP)处理设备200的一种具体实施方式
的剖视图。加利福尼亚菲蒙(Fremont)市的朗姆研究公司制造的TCP 蚀刻或沉积系统为电感耦合等离子体处理室的一个例子。该电感耦合等离子体处理设备在例如专利号为 4,948,458的共有美国专利中也有描述,其被完整并入作为参考。反应室202包括基片支座204,该基片支座204用于在该反应室202的内部支撑基片206。电介质窗208形成反应室202的顶壁。工艺气体通过气体分配元件210被注入反应室202的内部。例如,气体分配元件210包括淋喷头,气体注射器或者其它适当的装置。气体供应212通过气体分配元件210将工艺气体供应到反应室202的内部。一旦工艺气体被引入反应室202的内部,它们即通过能量源216向反应室202的内部提供能量而被激发为等离子体状态。优选地,该能量源216是由射频(RF)源218A和射频(RF)阻抗匹配电路218B驱动以将射频(RF)能量电感耦合进反应室202中的外部二维天线,通过射频(RF)能量应用于二维天线而产生的电磁场激发工艺气体在基片206上方形成高密度的等离子体P(例如,(IOici-IO12离子/立方厘米)。电介质窗208位于二维天线之下,并且气体分配元件210位于电介质窗208的下方。等离子体P产生于气体分配元件210和基片206之间的区域,以用于沉积或者蚀刻基片 206。在基片的等离子体处理过程中,等离子体气体的反应离子与半导体基片(例如, 硅晶片、砷化镓晶片或磷化铟晶片)表面上的材料的一部分进行化学反应,导致基片中心部分和边缘部分的温度差达到50°C。基片上每一点的局部基片温度和化学反应比率是相互关联的,如果通过基片表面的温度变化过大就会导致附于基片表面上的材料的不均勻蚀刻或沉积。为减轻这种状况,采用背部气体冷却系统应用于基片支座,以在基片支座和支撑于其上的基片之间提供热传递。基片支座已包括冷却剂流道来带走处理过程中基片的热量。在这种冷却系统中, 处于可控温度和一定容积流率的冷却剂被引入到冷却流道中。在冷却系统中,基片支座已经包括一个供应管路和一个回流管路。然而,可以断定的是当热量从基片支座转移,沿着通道长度从入口到出口显现出显著的温度梯度。结果,与热传递气体和基片接触的基片支座的表面的温度均勻性就不可控制。基片固定装置还在基片的背面提供了散热器。在现有的等离子体处理设备中,从基片到基片固定装置的热传递导致整个基片上温度的不均勻性。对于临界尺寸均勻性的控制而言,将晶片或基片的从中心到边缘的温度分布(即径向温度分布)改变达40°C,而又保持方位(例如角或圆周)温度均勻度小于等于5°C的能力是必不可少的。一些等离子体处理工序需要径向温度分布控制用于优化流程以弥补由于其他因素(例如,由基片上的放射型布置所带来的刻蚀副产品浓度变化)所导致的不均勻性。例如,在一摞薄膜或多层结构(例如,栅氧化层/多晶硅/硅化物/硬掩膜/抗反射涂层)的刻蚀过程中,一个层的刻蚀可能需要中心地区比边缘地区热,然而另一个层的刻蚀可能需要中心地区比边缘地区冷。这样,就需要基片支座有能力实现小于等于5°C的方位温度均勻度,有能力将晶片或基片的从中心到边缘的温度分布改变达40°C。优选地,方位温度均勻度小于等于1°C ;并且更优选地,方位温度均勻度小于等于0. 5°C。图3示出了基片支座300的一种具体实施方式
的剖视图。基片3 提供了更有效的控制中心对边缘的温度分布的能力,它能够逐步改变中心到边缘的温度分布直至达到 40°C,而保持方位温度均勻度小于等于1°C。基片支座300包括底部元件310,叠加于底部元件310上的热传递元件320和叠加于热传递元件320上的静电卡盘322。静电卡盘322 包括用于支撑基片326的支撑面324。在共有美国专利5,838,529中也存在对这样的静电卡盘的描述,其被完整引入作为参考。热传递元件320进一步地细分为同中心的分区328A_3^E。每一个分区包含一个或一个以上流道330A-330E,通过流道330A-330E液体能够流通以单独地加热和冷却热传递元件320的每一个分区328A-3^E。基片支座300的加热是通过将热液体循环流经流道 330A-330E来实现的,从而消除了对置于热传递元件320中的加热元件(例如电阻加热器或加热带)的需求。该液体可能是水(例如,去离子水),乙二醇,硅油,水/乙二醇混合物, FLUOROINERT 制冷剂(例如,全氟化碳冷却流体,可以从(Minnesota Mining and Manufaturing (3M)公司获得),GALDEN 流体(例如,低分子量全氟聚醚热传递流体, 可以从Solvay Solexis获得)以及其他类似流体。尽管图3中示出了五个分区,可以理解分区的数量可以是两个或者其它数量,这取决于所需要的温度控制的程度。在图3所示的具体实施方式
中,热传递元件320可由热传导材料组成,比如铝或氮化铝。为了提高对径向热传递的控制(比如,各单独分区间的热传递)以及达到理想基片温度分布,隔热层332将每一个分区328A-3^E隔开。隔热层332可以或者延伸通过热传递元件320(如图3所示)的整个层厚或者如图4中所示的那样,通过热传递元件320的一部分层厚。隔热层332可以或者为未填充的(例如,一个空的空间)或者容纳填充材料以实现从约0. lff/m-K到约4. Off/m-K的导热系数。示例性的填充材料包括环氧基树脂或硅树脂。填充材料的导热系数可以用添加剂调整,比如氮化硼,氮化铝,氧化铝,氧化硅和硅。在另一种具体实施方式
中,如图5所示,径向热传递通过由隔热材料组成热传递元件320来得到控制。隔热材料的实例包括陶瓷诸如氧化铝或者氧化钇;或者具有低导热系数的金属合金,诸如不锈钢。如图3所示,粘着材料334能够插入热传递元件320和底部元件310之间。粘着材料334可以由环氧基树脂或者硅树脂组成,如放大部位A所示,粘着材料334可以用一种或者一种以上填充材料334A进行填充。典型的填充材料334A可以包括氧化铝,氮化硼,氧化硅,铝或者硅。在另一种具体实施方式
中,如放大部位B所示,粘着材料可以为金属钎接 334B。可以选择提供从约0. lff/m-K到约4W/m_K的导热系数并且具有从约1密耳到约200 密耳的厚度的粘接材料334。图6示出了热传递元件320为圆形盘的剖切俯视图,其沿图3中的剖切线C-C'横切所得。图6中,分区3^A-328E被同心设置在相对于圆形盘的中心的不同距离并且流道 330A-330E具有象螺旋形一样的式样。隔热层332为分隔每一分区的环形通道。图7示出了热传递元件320的局部横断面视图,包括热液体源336和冷液体源 338,此两液体源均与流道330A-330E流体连通。阀装置340通过调整热液体(来自于热液体源336)相对于冷液体(来自于冷液体源338)的混合比来控制每一个分区328A-328E的个别温度。控制器342接收来自于每一个分区328A-3^E内的温度传感器!344A-344E的输入信号,独立地指挥阀装置340以调整热液体相对于冷液体的适当的混合比。在另一种具体实施方式
中,每一个分区328A-3^E的温度传感器可以设置于静电卡盘322之中。在等离子体处理过程中,基片3 支撑于基片支座300上,基片3 与分区 328A-328E热接触。液体流经与分区328A-328E相对应的流道330A-330E。每一个单独分区 328A-328E的温度用温度传感器!344A-344E进行测量,温度传感器!344A-344E向控制器342 提供输入信号。控制器342可以或者(i)如果分区328A-3^E的温度低于目标温度,通过增加热液体相对于冷液体的混合比来提高流经每一个个别的流道330A-330E的液体温度; 或者(ii)如果分区328A-328E的温度高于目标温度,通过减少热液体相对于冷液体的混合比来降低流经每一个个别的流道330A-330E的液体温度。在等离子体处理过程中,设置有热传递元件320和控制器342的基片支座300能够独立地和动态地改变单晶片等离子体处理过程中分区328A-3^E的温度。图8A示出了热传递元件420的另一种具体实施方式
的局部剖视图,包括分区 428A-428E,每一分区具有各自的流道430A-430E和各自的温度传感器444A-444E。分区 428A-428E被隔热层432隔开。热液体源436和冷液体源438经由共用管路450A-450E,阀 452A-452E',第一供应管路妨4和第二供应管路456来与流道430A-430E流体连通。第一
10至第五阀452A-452E与共用管路450A-450E和第一供应管路妨4流体连通,以从热液体源 436提供热液体。此外,第六至第十阀452A' -452E'与共用管路450A-450E和第二供应管路456也为流体连通,以从冷液体源438提供冷液体。控制器442从温度传感器444A-444E接收输入信号来独立地控制阀452A-452E和阀452A' -452E'以单独地调整每一流道内来自热液体源436的热液体相对于来自冷液体源438的冷液体的混合比。例如,控制器442可以控制(i)第一阀452A和第二阀452A'以调整经由共用管路450A流往流道430A的热液体相对于冷液体的第一混合比;(ii)第三阀 452B和第四阀452B'以调整经由共用管路450B流往流道430B的热液体相对于冷液体的第二混合比;(iii)第五阀452C和第六阀452C'以调整经由共用管路450C流往流道430C 的热液体相对于冷液体的第三混合比;(iv)第七阀452D和第八阀452D'以调整经由共用管路450D流往流道430D的热液体相对于冷液体的第四混合比;和(ν)第九阀452Ε和第十阀452Ε'以调整经由共用管路450Ε流往流道430Ε的热液体相对于冷液体的第五混合比。图8Α的实施方式提供了这样的能力通过控制每一个单独分区428Α-4^Ε的温度,单调地(monotonicallyM例如温度连续地升高或降低)或非单调地升高或降低等离子体处理过程中沿基片似6半径的温度。例如,每一个单独分区428A-4^E的温度可以设置以满足径向温度分布为抛物线的或逆抛物线的(即,单调的)。然而,由于每一个分区 428A-428E的温度能够单独地控制,在另一个实施例中,径向温度分布也可以这样设置,即径向温度分布为正弦曲线(即,非单调的)。如图8B所示,流道430A-430E与回流管路446为流体连通,回流管路446与热液体源436和/或冷液体源438为流体连通。这样,退出流道430A-430E的液体可以通过回流至热液体源436和/或冷液体源438而再循环利用。热液体源436保持热液体的温度处于从约40°C到约150°C ;冷液体源438能够保持冷液体的温度处于从约-10°C到约70°C。这样,图8A和图8B的具体实施方式
就具有这样的性能依据等离子体处理过程中想获得的中心到边缘的温度分布,使每一个分区 428A-428E达到五个不同的温度。尽管图8A和图8B示出了五个分区,可以理解的是,根据径向温度分布的需要控制程度,分区可为两个或者两个以上。在一个实施例中,冷液体源保持冷液体的温度大于等于-10°C ;并且热液体源保持热液体的温度小于等于150°C,且热液体的温度大于冷液体的温度。图9示出了热传递元件520的另一种具体实施方式
的局部剖视图,包括分区 528A-528E,每一分区具有各自的流道530A-530E和各自的温度传感器M4A-544E。分区 528A-528E通过隔热层532隔开。液体源536流体连通于供应管路550,第一至第四传输管路552A-552D和回流管路554。第一加热元件538A沿供应管路550设置,并且第二至第五加热元件538B-538E沿第一至第四传输管路552A-552D设置。第一至第五加热元件538A-538E 控制流经供应管路550和第一至第四传输管路552A-552D的液体的温度。控制器542从温度传感器M4A-554E接收输入信号来独立地控制加热元件 538A-538E。如果温度传感器M4A-544E测定的温度低于目标温度,则控制器542激活一个或一个以上相应的加热元件538A-538E。在从液体源536流出的液体流入第一流道530A之前,第一加热元件538A将该液体加热到第一温度。第一传输管路552A将液体从第一流道 530A传输至第二流道530B ;并且第二加热元件538B将沿第一传输管路552A流动的液体在流入第二流道530B之前加热到第二温度。第二传输管路552B将液体从第二流道530B传输至第三流道530C ;并且第三加热元件538C将沿第二传输管路552B流动的液体在流入第三流道530C之前加热至第三温度。第三传输管路552C将液体从第三流道530C传输至第四流道530D ;并且第四加热元件538D将沿第三传输管路552C流动的液体在流入第四流道 530D之前加热至第四温度。第四传输管路552D将液体从第四流道530D传输至第五流道 530E ;并且第五加热元件538E将沿第四传输管路552D流动的液体在其流入第五流道530E 之前加热至第五温度。从第五流道退出的液体沿回流管路554回流至液体源536。流经第一至第四传输管路552A-552D的液体可以或者沿正向流动(如图9中箭头所示)或者沿反向流动(图9中未示出)。当液体沿正向流动时,第一温度低于第二温度,第二温度低于第三温度,第三温度低于第四温度,最高温度产生于分区528E(即中心区域)。同样地,当液体沿反向流动时,第一温度高于第二温度,第二温度高于第三温度,第三温度高于第四温度,最高温度产生于分区即,边缘区域)。图9的实施方式提供了这样的能力在等离子体处理过程中沿基片326的半径单调地提高或降低温度。例如,每一个单独分区528A-528E的温度可以这样设置,即径向温度分布是抛物线的或者反抛物线的(即,单调的)在等离子体处理过程中(例如,半导体、金属或者电介质的等离子体刻蚀;或者传导性材料或介质材料的沉积)设置有热传递元件320/420/520的基片支座300能够使中心到边缘的径向温度分布变化达到40°C,而保持方位温度均勻度小于等于1°C,更优选地小于等于0.5°C。进一步地,这种热传递元件320/420/520能够实现以下任一项(1)使温度分布均勻;或者( 径向地改变温度分布(例如,热边缘或者热中心),此两项均用于等离子体处理过程中逐步改变的温度控制,以使最佳的多层式处理成为可能。图10图示了在应用热传递元件320/420/520的等离子体处理中,半径为R的晶片上三种曲型的中心到边缘的温度分布中径向位置和径向温度的函数关系(A)中心区域热于边缘区域;(B)中心区域冷于边缘区域;和(C)整个晶片上完全均勻的温度分布。尽管本发明是以文中特定的具体实施方式
详细地描述的,但是显而易见,对于本领域的技术人员而言,可以进行各种改变和修改以及使用等同替代而不超出所附的权利要求的范围。
权利要求
1.一种应用于等离子体处理设备的反应室中的基片支座,所述基片支座包括底部元件;覆于所述底部元件上的热传递元件,所述热传递元件设有多个分区,所述多个分区至少包括内设第一流道的第一分区和内设第二流道的第二分区,液体通过所述分区流通以单独地加热和冷却所述热传递元件的所述第一分区和所述第二分区;覆于所述热传递元件上的静电卡盘,所述静电卡盘设有用于在所述等离子体处理设备的反应室中支撑基片的支撑面;与所述第一流道和所述第二流道流体连通的冷液体源和热液体源;通过调整流通于所述第一流道和所述第二流道的所述热液体相对于所述冷液体的混合比,独立地控制所述第一分区和所述第二分区内液体温度的阀装置;通过控制所述阀装置来调整所述第一流道和所述第二流道内所述热液体相对于所述冷液体的混合比,以独立地控制所述第一分区和所述第二分区的温度的控制器。
2.根据权利要求1所述的基片支座,进一步包括设置于所述第一分区中的第一温度传感器和设置于所述第二分区中的第二温度传感器,所述第一温度传感器和所述第二温度传感器用于测量所述第一分区和所述第二分区的温度并向所述控制器提供输入信号;将所述第一分区和所述第二分区隔开的隔热层;及设置于所述热传递元件和所述底部元件之间的粘接材料,所述粘接材料具有从约 0. lff/m-K到约4W/m-K的导热系数;和从约1密耳到约200密耳的厚度。
3.根据权利要求1所述的基片支座,其特征在于,所述冷液体源保持所述冷液体的温度> -IO0C ;且所述热液体源保持所述热液体的温度< 150°c,其中所述热液体的温度高于所述冷液体的温度。
4.根据权利要求2所述的基片支座,其特征在于,所述热传递元件为圆形盘;每一分区相对于所述圆形盘的中心同心设置于不同的径向距离;且所述隔热层为环形通道。
5.根据权利要求4所述的基片支座,其特征在于,所述环形通道为中空的;或者所述环形通道内填充环氧基树脂或硅树脂或导热系数为从约0. lff/m-K到约4. Off/m-K的其他材料。
6.根据权利要求4所述的基片支座,其特征在于,所述环形通道延伸通过所述热传递元件的整个层厚;或者所述环形通道延伸通过所述热传递元件的层厚的一部分。
7.根据权利要求2所述的基片支座,其特征在于,所述粘接材料由硅树脂或环氧基树脂组成并且包括一个或一个以上填充材料,所述填充材料包括氧化铝,氮化硼,氧化硅,铝或硅;或者所述粘接材料由金属硬钎接合组成。
8.根据权利要求1所述的基片支座,其特征在于,所述热传递元件由铝或铝合金组成; 或者所述热传递元件由不锈钢,氧化铝或氧化钇组成。
9.一种控制等离子体处理过程中半导体基片的方位温度的方法,包括支撑根据权利要求1所述的基片支座上的基片,其中,所述基片与所述多个分区热接触;使流体流经所述第一流道和所述第二流道;测量所述第一分区的温度并且,如果所述第一分区的温度低于其目标温度,通过增加所述热液体相对于所述冷液体的混合比,提高流经所述第一流道的流体的温度;或者如果所述第一分区的温度高于其目标温度,通过减少所述热液体相对于所述冷液体的混合比, 降低流经所述第一流道的流体的温度;且测量所述第二分区的温度并且,如果所述第二分区的温度低于其目标温度,通过增加所述热液体相对于所述冷液体的混合比提高流经所述第二流道的流体的温度;或者如果所述第二分区的温度高于其目标温度,通过减少所述热液体相对于所述冷液体的混合比降低流经所述第二流道的流体的温度;其中,每一分区内的方位温度差小于5°C。
10.根据权利要求9所述的方法,其中,所述多个分区的方位温度差小于0.5°C并且所述基片的径向温度分布在以下项中变化(a)所述基片的温度完全均勻;或(b)所述基片的温度不均勻,其中所述基片的中心区域比所述基片的边缘区域热或所述基片的中心区域比所述基片的边缘区域冷。
11.根据权利要求9所述的方法,其中,所述第一分区的目标温度和所述第二分区的目标温度为(a)沿基片径向单调升高或者降低;或者(b)沿基片径向非单调升高或者降低。
12.根据权利要求9所述的方法,进一步包括 将工艺气体引入反应室;将所述工艺气体激发为等离子体状态;且用所述等离子体处理所述基片,其中,用所述等离子体处理所述基片包括(a)等离子体蚀刻半导体材料层,金属或者介质材料层;或者(b)传导性材料或介质材料的沉积。
13.一种包含权利要求1所述的半导体基片支座的等离子体处理设备,其中,所述等离子体处理设备为用于刻蚀半导体,金属或介质材料的等离子体刻蚀器;或者用于沉积传导性材料或介质材料的沉积室。
14.一种用于等离子体处理设备的反应室内的基片支座,所述基片支座包括 底部元件,覆于所述底部元件上的热传递元件,所述热传递元件具有设有第一流道的第一分区和设有第二流道的第二分区,其中所述第一流道与所述第二流道用于流通液体以单独地加热和冷却所述热传递元件的每一个分区;与所述第一流道流体连通的第一共用管路; 与所述第二流道流体连通的第二共用管路;与所述第一共用管路和连通于热液体源的第一供应管路流体连通的第一阀,所述第一阀用于控制从所述热液体源流经所述第一共用管路的热液体的流量;与所述第一共用管路和连通于冷液体源的第二供应管路流体连通的第二阀,所述第二阀用于控制从所述冷液体源流经所述第一共用管路的冷液体的流量;与所述第二共用管路和连通于热液体源的第一供应管路流体连通的第三阀,所述第三阀用于控制流经所述第二共用管路的热液体的流量;与所述第二共用管路和连通于所述冷液体源的第二供应管路流体连通的第四阀,所述第四阀用于控制流经所述第二共用管路的所述冷液体的流量; 控制器,用于独立控制(a)所述第一阀和所述第二阀以调整对应所述第一流道的所述热液体相对于所述冷液体的第一混合比;和(b)所述第三阀和所述第四阀以调整对应所述第二流道的所述热液体相对于所述冷液体的第二混合比;和覆于所述热传递元件上的静电卡盘,所述静电卡盘设有用于在所述等离子体处理设备的反应室内支撑基片的支撑面。
15.根据权利要求14所述的基片支座,进一步包括所述热传递元件具有设有第三流道的第三分区,设有第四流道的第四分区和设有第五流通道的第五分区;与所述第三流道流体连通的第三共用管路; 与所述第四流道流体连通的第四共用管路; 与所述第五流道流体连通的第五共用管路;与所述第三共用管路和连通于所述热液体源的所述第一供应管路流体连通的第五阀, 所述第五阀用于控制流经所述第三共用管路的热液体的流量;与所述第三共用管路和连通于所述冷液体源的所述第二供应管路流体连通的第六阀, 所述第六阀用于控制流经所述第三共用管路的所述冷液体的流量;与所述第四共用管路和连通于所述热液体源的第一供应管路流体连通的第七阀;所述第七阀用于控制流经所述第四共用管路的所述热液体的流量;与所述第四共用管路和连通于所述冷液体源的所述第二供应管路流体连通的第八阀; 所述第八阀用于控制流经所述第四共用管路的所述冷液体的流量;与所述第五共用管路和连通于所述热液体源的所述第一供应管路流体连通的第九阀, 所述第九阀用于控制流经所述第五共用管路的所述热液体的流量;与所述第五共用管路和连通于所述冷液体源的第二供应管路流体连通的第十阀,所述第十阀用于控制流经所述第五共用管路的所述冷液体的流量;和控制器,进一步用于独立控制(c)所述第五阀和所述第六阀以调整对应所述第三流道的所述热液体相对于所述冷液体的第三混合比;(d)所述第七阀和所述第八阀以调整对应所述第四流道的所述热液体相对于所述冷液体的第四混合比;(e)所述第九阀和所述第十阀以调整对应所述第五流道的所述热液体相对于所述冷液体的混合比。
16.根据权利要求14所述的基片支座,其中,所述热传递元件为圆形盘;且每一个分区同心设置于相对所述圆形盘中心的不同径向距离。
17.根据权利要求16所述的基片支座,其中,所述第一流道、所述第二流道、所述第三流道、所述第四流道和所述第五流道均与回流管路流体连通;且所述回流管路流体连通于所述热液体源和/或所述冷液体源。
18.一种应用于等离子体处理设备的反应室内的基片支座,所述基片支座包括 底部元件;覆于所述底部元件上的热传递元件,所述热传递元件具有设有第一流道的第一分区和设有第二流道的第二分区,其中所述第一流道和所述第二流道用于流通流体以单独地加热和冷却所述热传递元件的每一个分区;流体连通于所述第一流道和液体源的供应管路;沿所述供应管路设置的第一加热元件,所述第一加热元件用于将来自于所述液体源的液体在所述液体流通进入所述第一流道之前加热到第一温度;与所述第一流道和所述第二流道流体连通的第一传输管路,所述第一传输管路适用于将所述液体从所述第一流道流通至所述第二流道;沿所述第一传输管路设置的第二加热元件,所述第二加热元件用于将所述液体在流通进入所述第二流道之前加热至第二温度;控制器,通过调整对应于每一个加热元件的功率控制每一个加热元件,以独立地控制每一个分区的温度;和覆于所述热传递元件上的静电卡盘,所述静电卡盘设有用于在所述等离子体处理设备的反应室内支撑基片的支撑面。
19.根据权利要求18所述的基片支座,进一步包括所述热传递元件具有设有第三流道的第三分区,设有第四流道的第四分区和设有第五流道的第五分区;与所述第二流道和所述第三流道流体连通的第二传输管路,所述第二传输管路适用于将液体从所述第二流道流通至所述第三流道;沿所述第二传输管路设置的第三加热元件,所述第三加热元件用于将所述液体在流通进入所述第三流道前加热至第三温度;与所述第三流道和所述第四流道流体连通的第三传输管路,所述第三传输管路用于将液体从所述第三流道流通至所述第四流道;和沿所述第三传输管路设置的第四加热元件,所述第四加热元件用于将所述液体在流通进入所述第四流道之前加热至第四温度;与所述第四流道和所述第五流道流体连通的第四传输管路,所述第四传输管路用于将液体从所述第四流道流通至所述第五流道;和沿所述第四传输管路设置的第五加热元件,所述第五加热元件用于将所述液体在流通进入所述第五流道之前加热至第五温度;和与所述第五流道和所述液体源流体连通的回流管路;所述回流管路用于将液体从所述第五流通管路流通至所述液体源。
20.根据权利要求18所述的基片支座,进一步包括,设置于每一个分区内的温度传感器,所述温度传感器适用于测量每一个分区的温度并向所述控制器提供输入信号,或者其中所述第一传输管路用于将所述液体沿正向或反向从所述第一流道流通至所述第二流道。
全文摘要
提供了一种应用于等离子体处理设备的反应室内的基片支座。该基片支座包括底部元件和覆于该底部元件上的热传递元件。该热传递元件具有多个分区以单独地加热和冷却该热传递元件的每一个分区。该热传递元件上覆盖有静电卡盘。该静电卡盘具有用于在该等离子体处理设备的反应室内支撑基片的支撑面。冷液体源和热液体源与每一个分区内的流道流体连通。阀装置通过调整流通于流道中的热液体相对于冷液体的混合比来独立地控制液体的温度。在另一种具体实施方式
中,沿供应管路和传输管路设置的加热元件对来自于液体源的液体在其流通进入流道之前进行加热。
文档编号C23C16/46GK102197156SQ200980142963
公开日2011年9月21日 申请日期2009年11月3日 优先权日2008年11月12日
发明者哈梅特·辛格, 基思·科门丹特 申请人:朗姆研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1