一种核壳结构纳米高温储热材料、其制备方法及用途

文档序号:3284926阅读:419来源:国知局
一种核壳结构纳米高温储热材料、其制备方法及用途
【专利摘要】本发明涉及一种核壳结构纳米高温储热材料、其制备方法及用途,属于储热材料领域。所述方法为先用银将铜包覆制得Cu@Ag纳米颗粒,然后用SiO2包覆Cu@Ag纳米颗粒制得Cu@Ag-SiO2纳米颗粒,最后将Cu@Ag-SiO2纳米颗粒中的银去除得到Cu@SiO2纳米高温储热材料。本发明提供的Cu@SiO2纳米高温储能材料囊芯和壁厚可控,纳米尺寸和大小均匀、分散性好、耐腐蚀性好、有足够的体积空间。
【专利说明】一种核壳结构纳米高温储热材料、其制备方法及用途
【技术领域】
[0001]本发明涉及一种核壳结构纳米高温储热材料、其制备方法及用途,尤其涉及一种以Cu@Si02为基础的中空核壳结构高温储热材料的制备方法,属于用纳米技术、化学化工方法生产高温储热材料的【技术领域】和储热材料领域。
【背景技术】
[0002]相变材料(PCM,Phase Change Material)是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。高温相变储热材料尤其是金属相变材料具有高熔点、储热密度高、吸/放热过程近似等温、过程易控制等优点,可满足回收高温烟气和高温余热的要求,是目前储热【技术领域】的研究热点。在工业余热、太阳能光热、交通、航空、建筑和军、民通用等领域具有广阔的发展前景。
[0003]储热技术的关键材料之一是储热材料,储热材料的种类很多,从材料的组成来看可以分为无机和有机两大类;从储热方式来看可以分为显热、潜热和反应储热3种;从储热的温度范围来看可以分为高温(≥5000C )、中温(200-500°C )和低温(≤100°C) 3种类型。目前研究最多的相变材料主要是高温储热材料。
[0004]所述的高温储热材料在高温下的液态腐蚀性直接影响高温储热材料的性能和寿命。高温相变材料主要有熔融盐、金属。熔融盐的使用温度较高,蒸气压低,热容较大,但在实际应用中的缺点也十分突出:氯盐对容器腐蚀性很强;氟盐固/液体积收缩很大;硝酸盐熔解热较小、热导率低、使用中容易产生局部过热等。相比而言,金属相变材料具有储能密度大、热循环稳定性好、导热系数高(是无机和有机相变材料的几百倍)、无毒、相变时过冷度小、相偏析小、性价比良好等特点,在高温相变储热应用领域中具有极大的优势,在从根本上提高能源转换和利用率方面具有不可估量的意义。
[0005]相容性是指相变材料与容器壳体之间,在长期吸放热循环过程中是否发生化学、电化学及物理反应,使壳体遭受明显腐蚀,或使相变材料的热物性有明显改变,或在容器体内形成大量不凝性气体或固体沉淀物。若不发生上述现象,或虽发生上述现象但后果不致影响储热装置的正常工作,则称之为相容;反之,称为不相容。
[0006]储热材料在液态时往往具有较强的活性和腐蚀性,造成金属相变材料对器壁的侵蚀,直接影响储能系统寿命等。对相变材料的封装材料的性质和封装方式的选择可有效解决此问题。传统封装即将大量的相变材料封装在一个密闭容器中,因其体积庞大,相变材料易聚集,吸/放热速率慢等缺点已逐渐被淘汰。近年来,微胶囊封装技术,因传热面积增大、相变物质与外部环境的反应弱等优点受到广泛关注。
[0007]M.You等采用聚(苯乙烯一丙烯酸)对特定的封装材料,对正十八烧进行包覆,正十八烷仅为十几度的低温储热材料。且该方法制备微胶囊颗粒粒径较大、分布不均。(Microencapsulated n-Octadecane with styrene-divinybenzene co-polymershells, M.You, X.C.Wang, X.X.Zhang, L.Zhang, J.Wang, J.Polym.Res.2011, 18, 49-581.)[0008]与此方法相比,G.Fang等报道了一种SiO2包覆石蜡微胶囊的相变材料,具体为:先将石蜡进行乳化,同时需要添加分散剂;再对其包覆SiO2,洗涤过滤、干燥,最后制备出SiO2^Il覆石腊微胶囊。(Synthesis and properties of microencapsulated paraffincomposites with SiO2 shell as thermal energy storage materials, G.Fang, Z.Chen, H.Li, Chem.Eng.J.2010, 163,154-159.)此方法制备得到的相变材料的相变温度低,且需要添加剂。
[0009]微胶囊可以有效解决相变储热材料的泄漏、相分离以及腐蚀性等问题,但这两种微胶囊封装的缺点是对相变体积变化的耐热度和空间有限、液相时与封装材料接触面积大。

【发明内容】

[0010]针对现有技术的不足,本发明不采用SiO2直接包覆纳米金属Cu获得SiO2包覆金属纳米Cu (Cu@Si02)的储热材料,而是采用Ag包覆Cu,再包覆耐腐蚀、高熔点的SiO2,然后利用Ag与二水合双(对-磺酰苯基)苯基膦化二钾盐(BSPP)强的结合力和配位能力,将Ag去除,从而合成出在SiO2的壳层与纳米Cu粒子的核之间具有中空核壳结构的Cu@Si02纳米高温储热材料,解决了固/液相变时所需体积变化空间不足、耐热度不够等问题。本发明提供的高温储热材料具有相变体积空间大、耐腐蚀性好、耐热度高的特性。
[0011]本发明采用液相法制备SiO2包覆金属纳米Cu (称为Cu@Si02)中空核壳结构的纳米高温储热材料体系。因此,本发明的目的之一是提供一种Cu@Si02中空核壳结构的纳米高温储热材料的制备方法,所述方法为先用银将铜包覆制得CuOAg纳米颗粒,然后用SiO2将CuiAg纳米颗粒包覆制得CuOAg-SiO2纳米颗粒,最后将CuOAg-SiO2纳米颗粒中的银去除得到Cu@Si02纳米高温储热材料。
[0012]具体地,所述Cu@Si0 2纳米高温储热材料的制备方法包括如下步骤:
[0013](I)制备纳米Cu颗粒;
[0014](2)制备CuOAg纳米颗粒;
[0015](3)制备 CuOAg-SiO2 纳米颗粒;
[0016](4)将CuOAg-SiO2纳米颗粒中的银去除得到CuOSiO2纳米高温储热材料。
[0017]步骤(1)所述的纳米Cu颗粒的制备为本领域的现有技术,许多文献均已涉及,例如CN102407343A中公开的铜纳米颗粒的合成方法,该方法采用半固相的合成方法,将二价铜盐、还原剂、稳定剂及水混合得到均匀的混合物,采用微波加热的方法,快速合成得到铜纳米颗粒;陈丹等报道以氯化铜为铜源,水合肼为还原剂,十六烷基三甲基溴化铵(CTAB)为稳定剂,氨水为络合剂,通过液相还原法合成了纳米铜粉(铜纳米粒子的可控制备及其抗菌性能研究,陈丹,功能材料,2010,43 (6);潘秋红等报道采用液相化学还原法结合界面生长法,以醋酸铜为母体,维生素C(Vc)为还原剂,聚乙二醇2000为修饰剂,正丁醇为生长剂,制得粒度分布为18.2-80.2nm、平均粒度为44.7nm的油溶性球形纳米Cu样品(油溶性纳米铜的制备及其在SF15W/40汽油机油中的摩擦学性能,稀有金属材料与工程,潘秋红,2010,39 (10))等。在本发明中,首先需要制备纳米铜离子,本领域技术人员应该明了任何一种制备纳米铜离子的方法均可用于实现本发明。
[0018]优选地,本发明步骤(1)所述纳米Cu颗粒通过将二价铜盐还原制备得到。其中,所述二价铜盐优选自硫酸铜、硝酸铜、氯化铜、醋酸铜、碳酸铜、丙酸铜或草酸铜中的任意I种或至少2种的组合,例如硫酸铜/醋酸铜、碳酸铜/丙酸铜、硝酸铜/氯化铜、草酸铜/硫酸铜/硝酸铜等,优选醋酸铜、硫酸铜或氯化铜中的任意I种或至少2种的组合,进一步优选醋酸铜。
[0019]步骤(1)所述二价铜盐的还原通过还原剂实现,所述还原剂选自三乙胺、对苯二酚、偏磷酸钠、抗坏血酸、异抗坏血酸、类胡萝卜素、C2-C7的二醇类化合物、油胺、苄醇、甘油、葡萄糖或聚乙二醇中的任意I种或至少2种的组合,优选油胺、抗坏血酸、异抗坏血酸或葡萄糖中的任意I种或至少2种的组合,进一步优选油胺。
[0020]其中所述C2-C7的二醇类化合物是指碳数在2-7之间,例如碳数为2、3、4、5、6、7,并且连接有两个羟基的化合物,典型但非限制性的实例有乙二醇、1,3-丙二醇、1,2-丙二醇、1,2- 丁二醇、1,4- 丁二醇、甲基-1,3-丙二醇、1,2-戊二醇、1,3-戊二醇、甲基 _1,4- 丁二醇、1,2-己二醇或1,3-庚二醇等。
[0021]所述的还原剂的组合实例有偏磷酸钠/异抗坏血酸、1,4- 丁二醇/抗坏血酸、1,3-丙二醇/甘油、三乙胺、苄醇、对苯二酚/1,3-庚二醇、维生素C/类胡萝卜素/聚乙二醇等。
[0022]作为优选技术方案,本发明选用油胺作为还原剂,醋酸铜作为二价铜盐制备纳米铜颗粒。油胺,又称9-十八烯胺,是无色液体或结晶,熔点18-26°C,沸点348-350°C,密度0.83,不溶于水,溶于乙醇或乙醚。本发明的优选技术方案中选用油胺作为还原剂是利用了油胺在100-300°C时,表现出较为活跃的还原性能,可以将二价铜离子还原为纳米铜颗粒。同时,因为油胺是油性介质,选用油胺作为还原剂,在本过程中还起到了保护剂的作用,可以将Cu或Cu离子与空气隔绝。油胺是本领域的常用试剂,可以通过商购获得。
[0023]所述纳米铜颗粒的制备过程具体为:将醋酸铜加入到油胺中,反应一定时间后,将反应液离心、洗涤,得到纳米Cu颗粒;所述`反应温度优选100-30(TC,例如100-250°C、140-280 °C >102 °C >110 °C >127 °C >160 °C >180 °C、212 °C >239 °C >270 °C >280 °C >290 °C、295°C 等,优选 120-200 °C ;所述反应时间优选 60_120min,例如 65-100min、70_100min、82-110min、62min、71min、88min、105min、lllmin、118min 等。当反应温度小于 100 时,油胺的还原性较弱,达不到还原二价铜盐的作用,当反应温度大于300°C时,与油胺的沸点(3480C )接近,操作较危险,且反应效果不好。当反应时间小于60min时,反应时间短,反应不完全,纳米铜颗粒的尺寸不均均,而当反应时间大于120min时,油胺挥发的量太多,对Cu或Cu离子与外界接触,容易发生副反应。
[0024]本发明的优选技术方案可以通过改变铜盐浓度、还原剂浓度、反应温度等因素合成不同粒径的铜颗粒,达到所述核壳结构纳米高温储热材料囊芯尺寸可控的目的。所述的铜盐浓度、还原剂浓度、反应温度等反应条件的选择是本领域技术人员可以通过现有技术文献和所掌握的专业知识摸索得到的,在此不再赘述。
[0025]步骤(2)的目的是将Ag包覆金属纳米Cu (称为Cu@Ag),是通过如下步骤实现的:将步骤(1)得到的纳米Cu颗粒分散在银盐溶液中,然后加入还原剂,将银离子还原为银单质,并包覆在步骤(1)得到的纳米Cu颗粒外,从而制得CuOAg纳米颗粒。
[0026]优选地,所述银盐为可溶于水的银盐溶液,任何一种可以通过现有技术或新技术获得的可溶性银盐均可用于本发明,本发明优选AgNO3。[0027]优选地,所述还原剂优选为三乙胺、对苯二酚、偏磷酸钠、抗坏血酸、异抗坏血酸、类胡萝卜素、C2-C7的二醇类化合物、油胺、苄醇、甘油、葡萄糖或聚乙二醇中的任意I种或至少2种的组合,优选乙二醇、1,3-丙二醇、抗坏血酸、异抗坏血酸或葡萄糖中的任意I种或至少2种的组合,进一步优选抗坏血酸。
[0028]其中所述C2-C7的二醇类化合物是指碳数在2-7之间,例如碳数为2、3、4、5、6、7,并且连接有两个羟基的化合物,典型但非限制性的实例有乙二醇、1,3-丙二醇、1,2-丙二醇、1,2- 丁二醇、1,4- 丁二醇、甲基-1,3-丙二醇、1,2-戊二醇、1,3-戊二醇、甲基 _1,4- 丁二醇、1,2-己二醇或1,3-庚二醇等。[0029]所述的还原剂的组合实例有三乙胺/1,4- 丁二醇、甲基-1,3丙二醇/对苯二酚、抗坏血酸/异抗坏血酸、维生素C/类胡萝卜素、苄醇/甘油、葡萄糖/1,4- 丁二醇、抗坏血酸/异抗坏血酸/葡萄糖等。
[0030]作为优选技术方案,本发明选用硝酸银为银盐,选用抗坏血酸为还原剂,本方案的具体步骤为:将步骤(1)得到的纳米Cu颗粒分散在硝酸银溶液中,加入抗坏血酸,搅拌进行反应后,将反应液离心、洗漆,得CuOAg纳米颗粒。
[0031]优选地,所述AgNO3的加入量优选为每毫克纳米Cu颗粒加入0.5-5mL的AgNO3溶液,例如加入的 AgNO3 溶液的体积为 0.5-3.5mL、l-4.8mL、0.7-4.7mL、0.6mL、l.6mL、3.4mL、
2.1mL A.8mL等;所述抗坏血酸的加入量优选为每毫克纳米Cu颗粒加入10_40mL的抗坏血酸溶液,例如加入的抗坏血酸溶液的体积为ll-37mL、15-34mL、17-28mL、13mL、27mL、35mL、47mL 等。
[0032]优选地,所述AgNO3 的浓度为 0.1-1mmol.I71,例如 0.1-0.8mmol.L'0.2-0.7mmol.L \θ.3-0.74mmoI.L \θ.1 2mmo1.L \0.19mmol.L \0.25mmol.L \0.37mmol.L \0.5OmmoI.L \0.75mmol.L \0.86mmol.L \0.92mmol.L \0.98mmol.L 1等,进一步优选 0.25-0.75mmol.L'进一步优选 0.25-0.7SmmoI.L-1。
[0033]优选地,所述抗坏血酸的浓度为0.3-5.0mol.L_\例如0.3-3.0mmol.L'0.5-2.2mmo1 *L \θ.4-1.8mmol *L \θ.37mmol *L \2.4mmo1 *L \4.Bmmol *L \4.8mmol *L 1等,进一步优选0.5-2.0mol.L—1 ;所述搅拌进行反应的时间优选为20_180min,例如20-60min、30-70min、40-100min、29min、45min、70min、85min 等,进一步优选 30_90min。
[0034]步骤(3)的目的是将CuOAg纳米颗粒包覆SiO2制备得到CuOAg-SiO2纳米材料。所述CuOAg-SiO2纳米材料采用溶胶凝胶法制备得到。
[0035]溶胶凝胶法是本领域公知的一种纳米材料的制备方法,简单讲就是将活性组分的化合物前躯体经过分散、水解、缩合制得溶胶,然后经过干燥和/或烧结得到纳米材料。
[0036]本发明步骤(3)所述的CuOAg-SiO2纳米颗粒的溶胶凝胶法具体包括如下步骤:
[0037](3a)配制硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液;
[0038](3b)将配制的硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液混合,进行反应,反应温度优选为 20-40 V,例如 25-40 V、20-35 V、23-38 V、22 °C、34 °C、37 °C等,优选25 °C ;反应时间优选为8-30h,例如10-25h、13-23h、15-20h、14h、26h、28h等,优选12-24h。
[0039]步骤(3a)所述硅源前驱体为烷基硅酸酯类化合物,所述烷基硅酸酯类化合物优选自硅酸甲酯、硅酸乙酯、硅酸正丙酯或硅酸异丙酯的任意I种或至少2种的组合,所述组合例如硅酸甲酯/硅酸乙酯、硅酸正丙酯/硅酸异丙酯、硅酸甲酯/硅酸乙酯/硅酸正丙酯等,优选硅酸乙酯;所述硅源前驱体的醇溶液中的醇优选为碳数< 8的低碳醇,例如所述醇中的碳数为1、2、3、4、5、6、7、8,优选所述醇为乙醇、正丙醇、异丙醇、正丁醇、正戊醇、新戊醇、己醇或正辛醇中的任意I种或至少2种的组合,所述组合例如乙醇/正丙醇、异丙醇/新戊醇、己醇/正丁醇、正戊醇/新戊醇/正辛醇等,优选乙醇和/或正戊醇,最优选乙醇;所述硅源前驱体的醇溶液的浓度为0.02-5mmol/L,例如0.3-3mmol/L、0.4-2.3mmol/L、l_5mmol/L、0.04mmol/L>0.19mmol/L>1.3mmol/L>2.9mmol/L>3.5mmol/L>4.8mmol/L 等,优选 0.4-2mmol/Lo
[0040]优选地,所述氨的醇水溶液为将氨溶于醇和水中制得;添加氨的醇水溶液调节步骤(3)中反应液的pH值至9-12,例如添加的氨水将反应液的pH值调节至9-11.5、10-12、
9.4-11.8,9.2,10.6,11.9 等。
[0041 ] 优选地,所述CuOAg纳米颗粒混合悬浮液的浓度为0.1-1Ommol.L—1,例如0.5_8mmol.L \2-6mmol.L、1 -4mmo1.L \θ.3mmol.L \ 1.4mmo1.L \4.8mmol.L \
8.8mmol.L-1、9.7mmol.L-1 等,优选 l-5mmol.L-1。
[0042]优选地,步骤(3b)所述反应液中各物质的添加量为:0.2-1OmL的CuOAg纳米颗粒混合悬浮液、3-30mL氨的醇水溶液、3-30mL正硅酸乙酯的醇溶液;进一步优选0.5_5mL的CuiAg纳米颗粒混合悬浮液、6.5-26mL氨的醇水溶液、5.2~22mL正硅酸乙酯的醇溶液。
[0043]步骤(3)所述的CuOAg-SiO2纳米颗粒的制备方法可以参考纳米SiO2的制备方法,即并不限定于本发明提出的溶胶凝胶法得到CuOAg-SiO2纳米颗粒,也可以选优现有技术中的化学沉淀法、气相法、微乳液 法或机械粉碎法中的任意I种,或者是新技术报道的方法,在此不再赘述。
[0044]步骤(4)的目的是将CuOAg-SiO2纳米颗粒中的Ag去除,获得具有中空核壳结构的Cu@Si02纳米颗粒。所述具有中空核壳结构的Cu@Si02纳米颗粒是利用Ag与二水合双(对-磺酰苯基)苯基膦化二钾盐(BSPP)强的结合力和配位能力,从而将步骤(3)所述CuOAg-SiO2纳米颗粒中的Ag去除的。
[0045]本发明步骤(4)所述具有中空核壳结构的Cu@Si02纳米颗粒的制备具体包括如下步骤:
[0046](4a)向步骤(3b)得到的反应液中加入BSPP,反应时间为20_90min,例如25-70min、32-50min、40-90min、22min、52min、69min、85min、88min 等,优选 30-60min,反应时间小于20min,反应不完全,Ag的去除不彻底,导致核壳结构不均匀,根据反应液中BSSP和银的浓度不同,反应时间有所差异,但当反应时间在90min左右时,反应基本完全。
[0047](4b)将步骤(4a)得到的反应液离心、分离、洗涤、干燥得核壳结构的Cu@Si02纳米高温储热材料。
[0048]优选地,步骤(4a)中,BSPP的加入量为 0.5_20mg,例如 0.8-15mg、2-12mg、4_9mg、6_17mg、1.lmg、8.3mg、13.2mg、18.5mg、19mg 等,优选 1-lOmg,进一步优选 4_8mg。
[0049]优选地,步骤(4b)中,所述干燥是本领域熟知的一种技术,干燥的方法、温度和时间均可由本领域技术人员根据专业知识和实际实验条件确定,本发明不做特别的规定。本发明优选干燥的温度为 60-120°C,例如 65-11 (TC、70-120°C、66 °C、98 °C、113 °C、117 °C 等。
[0050]同样的,本发明中所述的分离、洗涤、干燥、分散均是本领域非常公知的操作,例如分离可以是离心分离、静置分离、过滤等,洗涤可以用去离子水或其他溶剂进行多次洗涤,干燥可以采用红外干燥、鼓风干燥、微波干燥,分散可以是搅拌分散、振荡等,为了表述简明,本发明不再就此公知操作一一作出列举。
[0051]作为优选技术方案,本发明所述的具有中空核壳结构的Cu@Si02高温储热材料的制备方法包括如下步骤:
[0052]( I)将二价铜盐还原制备得到纳米Cu颗粒;
[0053](2)将步骤(1)得到的纳米Cu颗粒分散在银盐溶液中,加入还原剂,将银离子还原为银单质,并包覆在步骤(1)得到的纳米Cu颗粒外;
[0054](3a)配制硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液;
[0055](3b)将配制的硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液混合,进行反应,反应温度为20-40°C,优选25°C,反应时间为8-30h,优选12_24h ;
[0056](4a)向步骤(3b)得到的反应液中加入BSPP,反应时间为20_90min,优选30_60min ;
[0057](4b)将步骤(4a)得到的反应液离心、分离、洗涤、干燥得核壳结构的Cu@Si02纳米高温储热材料。
[0058]本发明通过改变步骤(1)中的铜盐浓度、还原剂浓度、反应温度等因素合成不同粒径的铜颗粒;通过改变步骤(2)中的银盐溶液浓度、还原剂浓度等因素合成包覆Cu上的Ag ;步骤(3)采用溶胶凝胶法调节 硅源前躯体浓度、pH值等来制备包覆在Ag上的SiO2;步骤(4)利用对Ag有特殊吸附性的物质BSPP将Ag溶解,以Ag+或银原子形式迁移出来,从而得到中空核壳结构Cu@Si02高温储热材料。本发明提供的具有中空核壳结构Cu@Si02的高温储热材料具有可控的囊芯和壁厚,并能保持纳米尺度、大小均匀,不仅可以大幅度提高金属相变储热材料耐腐蚀性,中空部分提供了固/液相变所需有效体积空间,而且制备过程容易控制,无需添加剂。
[0059]作为可选技术方案,本发明所述的具有中空核壳结构的Cu@Si02高温储热材料的制备方法包括如下步骤:
[0060](I)将5-100mg醋酸铜加入到10_50mL油胺中;反应温度为100-300 °C反应60-120min,离心、洗漆,得到纳米Cu颗粒;
[0061](2)将上述纳米Cu颗粒,按照每毫克Cu颗粒加入0.25-0.75mmol -L-1AgNO3溶液,和0.5-2.0mol.L-1抗坏血酸,室温搅拌下反应30_90min,离心、洗漆;
[0062](3a)将得到的CuOAg核壳纳米颗粒分散在乙醇中,按照CuOAg纳米颗粒在乙醇中浓度为0.1-1Ommol.L—1配制,形成CuOAg纳米颗粒混合悬浮液;称取0.1-1.0mL氨水、5-15mL乙醇和1-1OmL水配制成氨的醇水溶液;称取0.2~2mL正硅酸乙酯加入5_20mL乙醇溶剂中,形成正硅酸乙酯的醇溶液;
[0063](3b)分别称取上述0.5-5mL的CuOAg纳米颗粒混合悬浮液、6.5_26mL氨的醇水溶液和5.2-22mL正硅酸乙酯的醇溶液,室温下水解聚合反应12_24h ;
[0064](4a)上述反应完毕后,向上述反应液中加入BSPP1.0-1Omg,反应30_60min ;
[0065](4b)将上述反应液进行离心、分离、用去离子水洗涤,在60_120°C真空干燥后得到中空核壳结构Cu@Si02纳米高温储热材料。
[0066]本发明的目的之一还在于提供一种Cu@Si02核壳结构纳米高温储能材料,所述Cu@Si02核壳结构纳米高温储能材料在Si02的壳层与纳米Cu粒子的核之间具有中空的结构, 所述中空部分提供了固/液相变所需有效体积空间。
[0067]优选地,所述Cu@Si02核壳结构纳米高温储能材料的核壳结构的囊芯和壁厚可控, 纳米尺寸和大小均匀,纳米粒径优选为50-80nm,例如55-75nm、58-72nm、60-80nm、52nm、 63nm、69nm、77nm 等。
[0068]50-80nm的纳米粒径赋予了本发明所述Cu@Si02核壳结构纳米高温储能材料良好 的分散性。
[0069]相变材料与基体间的间隙有助于增强相容性,液态时只有微小部分接触界面,有 利于防腐蚀。同时,壳层Si02材料的耐腐蚀性和耐高温性赋予了 Cu@Si02核壳结构纳米高 温储能材料优异的耐腐蚀性。
[0070]由此可以看出,本发明提供的Cu@Si02核壳结构纳米高温储能材料解决了现有储 能材料的微胶囊封装对相变体积变化的耐热度和空间有限、液相时与封装材料接触面积大 的缺点。
[0071]本发明的目的之一还在于提供一种具有中空核壳结构的Cu@Si02纳米高温储能材 料的用途,所述储能材料可用于太阳能领域、纺织行业、建筑领域、军事领域、运输业、材料 学领域、空调和采暖及工业余/废热利用等;优选用于高温烟气、太阳光热发电,以及复合 结构纳米材料、纳米技术,以及可控合成等许多领域。
[0072]与现有技术相比,本发明具有如下优点:
[0073]( 1)本发明提供的Cu@Si02纳米高温储能材料具有中空的核壳结构,为固/液相变 提供了足够有效的体积空间,使储能材料的储能效果发挥到极致;
[0074](2)本发明提供的Cu@Si02纳米高温储能材料囊芯和壁厚可控,纳米尺寸和大小均 匀(粒径在60nm左右)、分散性好、耐腐蚀性好,适合于更广泛的应用领域;
[0075](3)本发明提供的Cu@Si02纳米高温储能材料的制备方法简单高效,反应可控,制 备成本较低。尤其是本发明提供的可选技术方案不需要将金属前躯体进行预处理,也不需 要任何表面活性剂或其他保护剂,过程包括混合、调节温度和还原、洗涤、干燥。
【专利附图】

【附图说明】
[0076]图1为实施例2制备的具有中空核壳结构的Cu@Si02纳米高温储热材料的SEM图;
[0077]图2为实施例4制备的具有中空核壳结构的Cu@Si02纳米高温储热材料的SEM图。
【具体实施方式】
[0078]为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施 例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
[0079]实施例1
[0080]将浓度10mg醋酸铜加入到10mL油胺中,反应温度为120°C反应120min,离心、洗 涤,得到纳米Cu颗粒,按照每毫克Cu颗粒加入0. 5mL浓度为0. 25mmol ? I^AgNC^溶液和 15mL浓度为0. 5mol ? L—1抗坏血酸溶液,室温搅拌下反应30min,离心、洗涤后加入乙醇配 制0. lmmol ? L_1CuiAg纳米颗粒混合悬浮液;将0. lmL氨水、5mL乙醇和lmL水配制成氨的 醇水溶液;将0. 2mL正硅酸乙酯加入5mL乙醇溶剂中,形成正硅酸乙酯的醇溶液;将分别取0.5mLCuiAg纳米颗粒混合悬浮液、7.0mL氨的醇水溶液和5.5mL正硅酸乙酯的醇溶液进行混合,室温下搅拌反应12h后向反应液中加入l.0mg BSPP,反应30min,进行离心、分离、用去离子水洗涤,在120°C真空干燥后得到中空核壳结构纳米Cu@Si02高温储热材料。
[0081]实施例2
[0082]将浓度60mg醋酸铜加入到25mL油胺中,反应温度为180°C反应90min,离心、洗涤,得到纳米Cu颗粒,按照每毫克Cu颗粒加入ImL浓度为0.5mmol.L—1的AgNO3溶液的和IOmL浓度为l.0mol .L-1的抗坏血酸溶液,室温搅拌下反应60min,离心、洗涤后加入乙醇配制1.0mmol.L^1CuiAg纳米颗粒混合悬浮液;将0.6mL氨水、14mL乙醇和3mL水配制成氨的醇水溶液;将1.0mL正硅酸乙酯加入IOmL乙醇溶剂中,形成正硅酸乙酯的醇溶液;将分别取2.5mL CuOAg纳米颗粒混合悬浮液、25mL氨的醇水溶液和IOmL正硅酸乙酯的醇溶液进行混合,室温下搅拌反应24h后向反应液中加入5.0mg BSPP,反应45min,进行离心、分离、用去离子水洗涤,在90°C真空干燥后得到中空核壳结构纳米Cu@Si02高温储热材料。扫描电子显微镜实验结果表明Cu@Si02尺寸在60nm左右。图1为本实施例所述的具有中空核壳结构的Cu@Si02纳米高温储热材料的SEM图。
[0083]实施例3
[0084]将浓度95mg醋酸铜加入到45mL油胺中,反应温度为280°C反应60min,离心、洗涤,得到纳米Cu颗粒,按照每毫克Cu颗粒加入5mL浓度为0.75mmol.L—1的AgNO3溶液和40mL浓度为2.0mol.L-1的抗坏血酸,室温搅拌下反应90min,离心、洗涤后加入乙醇配制
5.0mmol.L^1CuiAg纳米颗粒混合悬浮液;将0.9mL氨水、IOmL乙醇和IOmL水配制成氨的醇水溶液;将2.0mL正硅酸乙酯加入18mL乙醇溶剂中,形成正硅酸乙酯的醇溶液;将分别取5mLCuiAg纳米颗粒混合悬浮液、15mL氨的醇水溶液和20mL正硅酸乙酯的醇溶液,室温下搅拌反应18h后向反应液中加入IOmg BSPP,反应60min,进行离心、分离、用去离子水洗漆,在70°C真空干燥后得到中空核壳结构Cu@Si02纳米高温储热材料。
[0085]通过实施例1、实施例2和实施例3所制备的Cu@Si02高温储热材料,采用Ag作为硬模板,最后将Ag去除,合成了中空核壳结构CuOSiO2高温储热材料。同时由图1所示,制备出的中空核壳结构Cu@Si02纳米高温储热材料纳米颗粒大小均一、粒径为60-70nm。
[0086]实施例4
[0087]将浓度70mg氯化铜加入到50mL三乙胺中,反应温度为100°C反应62min,离心、洗涤,得到纳米Cu颗粒,按照每毫克Cu颗粒加入1.5mL浓度为0.1mmol.L^1AgNO3溶液和20mL浓度为0.3mol.171类胡萝卜素,室温搅拌下反应20min,离心、洗涤后加入乙醇配制IOmmol.IZ1CuOAg纳米颗粒混合悬浮液;将0.9mL氨水、IOmL乙醇和IOmL水配制成氨的醇水溶液;将硅酸正丙酯配制成0.02mmol/L的正丙醇溶液;将分别取0.2mLCuiAg纳米颗粒混合悬浮液、3mL氨的醇水溶液和3mL正硅酸乙酯的醇溶液,40 V下搅拌反应8h后向反应液中加入0.5mg BSPP,反应20min,进行离心、分离、用去离子水洗涤,在120°C真空干燥后得到中空核壳结构Cu@Si02纳米高温储热材料。
[0088]实施例5
[0089]将浓度80mg硫酸铜加入到40mL抗坏血酸中,反应温度为300°C反应105min,离心、洗漆,得到纳米Cu颗粒,按照每毫克Cu颗粒加入2mL浓度为1mmol.L—1的AgNO3溶液和IOmL浓度为5mol -T1的异抗坏血酸溶液,室温搅拌下反应180min,离心、洗涤后加入乙醇配制0.1mmol.L4CuOAg纳米颗粒混合悬浮液;将0.9mL氨水、IOmL乙醇和IOmL水配制成氨的醇水溶液;将硅酸正丙酯配制成5mmol/L的正丙醇溶液;将分别取10mLCu@Ag纳米颗粒混合悬浮液、30mL氨的醇水溶液和30mL正硅酸乙酯的醇溶液,20°C下搅拌反应30h后向反应液中加入20mg BSPP,反应90min,进行离心、分离、用去离子水洗涤,在65°C真空干燥后得到中空核壳结构Cu@Si02纳米高温储热材料。图2为本实施例所述的具有中空核壳结构的Cu@Si02纳米高温储热材料的SEM图。
[0090] 申请人:声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属【技术领域】的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
【权利要求】
1.一种核壳结构纳米高温储热材料的制备方法,其特征在于,所述方法为先用银将铜包覆制得Cu@Ag纳米颗粒,然后用SiO2包覆Cu@Ag纳米颗粒制得Cu@Ag-SiO2纳米颗粒,最后将Cu@Ag-SiO2纳米颗粒中的银去除得到Cu@SiO2纳米高温储热材料。
2.如权利要求1所述的方法,其特征在于,所述方法包括如下步骤: (1)制备纳米Cu颗粒; (2)制备Cu@Ag纳米颗粒; (3)制备Cu@Ag-SiO2纳米颗粒; (4)将Cu@Ag-SiO2纳米颗粒中的银去除得到Cu@SiO2纳米高温储热材料。
3.如权利要求1或2所述的方法,其特征在于,步骤(1)所述纳米Cu颗粒通过将二价铜盐还原制备得到; 优选地,所述二价铜盐选自硫酸铜、硝酸铜、氯化铜、醋酸铜、碳酸铜、丙酸铜或草酸铜中的任意I种或至少2种的组合,优选醋酸铜、硫酸铜或氯化铜中的任意I种或至少2种的组合,进一步优选醋酸铜; 优选地,所述还原通过还原剂实现,所述还原剂优选为三乙胺、对苯二酚、偏磷酸钠、抗坏血酸、异抗坏血酸、类胡萝卜素、C2-C7的二醇类化合物、油胺、苄醇、甘油、葡萄糖或聚乙二醇中的任意I种或至少2种的组合,优选油胺、抗坏血酸、异抗坏血酸或葡萄糖中的任意1种或至少2种的组合,进一步优选油胺; 进一步优选地,步骤(1)所述纳米Cu颗粒的制备为将醋酸铜加入到油胺中,反应一定时间后,将反应液离心、洗涤,得到纳米Cu颗粒;所述反应温度优选100-300°C,优选120-2000C ;所述反应时间优选60-120min。
4.如权利要求1-3之一所述的方法,其特征在于,步骤(2)所述Cu@Ag纳米颗粒通过将步骤(1)得到的纳米Cu颗粒分散在银盐溶液中,加入还原剂,将银离子还原为银单质,并包覆在步骤(1)得到的纳米Cu颗粒外; 优选地,所述银盐为可溶于水的银盐溶液,优选AgNO3 ; 优选地,所述还原剂优选为三乙胺、对苯二酚、偏磷酸钠、抗坏血酸、异抗坏血酸、类胡萝卜素、C2-C7的二醇类化合物、油胺、苄醇、甘油、葡萄糖或聚乙二醇中的任意I种或至少2种的组合,优选乙二醇、1,3-丙二醇、抗坏血酸、异抗坏血酸或葡萄糖中的任意I种或至少2种的组合,进一步优选抗坏血酸; 进一步优选地,步骤(2)所述Cu@Ag纳米颗粒的制备为将步骤(1)得到的纳米Cu颗粒分散在硝酸银溶液中,加入抗坏血酸溶液,搅拌进行反应后,将反应液离心、洗涤,得Cu@Ag纳米颗粒;所述AgNO3的加入量优选为每毫克纳米Cu颗粒加入0.5-5mLAgN03溶液;所述抗坏血酸的加入量优选为每毫克纳米Cu颗粒加入10-40mL抗坏血酸溶液;所述AgNO3的浓度为0.1-1mmol.L-1,进一步优选0.25-0.75mmol.L-1 ;所述抗坏血酸的浓度为0.3-5.0mol.L-1,进一步优选0.5-2.0mol·L-1 ;所述搅拌进行反应的时间优选为20-180min,进一步优选 30-90min。
5.如权利要求1-4之一所述的方法,其特征在于,步骤(3)所述Cu@Ag-SiO2纳米颗粒通过溶胶凝胶法制备得到,具体为: (3a)配制硅源前驱体醇溶液、氨的醇水溶液、Cu@Ag纳米颗粒混合悬浮液; (3b)将配制的硅源前驱体醇溶液、氨的醇水溶液、Cu@Ag纳米颗粒混合悬浮液混合,进行反应,反应温度优选为20-40°C,进一步优选25°C,反应时间优选为8-30h,进一步优选12-24h ; 优选地,所述硅源前驱体为烷基硅酸酯类化合物,所述烷基硅酸酯类化合物优选自硅酸甲酯、硅酸乙酯、硅酸正丙酯或硅酸异丙酯的任意I种或至少2种的组合,优选硅酸乙酯;所述硅源前驱体的醇溶液中的醇为碳数< 8的低碳醇,优选乙醇、正丙醇、异丙醇、正丁醇、正戊醇、新戊醇、己醇或正辛醇中的任意I种或至少2种的组合,优选乙醇和/或正戊醇,最优选乙醇;所述硅源前驱体醇溶液中硅源前驱体的浓度为0.02-5mmol/L,优选0.4-2mmol/L ; 优选地,所述氨的醇水溶液为将氨溶于醇和水中制得;添加氨的醇水溶液调节步骤(3)中反应液的pH值至9-12 ; 优选地,所述CuOAg纳米颗粒混合悬浮液的浓度为0.1-1Ommol.I71,优选1-SmmoI.L 1 ; 优选地,步骤(3b)所述反应液中各物质的添加量为:0.2-1OmL的CuOAg纳米颗粒混合悬浮液、3_30mL氨的醇水溶液、3-30mL正硅酸乙酯的醇溶液;优选0.5_5mL的CuOAg纳米颗粒混合悬浮液、6.5-26mL氨的醇水溶液、5.2~22mL正硅酸乙酯的醇溶液。
6.如权利要求1-5之一所述的方法,其特征在于,步骤(4)所述Cu@Si02纳米高温储热材料通过将步骤(3)所述CuOAg-SiO2纳米颗粒中的Ag去除得到;优选地,所述Ag的溶解去除通过BSPP实现;具体包括如下步骤: (4a)向步骤(3b)得到的反应液中加入BSPP,反应时间为20_90min,优选30_60min ; (4b)将步骤(4a)得到的反应液离心、分离、洗涤、干燥得核壳结构的CuOSiO2纳米高温储热材料; 优选地,步骤(4a)中,BSPP的加入量为0.5-20mg,优选Ι-lOmg,进一步优选4_8mg ; 优选地,步骤(4b)中,所述干燥的温度为60-120°C。
7.如权利要求1-6之一所述的方法,其特征在于,所述方法包括如下步骤: (1)将二价铜盐还原制备得到纳米Cu颗粒; (2)将步骤(1)得到的纳米Cu颗粒分散在银盐溶液中,加入还原剂,将银离子还原为银单质,并包覆在步骤(1)得到的纳米Cu颗粒外; (3a)配制硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液; (3b)将配制的硅源前驱体醇溶液、氨的醇水溶液、CuiAg纳米颗粒混合悬浮液混合,进行反应,反应温度优选为20-40°C,进一步优选25°C ;反应时间优选为8-30h,进一步优选12-24h ; (4a)向步骤(3b)得到的反应液中加入BSPP,反应时间为20_90min,优选30_60min ; (4b)将步骤(4a)得到的反应液离心、分离、洗涤、干燥得核壳结构的CuOSiO2纳米高温储热材料。
8.如权利要求1-6之一所述的方法,其特征在于,所述方法包括如下步骤: (1)将5-100mg醋酸铜加入到10-50mL油胺中;反应温度为100-300°C,反应时间为60-120min,离心、洗漆,得到纳米Cu颗粒; (2)将上述纳米Cu颗粒,按照每毫克Cu颗粒加入0.5-5mL浓度为0.25-0.75mmol.L-1的AgNO3溶液,和10-40mL浓度为0.5-2.0mol.L—1的抗坏血酸溶液,室温搅拌下反应30_90min,离心、洗漆; (3a)将得到的CuOAg核壳纳米颗粒分散在乙醇中,按照CuOAg纳米颗粒在乙醇中浓度为0.1-1Ommol.L-1配制,形成CuiAg纳米颗粒混合悬浮液;称取0.1-1.0mL氨水、5_15mL乙醇和1-1OmL水配制成氨的醇水溶液;称取0.2-2mL正硅酸乙酯加入5_20mL乙醇溶剂中,形成正硅酸乙酯的醇溶液; (3b)分别称取上述0.5-5mL的CuOAg纳米颗粒混合悬浮液、6.5_26mL氨的醇水溶液和.5.2-22mL正硅酸乙酯的醇溶液,室温下水解聚合反应12_24h ; (4a)上述反应完毕后,向上述反应液中加入BSPP1.0-1Omg,反应30_60min ; (4b)将上述反应液进行离心、分离、用去离子水洗涤,在60-120°C真空干燥后得到中空核壳结构Cu@Si02纳米高温储热材料。
9.一种如权利要求1-8之一所述的方法制备得到的Cu@Si02核壳结构纳米高温储能材料,其特征在于,所述Cu@Si02核壳结构纳米高温储能材料在SiO2的壳层与纳米Cu粒子的核之间具有中空的结构,所述中空部分提供了固/液相变所需有效体积空间; 优选地,所述Cu@SiO2核壳结构纳米高温储能材料的核壳结构的囊芯和壁厚可控,纳米尺寸和大小均匀,纳米粒径优选为50-80nm ; 优选地,所述Cu@Si02核壳结构纳米高温储能材料的分散性好,耐腐蚀性强。
10.一种如权利要求9所述的Cu@Si02核壳结构纳米高温储能材料的用途,其特征在于,所述储能材料可用于太阳能领域、纺织行业、建筑领域、军事领域、运输业、材料学领域、空调和采暖及工业余/废热利用等;优选用于高温烟气、太阳光热发电,以及复合结构纳米材料、纳米技术,以及可控合成等许多领域。
【文档编号】B22F1/02GK103509528SQ201210222040
【公开日】2014年1月15日 申请日期:2012年6月28日 优先权日:2012年6月28日
【发明者】杨军, 叶锋, 丁玉龙, 仲俊瑜 申请人:中国科学院过程工程研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1