用于工件的耐磨硬涂层及其制备方法

文档序号:3316323阅读:263来源:国知局
用于工件的耐磨硬涂层及其制备方法
【专利摘要】本发明提供了优化的硬涂层和工件,特别是涂覆有硬涂层的切削工具,所述硬涂层用于提高对材料,例如高速钢、钛合金、镍合金、奥氏体钢,特别是例如具有高于50,优选更高55HRC的硬度的硬化工具钢的硬材料,难以进行机械加工的工具加工性能。这是通过涂覆有耐磨多层的工件而实现,该耐磨多层至少包括第一支撑层和第二纳米晶体层,其中该第一层包含以下组成的涂覆材料:(TiaAl1-a)N1-x-yCxOy,0.4<a<0.6,0<x和y<0.3;或(AlbCr1-b)N1-x-yCxOy,其中0.5<b<0.7,0<x和y<0.3。第二层包括以下组成的涂覆材料:(Al1-c-d-eCrcSidMe)N1-x-yCxOy,其中M表示周期表系统的第4、5、6族的过渡金属中除铬之外的至少一种元素,且0.2<c<0.35,0<d<0.20,0<e<0.04。
【专利说明】用于工件的耐磨硬涂层及其制备方法
[0001]本申请是以下申请的分案申请:申请日2008年3月3日,申请号200880009561.0,发明名称“用于工件的耐磨硬涂层及其制备方法”。
[0002]发明背景
本发明涉及经设计用于用工具加工(tooling)难于机械加工(machine)的材料(例如硬化工具钢、不锈钢和钛合金)的硬的耐磨涂层。这种极端的机械加工条件的应用需要具有优秀耐磨性、热硬性和耐氧化性以及高韧性和良好粘附性的涂层。
[0003]本发明进一步涉及这种耐磨涂层的制备方法,即规定的PVD电弧蒸发方法(defined PVD arc evaporat1n process)。
[0004]其进一步涉及涂覆的工件,特别是具有由烧结碳化物(cemented carbide)、金属陶瓷(cermet)、立方氮化硼(CBN)或高速钢制成的主体的工具。
现有技术
[0005]AlTiN是广泛用于硬化钢的机械加工的PVD涂层。然而,AlTiN如果用作单一层或由不同Ti/Al/N化学计量的子层构成的多层,其可以在至多不超过900°C用于工具加工应用,因为依赖于铝/钛比,随着温度高于800°C至850°C,其硬度就开始变差。
[0006]因此,US 2005-0003239将AlCrN涂层施加于工件,以提高其耐氧化性。已知该涂层在不超过1100° c具有良好的耐氧化性和热硬性,具体依赖于铝/铬比。这种涂层有助于提高用于很多工具加工应用的铣削性能,然而不能显著提高更难于机械加工的材料(例如硬化工具钢、高速钢、钛和镍合金和奥氏体钢)的工具加工性能。与此类似,申请W0-2006/005217、W0-2006/084404 和 US 2006-0222893 也通过使用不同的多层和 / 或在AlCrN基质中引入其他元素来试图进一步优化该涂层的耐氧化性和/或(热)硬性。
[0007]EP 1690959公开了另一种声称在硬化钢的切削方面取得进展的涂层。该涂层包括基于不同Al和Si化学计量的(TiAlSi)N的双层系统。
[0008]US 2006-0269789公开了用于高速切削高硬度材料的硬多层。该多层包括基于TiAlCrNX(X = C或0)的第一涂层、TiAlCrNX和TiAl (SiC)NX的混合物的第二涂层或这种交替层的多层、和基本由TiAl (SiC)NX构成的第三最外涂层。
[0009]尽管这种层系统在耐磨性和耐氧化性方面可以取得某些进展,但似乎仍需要进一步改进在上述对材料进行机械加工方面有难处的带涂层切削工具的性能。

【发明内容】

[0010]因此,本发明的一个目的是提供优化的硬涂层和工件,特别是涂覆有硬涂层的切削工具,所述硬涂层用于改善在对材料(例如高速钢、钛合金、镍合金、奥氏体钢,特别是例如具有高于50,优选高于55 HRC的硬度的硬化工具钢的硬材料)进行机械加工方面有困难的工具加工性能。本发明的另一目的是在不丧失AlCrN的优秀氧化性和热硬性的情况下提供这种涂层。通过下面和权利要求1和2中所示的本发明的前两个方面中的任一方面可以实现这些目的。本发明的第三个目的是提供依照权利要求12的用于制备用于机械组件的元件(例如模具和模头)的改进的切削工具,和其他切削工具(例如刀刃)以及用于执行依照权利要求16的这种操作的切削方法。一个应用焦点是在例如成本降低、制备程序的优化和工件表面粗糙度改进方面对铣削操作中切削性能进行改进。本发明的第四个目的是提供用于制备依照权利要求13的本发明涂层和本发明工具的PVD方法。
[0011]令人惊奇的是,通过本发明的第一方面的工件可以解决本发明的第一和第二个目的,该工件具有表面,其中所述表面的至少一部分涂覆有通过PVD方法沉积的耐磨多层式硬涂层,该硬涂层包括至少第一支撑层和包含纳米晶体硅的第二层,该第一层位于在该工件和该第二层之间。
[0012]第一层包含以下组成的涂覆材料=(TiaAl1JNnyCxC)y,其中0.4〈a〈0.6,0≤x和y<0.3。可替代地,该第一层可以包含(AlbCivb)N1^CxOy,其中0.5〈b〈0.7,0≤x和y〈0.3。
[0013]第二层包括以下组成的涂覆材料:(AVc^eCrcSidMe) UxOy,其中M表示周期表系统的第4族(T1、Zr、Hf)、第5族(V、Cb [Nb]、Ta)、第6族(Cr.M0.ff)的过渡金属中除铬之外的至少一种元素,且0.2〈c ( 0.35,0〈d ( 0.20,0〈e ( 0.04。在本发明的优选实施方案中,第二层包含以下组成的涂覆材料:(AVc^eCreSidMe)UxOy,其中M表示W、Mo、Ta或Cb [Nb],且 0.06〈d < 0.15,特别地 0.10 ≤ d ≤ 0.11。(N1b (铌)或 Columbium (钶)表示周期表系统的第41号元素,国际通用简称Nb,也称作Cb)。
[0014]本发明的其它方面涉及第一层的晶体结构,其优选包括两个不同相,特别是面心立方(fee)和六方密堆(hep)相。因此,如果经过热处理或至少700°C或750°C的高工作温度,该hep相的XRD信号可以变得更加明显。该hep相能够是富含Al的,沉积态的六方相的百分比应当为5~40vol%,优选10~30vol%。
[0015]本发明的其他方面涉及纳米晶体层内的Al/Cr比、第一和第二层的厚度和总涂层厚度之比、层织构和结构以及第一和第二层交替的多层。例如,当以商值QA1/& =(l-C-d-e)/C表达的Al/Cr比在范围1.5<QA1/Cr≤2.4时,带涂层的切削工具的性能特别好。
[0016]在另一实施方案中,第一涂层的厚度D1小于第二涂层的厚度D2,例如商值Qd = D2/D1在以下范围:1〈QD≤4,而本发明的涂层的总涂层厚度D在以下范围:lym<D<10ym,it 2ym<D<6iim。
[0017]本发明的另一方面涉及该涂层系统中所定义的层的硬度和杨氏模量。与支撑层相比该纳米晶体层的硬度较高被证明是有利的。例如用Vickers微压痕在40mN的负载下测定,第一层优选具有2.400~2.800HV的硬度,而第二层具有2.800~3.200HV的硬度。可以通过例如本领域技术人员可从US 6071560和US 6274249和其他文献中已知的控制特定工艺参数(尤其是基底偏压和工艺压力或反应气体压力)来调节硬度和杨氏模量(后者很大程度影响涂层系统的韧性)。
[0018]然而,对于本发明,使用包括以下步骤的沉积方法被证明是有利的:在第一涂层的沉积过程中应用第一较低的基底电压U1,以及在第二涂层的沉积过程中应用第二较高的基底电压u2。其中,该第一基底电压在0V< U1 ( 100V范围内,第二基底电压在80V ^ U2 ^ 200V范围内,其中U2-U1≤20V。另外或可替代地,在第一涂层的沉积过程中可以使用较高的工艺压力,以降低第一层的固有层应力(intrinsic layer stress)以及由此的硬度。在沉积过程中将工件加热到高于550°C的温度(特别到约600°C)并将其保持在该温度似乎得到了对涂层粘附性和工具性能的进一步有利影响。[0019]对上述层性质的另一可能影响方式是如上或下面实施例所述改变某些附加元素的含量或改变Al/Cr比值。通过调节硅含量以得到对晶粒细化的优化导致硬度的最大化,可以进一步改进第二基于纳米晶体合金化AlCrN的层的硬度。此外,通过另外用作例如硬涂层的晶界相中的扩散屏障的上述过渡金属(特别是W、Mo、Cb和Ta),得到了有益的固溶硬化(solut1n hardening)。总之,这种基于纳米晶体合金化AlCrN的层被证明是对高温和氧化具有非常高的耐受性,因此高效防止该支撑层和基底被氧化。织构系数Q1 = 1(200)/I(Ill)在0.7≤Q1义为衍射强度I (200)与I(Ill)之比,分别为材料的X射线衍射光谱中的(200)和(111)平面)可以达到切削操作的最佳性能。这相当于沿(200)和(111)平面均衡生长。关于该测试的细节可以参见图1。
[0020]与第二层相反,该支撑层具有柱状生长结构和通过较高杨氏模量体现的较高的弹性。这证明是将机械负载从非常耐磨损和耐高温的第二层转移到该工件的基底材料的最佳组合。
[0021]作为上述两层构造的替代方式,可以使用其他层系统来进一步改进针对特定应用的层性能。例如,可以使用薄金属性粘附层以得到基底和第一支撑层之间优化的界面。这种粘附层可以包括T1、Cr、TiAl或AlCr,且可以具有如本领域技术人员已知的、朝向第一层逐渐增加的N、C和/或O含量的过渡区域。
[0022]其他或另外的可能方式是使第一层包括交替的(TiaAl1J N^CxOy和(Al1^eCrcSidMe) N1^yCxOy 层或交替的(AlbCivb) N1^yCxOy 和(AlmeCrcSidMe) N1^yCxOy 层的多层。这种堆积的层将具有几纳米~几百纳米的优选层厚度,最大值可以根据需要在该层的堆积内变化。
[0023]工件主体或基底材料优选至少选自以下中的一种:高速钢、烧结碳化物、立方氮化硼、金属陶瓷或陶瓷材料。这种带涂层的工件可以用于很多类型的工具,然而特别可用于切削工具,例如端铣刀、钻子、切削刃、或齿轮切削工具,例如齿轮滚铣刀。当应用于由烧结碳化物、立方氮化硼、金属陶瓷或陶瓷材料制成的工具时,这些涂层具有改进在具有HRC 50及更高(或甚至HRC 55及更高)的Rockwell硬度的硬材料(例如硬质钢)上的切削工艺的切削性能的良好潜力,以下实施例将对此进行详细论证。
[0024]附图简述
以下附图和实施例意于借助于一些特定的实施方案解释本发明,所述特定实施方案绝不意于限制权利要求的范围。参考以下附图,其中:
图1 显示了 TiAlN/AlCrN 和 TiAlN/AlCrSiWN 硬涂层的 XRD 谱;
图2显示了 TiAlN/AlCrN和TiAlN/AlCrSiWN硬涂层的拟合的XRD谱;
图3是TiAlN/AlCrN和TiAlN/AlCrSiWN硬涂层的SEM横截面;
图4显示了具有六方相的TiAlN/AlCrSiWN硬涂层的XRD谱;
图5是峰强度图表;
图6显示了使用前后在切削工具上的TiAlN/AlCrSiWN的XRD谱。
[0025]图1显示了不同 Al/Cr 比的 TiAlN/AlCrN 和 3 个 TiAlN/AlCrSiWN 涂层的 XRD 图案。将所述涂层沉积在具有钴粘结剂相的商用烧结碳化物镶刃(insert)上,相应于获自实施例I和2的第1.6,2.4,2.5和2.6号涂层。除用于沉积第二层的靶材料之外,涂覆参数对于所有涂层都相同。靶组成以及涂层特征的细节可以参见表1和2。[0026]用具有Cu Ka ( λ = 1.5406nm)源的 Bruker AXS 装置使用 Bragg-Brentano 几何学在2°的掠射角下记录所有XRD光谱,以使对来自支撑层和基底的衍射信号的扰动最小化。
[0027]可以从光谱中导出两个重要事实:
-使用W和Si合金化的AlCr靶导致该涂层衍射图案的峰高下降以及峰信号的加宽。这可以归因于由于合金化元素(特别是硅)造成的晶粒细化作用。因此,该AlCrSiWN第二层沉积成具有纳米晶体结构,从图3b的SHM图像横截面中也可以看到。
-与显示清楚的(111)取向的具有未合金化的AlCrN第二层的涂层系统相比,具有合金化第二层的系统在晶体取向方面不显示或仅显示较弱的择优性。因此,如果用上述的掠入角测定,定义为衍射强度1(200)与I(Ill)(分别为材料的X射线衍射谱中的(200)和(111)平面)之比的Q1在I的附近,优选为0.7~2。
[0028]如果如图2中可以看到的应用依照Lorentian方法的峰拟合,那么可以从XRD图案中导出对该涂层结构的更详细的信息。该拟合已经应用于来自表示编号1.6和1.9的涂层的光谱的2 Θ刻度上44.5°附近的(200)信号。因此可以通过测定半最大值处的全峰宽(FWHM),对加宽进行量化。将该装置的恒定背景影响排除掉,得到以下值,显示AlCrSiWN第二层的显著峰加宽:
TiAlN/AlCrSiWN:FWHM (200) = 1.7°
TiAlN/AlCrN:FWHM (200) = 1°。
[0029]用Si和W来合金化AlCrN涂层导致从43.8。朝向较低的2 Θ角43.4°的峰值偏移,作者将其归因于 由于钨原子的尺寸较大导致的晶格平面的加宽。由此晶格参数从AlCrN的 d(200) = 2.064nm 改变为 AlCrSiffN 的 d(200) = 2.082nm。
[0030]图3a和3b中可以看到放大倍数为100000直径的两个涂层横截面的SEM图像。在5kV的加速电压下记录SEM图像。图像显示了两种双层涂层,各自具有约Iym厚度的柱状生长(Tia5Ala5)N支撑层和较厚的顶层。因此,图3a显示了已经具有比可比较的粗柱状第一层更细的层的AlCrN顶层。然而,图3b中的(Al57Cr uSijW.jN第二层的结构显示出比图3a显著更微细的纳米晶体结构,这对应于图1和2的XRD光谱观察到的峰加宽。
[0031]在图4中,将图1的TiAlN/AlCrSiWN硬涂层的XRD光谱以更高的分辨率模式显示,箭头所示的2 Θ数值处应当出现六方相峰。可以清楚地认识到随着AlCrSiWN涂层中铝含量的升高,该六方相峰变得越来越明显,其对应着涂层编号1.6,2.4,2.5良好的切削性能。
[0032]图5是TEM-SAED(透射电子显微镜-选择区域电子衍射)分析的峰强度图表,以给出来自TiAlN/ (Al0.62Cr0.26Si0.10ff0.02) N涂层的立方和六方图案的更详细的图像。化合物的化学计量数是指靶组成。
[0033]图6中显示了在PVD过程之后沉积状态的⑷和依照用实施例8中详细描述的闪耀亮红色的碎片进行高速侧铣过程用过状态的⑶的TiAlN/ (Al0.57Cr0.31Si0.10ff0.%) N涂层的XRD光谱。靶组成、厚度比和性能的细节参见表8。在铣削约40m之后获得的光谱(B)令人惊奇地显示了显著更高的六方XRD信号。通过将该涂层加热到至少750°C也可以观察到类似的六方相百分比的升高。为观察到这种温度引发的相变的最小Al百分比为49~57%,具体取决于其他元素的基质,随着这种情况的出现,本领域的人员可以容易地对其进行确定。从750°C~800°C向上,六方相似乎随着温度的升高而增加,直至至少1100°C。在600°C (可以是通过PVD方法沉积状态的)直至约1100°C的温度范围内,可以在横截面STEM分析中检测到由高AlN含量的hep相嵌入立方体相微晶制成的沉淀硬化网络。750°C时的微晶尺寸为5~200nm。用大多数切削试验,这种涂层都优于未显示相变的涂层,且较高的Al靶组成(例如57% )似乎性能较好。这是更令人惊奇的,因为至今为止,在从室温到高速工具加工可以达到的任意温度的整个温度范围内具有稳定的刚玉相的氧化铝涂层,当面临非常高的热负载时,似乎具有无与伦比的优势。然而,对于(AlCrSiW)N涂层,相变似乎具有有利的效应,其可能是由于在切削过程中高温稳定氮化铝相的连续扩增造成的。图6(B)中观察到的33.2。峰的峰位置似乎与获自JCPDS XRD数据集合的六方密堆hcp-AIN的hep 100峰完美吻合。其他可以毫无疑义辨识的AlN峰位于36.1° (表示002信号)、49.2。(102)、59.4° (110)和101.6° (211)。无论如何,至今为止对这种温度诱导相变行为的原因仅可以进行假设。仍需进行详细的调查。当Al百分比超过约70%,hcp-AlN-相变成主要相,不再能够观察到这种相变。
[0034]优选实施方案详述
下面借助实施例公开了本发明的一些特别实施方案,使用不同切削操作和切削参数对本发明的工具与现有技术的工具的切削性能进行了比较。
[0035]所有本发明的硬涂层和对比实施例都是使用Oerlikon Balzers RCS^涂覆系统在电弧蒸发构造中进行沉积的。在PVD沉积过程中将切削工具安装在三重旋转夹具(threefold rotating fixture)上。下面实施例中所述的在切削工具上沉积的硬涂层在该切削工具的柄上测定具有2~6 μ m的总厚度。该新涂层与获自以下的现有技术涂层进行比较:0erlikon Balzers标准涂覆工艺,对于TiAlN称作FUTURA ΝΑΝΟ,对于AlTiN称作XCEED,对于 AlCrN 称作 ALCR0NA。
[0036]实施例1
使用实施例1,将涂覆有现有技术涂层(例如TiAIN、AlTiN、AlCrN和(AlCrSiW)N)的端铣刀的切削性能与一系列涂覆有TiAlN或AlCrNzi(AlmCreSidWe)N双层式涂层的本发明的端铣刀进行比较。
[0037]所有涂层通过阴极电弧蒸发合成的。编号1.4~1.10的涂层的沉积是在600°C的沉积温度和3.5Pa的总压力在氮气气氛下进行的。对于第一支撑层,施加优选在-40V~-100V的低偏压,而对于第二层,使用-80V~-200V的较高的偏压,其中第二层的偏压的绝对值比第一层的偏压高至少20V,优选高40V。编号1.1~1.3涂层的沉积是在500°C的沉积温度和3.0~4.0Pa的总压力在氮气气氛下进行的。
[0038]表1中列出了和下列内容相关的数据:各种蒸发材料(靶)的组成、该涂层的第二纳米晶体涂层(m.1.)内的Al/Cr比、层的厚度比Qd(m.1./s.1.)、在达到90m的切削长度之后所得到的由微米计的侧面磨损所表示的最终切削性能、和在达到100 μ m的磨损痕迹时以米计的累计工具寿命。
[0039]铣削条件:
工件:DIN 1.2379 (60HRC)
切削工具:双槽球鼻端铣刀,Φ 1mm,微粒碳化物级
轴转动:8000min-l
切削速度:200mmin_l
进给速度: 0.1mm/齿径向切削深度: 0.5_
轴向切削深度: 0.3mm 冷却剂:压缩干空气
铣削操作:顺铣
单程长度:30m
寿命终止:单程结束时Vbmax>100um。
[0040]从表1中可见,与涂覆有双层结构的本发明的工具相比,对比实施例1.3~1.6的性能差。尽管与实施例1.3的非合金化的AlCrN涂层或实施例1.6的TiAlN/AlCrN双层相t匕,实施例1.4~1.5的单层AlCrSiWN涂层取得了显著改进,但这些涂层仍不能与本发明实施例1.7~1.8的性能相比较。然而,本发明双层的厚度比Qd似乎是重要因素,如涂层具有薄含硅层的实施例1.10具有差的性能所示。
[0041]实施例2
实施例2中应用了和实施例1相同的沉积参数。试验2.1~2.3中第二涂层的Si含量变化而Al/Cr恒定,试验2.4~2.6中Al/Cr比变化而Si含量恒定。对实施例2的所有试验测定,钨仅有少量变化 ,最大值在大约2±0.3%,如表2所示。
[0042]铣削条件:
工件:DIN 1.2379 (60HRC)
切削工具:双槽球鼻端铣刀,Φ 1mm,微粒碳化物级
轴转动:8000min-l
切削速度:200mmin_l
进给速度:0.1mm/齿
径向切削深度: 0.5_
轴向切削深度: 0.3mm 冷却剂:压缩干空气
铣削操作:顺铣
单程长度:30m
寿命终止:单程结束时Vbmax>100um。
[0043]在表2中,在恒定Si含量的情况下(编号2.4~2.6),硬度测定显示随着第二涂层所含的Al/Cr的升高,硬度降低。在恒定的Al/Cr比的情况下,在约10%的Si含量时可以观察到硬度和切削性能的最大值。此外,可以清楚地看到Si含量必须至少高于5.3%以获得良好的切削性能。
[0044]附图1详细描述了 XRD分析所用的用于如上所述定义Q1值的参数和构造。其中,用于定义该商值的(111)峰位于约37.5°的2Θ角处,所述的(200)峰位于约43.7°处。优先的,在2°的掠入角测定时,发现Q= 1(200)/1(111)值在I的附近,特别为0.7~2。
[0045]实施例3
在依照下述参数的粗加工操作过程(a roughing operat1n)中,将本发明的涂层编号
3.4的铣削性能与现有技术的涂层编号3.1~3.3进行了比较。实施例3中应用了和实施例I相同的沉积参数。
[0046]铣削条件:工件:DIN 1.2344 (52HRC)
切削工具:双槽球鼻端铣刀,Φ 1mm,微粒碳化物级
轴转动:AegOmirf1
切削速度:SOmmin-1
进给速度:0.15mm/齿
径向切削深度:4_
轴向切削深度:0.8mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:15.5m
寿命终止:单程结束时Vbmax>150um。
[0047]表3
【权利要求】
1.工件,具有表面,其中所述表面的至少部分涂覆有通过PVD工艺沉积的耐磨多层式硬涂层,其中该硬涂层包括至少第一支撑层和第二层,其中该第一层位于该工件和该第二层之间,其中该第一层包含以下组成的涂覆材料: (TiaAHyCxOy
其中 0.4〈a〈0.6,OS X 和 y<0.3, 或
(AlbCr^b) N1tyCxOy
其中 0.5〈b〈0.7,O ≤ X 和 y<0.3 ; 该第二层包括以下组成的涂覆材料:
(Al1-c-d-eCrcSidMe) Nh_yCx0y 其中M表示周期表系统第4、5、6族的过渡金属中除铬之外的至少一种元素,且
0.2〈c ( 0.35,0〈d ( 0.20,0〈e ( 0.04,和
该第二层包括两个不同的晶体相。
2.根据权利要求1的工件,其中该第一层包含以下组成的涂覆材料: (TiaAHyCxOy
其中 0.4〈a〈0.6,OS X 和 y<0.3, 或
(AlbCr^b) N1tyCxOy
其中 0.5〈b〈0.7,O ≤ X 和 y<0.3 ; 该第二层包括以下组成的涂覆材料:
(Al1^eCrcSidM' e0 N1^yCxOy 其中Μ’表示W、Mo、Ta或Cb (Nb),且
0.2〈c ( 0.35,0.06 ≤ d’ ( 0.15,0〈e ( 0.04。
3.根据权利要求1的工件,其中该第二层包括两种不同的晶体相。
4.根据权利要求3的工件,其中所述不同的晶体相是面心立方(fee)相和六方密堆(hep)相。
5.根据权利要求4的工件,其中如果经过热处理或高工作温度,该hep相的XRD信号变得更加明显。
6.根据权利要求4的工件,其中该hep相是富含Al的。
7.根据权利要求4的工件,其中沉积状态时的hep相的百分比为5~40VOl%。
8.根据权利要求3的工件,其中该第二层在SHM横截面中显示纳米晶体生长结构。
9.根据权利要求3之一的工件,其中该纳米晶体第二层的织构系数Q1= 1(200)/I(Ill)在0.7≤Q1≤2范围内。
10.根据权利要求1的工件,其中QA1/&= (l-c-d-e)/c的商在以下范围内:1.7≤Qai7Cr ( 2.4。
11.根据权利要求1的工件,其中涂层厚度D在以下范围内=IymSDS10 μπι。
12.根据权利要求1的工件,其中该第一支撑层的厚度D1小于该第二涂层的厚度D2。
13.根据权利要求1的工件,其中该第一支撑层的硬度HV1小于该第二涂层的硬度HV2。
14.根据权利要求1的工件,其中该第一层在SEM横截面中显示柱状生长结构。
15.根据权利要求1的工件,其中该第一层包括交替的(TiaAl1JNh-yCxOy和(Al1^eCrcSidMe) N1^yCxOy 层的多层或交替的(AlbCivb) N1^yCxOy 和Nl-X-yCx0y层的多层。
16.根据权利要求1的工件,具有由高速钢、烧结碳化物、立方氮化硼、金属陶瓷或陶瓷材料制成的主体。
17.根据权利要求1的工件,其中该工件是切削工具。
18.使用权利要求17的切削工具切削硬材料,尤其是具有HRC50或更高的Rockwell硬度的材料的切削方法。
19.根据权利要求18的切削方法,其中该硬材料是硬质钢。
20.用于制备根据权利要求1的工件的PVD方法,包括将该工件加热到高于550°C的温度,特别至约600°C的温度,并在该沉积方法过程中保持该温度的步骤。
21.根据权利要求20的PVD方法,包括以下步骤:在第一涂层的沉积过程中应用第一基底电压U1以及在所述第二涂层的沉积过程中应用第二较高的基底电压U2。
22.根据权利要求21的PVD方法,其中OV^ U1 ^ -100V且-80V ^ U2 ^ -200V,且I U2-U1 丨≥20。
23.根据权利要求1的工件,其中涂层厚度D在以下范围内:2μπι<0<6μπι。
24.根据权利要求1的工件,其中该工件是选自端铣刀、钻子、切削刃或齿轮切削工具的切削工具。
【文档编号】C23C30/00GK104032257SQ201410309027
【公开日】2014年9月10日 申请日期:2008年3月3日 优先权日:2007年3月23日
【发明者】M.莱克萨勒, A.雷特 申请人:奥尔利康贸易股份公司(特吕巴赫)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1