一种CVD法制备石墨烯的低温衬底刻蚀液及其低温刻蚀方法与流程

文档序号:13755506阅读:782来源:国知局

本发明涉及一种大面积片状石墨烯的制备后的金属衬底的刻蚀去除方法及刻蚀液,属于石墨烯转移方法的研究领域。



背景技术:

石墨烯,英文名Graphene,是碳原子按照六角排列而成的二维晶格结构。这种石墨晶体薄膜自2004年被曼彻斯特大学的科学家发现之后,就成为科学界和工业界关注的焦点。石墨烯的厚度只有0.335纳米,不仅是已知材料中最薄的一种,还非常牢固坚硬同时柔韧性极佳;作为单质,它在室温下传递电子的速度比已知所有的导体和半导体都快,本征迁移率可达到2×105cm2/(V·S),这些优异的特性使其在超柔性电子器件或者超柔性智能穿戴领域中有着广阔的应用前景。

CVD法生长的石墨烯薄膜目前产业化过程中主要采用的两种转移方法是树脂胶转移法和含胶膜转移法。树脂转移法就是在目标基底的表面预先涂布一层树脂胶,然后贴合石墨烯/金属衬底并进行固化,固化好之后将金属衬底刻蚀去除即可。含胶膜转移法是本申请人最深的研究方法,CVD法生长的石墨烯/金属衬底的石墨烯的一面与含胶膜贴合,然后刻蚀掉金属衬底形成含胶膜/石墨烯,再将含胶膜/石墨烯中石墨烯一面与目标基底压合,去除含胶膜即可。除此以外,本申请人还针对性的研究了其它石墨烯的转移方法。然而,无论是哪种方法,都需要刻蚀掉金属衬底。铜箔是CVD法生长的石墨烯中公认的最佳衬底。

金属衬底,由其是铜箔的大面积刻蚀常用的是三氯化铁和氯化铜体系的药水,三氯化铁原料容易获得,价格便宜,配制简便,三氯化铁对铜的刻蚀是一个氧化还原过程,三价铁离子将铜氧化成氯化亚铜,同时三价铁离子被还原成二价铁离子,氯化亚铜具有还原性,和刻蚀液中的三价铁离子进一步反应生产氯化铜。酸性氯化铜刻蚀液相对于三氯化铁刻蚀方法,溶铜量大,刻蚀速率易于控制,在这种刻蚀液中,是利用二价铜离子的氧化性将铜箔氧化成一价铜离子,一价铜离子与氯离子结合成氯化亚铜,氯化亚铜微溶于水,在有过量氯离子存在的情况下,这种氯化亚铜离子和过量的氯离子形成络合离子,随着铜的刻蚀,刻蚀液中一价铜离子含量越来越多,刻蚀能力下降,需要对刻蚀液再生,但常用的二价铜离子含量在150g/L左右,反应速率快,会对石墨烯的导电性能造成较大的不良影响。

上述刻蚀液中,酸的含量均比较高,且需要在50℃下进行刻蚀,在这种高温下酸性刺流失下,对设备和车间环境有腐蚀影响巨大。



技术实现要素:

本发明的目的在于针对现有技术的不足,提供了一种可在低温刻蚀条件下完成金属衬底刻蚀的低酸性刻蚀液;

本发明的另一目的是提供利用上述刻蚀液的刻蚀方法。

本发明的目的通过以下技术方案来具体实现:

一种CVD法制备石墨烯的低温衬底刻蚀液,盐酸浓度为0.7-1.3mol/L、双氧水的氧化还原电位为630-680mv。

作为上述的CVD法制备石墨烯的低温衬底刻蚀液,盐酸浓度为1±0.1mol/L、双氧水的氧化还原电位为650-660mv。

优选的,所述刻蚀液中还含有石墨烯掺杂剂。

进一步优选的,所述石墨烯掺杂剂包括TFSA、TFSA-Li、TFSA-Au、氯化钠(NaCl)、氯化钙(CaCl2)、氯化亚铁(FeCl2)、氯化铁(FeCl3)、氯化金(AuCl3)、氯化锌(ZnCl2)、氯化铝(AlCl3)、氯化铵(NH4Cl)、氯金酸(HAuCl4)、硝酸(HNO3)、硫酸(H2SO4)、硝基甲烷(CH3NO2)、咪唑(C3H4N2)、无水乙醇(C2H6O)的一种或者两种以上组合。

所述石墨烯掺杂剂最佳采用氯化铁(FeCl3)。测试发现,氯化铁掺杂的效果比较好,氯化铁掺杂可以使石墨烯的阻值比较均匀稳定。

所述掺杂剂在刻蚀液中的浓度为100-140g/L,优选浓度为120g/L。根据测试的情况来看,掺杂剂的浓度如果偏高或偏低,或配比不当,会影响刻蚀和掺杂的效果,可能造成掺杂失效和阻值偏大。

作为最佳方案,所述刻蚀液中含有盐酸的浓度为1±0.1mol/L、双氧水氧化还原电位650-660mv、氯化铁120g/L。

所述衬底为金属衬底,包括铜箔、银箔,镍箔,铜网,优选铜箔。

一种CVD法制备石墨烯生长衬底低温刻蚀方法,将所需刻蚀的带有石墨烯的金属衬底置于上述刻蚀液中,在15-26℃下浸泡即可实现金属衬底的完全刻蚀。

刻蚀液作用原理:由于盐酸是还原性酸,同时铜在金属活动顺序表中位于氢的后面,但铜在纯盐酸中的腐蚀速率比较慢,单独使用盐酸不能对铜进行化学腐蚀,因此需要在盐酸中加入氧化剂双氧水,大大加快了对铜的刻蚀速率,反应的方程式如下:

Cu+H2O2+2HCl→CuCl2+2H2O

单从理论上看,在低温低酸条件小的刻蚀速率相对高浓度高温的刻蚀药水来水还是慢了很多,但实际上,本发明人通过对盐酸、双氧水和掺杂剂的综合研究,在三者的协同作用下,实现了低酸低温的刻蚀效果,尤其对于铜,效果明显。

效果说明:

本发明提供的刻蚀液采用低酸的化学刻蚀液配方在低温的刻蚀条件,可以规模化的刻蚀除去铜衬底等金属衬底,并保持石墨烯较好的导电性能,同时低温药水挥发少,对设备影响小,对环境的污染小。同时,本发明将刻蚀液中巧妙的混入石墨烯掺杂剂,还可以在刻蚀衬底的同时对石墨烯进行掺杂,从而得到较低方阻的石墨烯产品。

本发明是采用低酸的刻蚀药水配方和低温(15-26℃)的刻蚀方法,刻蚀环境温和,有利于更好的保持石墨烯的完整和导电性能,从而实现石墨烯稳定的规模化制备和后续应用。

具体实施方式

以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。

实施例1:

本实施例所用的刻蚀液:盐酸的浓度为1mol/L、双氧水650mv、氯化铁120g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度25um铜箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜;

2.将铜箔/石墨烯/硅胶膜浸入常温(20℃)的刻蚀液中刻蚀;

3.铜箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为160Ω/□,透过率89.0%(400-800nm),耐候性良好。

实施例2:

本实施例所用的刻蚀液:盐酸的浓度为0.7mol/L、双氧水630mv、氯化铁120g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度25um铜箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜

2.将铜箔/石墨烯/硅胶膜浸入常温(20℃)的刻蚀液中刻蚀;

3.铜箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为150Ω/□,透过率88.0%(400-800nm),耐候性良好。

实施例3:

本实施例所用的刻蚀液:盐酸的浓度为1.3mol/L、双氧水660mv、氯化亚铁120g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度25um的铜箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜

2.将铜箔/石墨烯/硅胶膜浸入常温(20℃)的刻蚀液中刻蚀;

3.铜箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为185Ω/□,透过率90.0%(400-800nm),耐候性良好。

实施例4:

本实施例所用的刻蚀液:盐酸的浓度为1.1mol/L、双氧水680mv、TFSA-Au 150g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度30um铜箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜

2.将铜箔/石墨烯/硅胶膜浸入15℃的刻蚀液中刻蚀;

3.铜箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为155Ω/□,透过率87.0%(400-800nm),耐候性良好。

实施例5:

本实施例所用的刻蚀液:盐酸的浓度为0.9mol/L、双氧水630mv、氯化铵100g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度12.5um铜箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜

2.将铜箔/石墨烯/硅胶膜浸入15℃的刻蚀液中刻蚀;

3.铜箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为160Ω/□,透过率88.0%(400-800nm),耐候性良好。

实施例6:

本实施例所用的刻蚀液:盐酸的浓度为1mol/L、双氧水640mv、氯化金140g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度25um银箔/石墨烯与硅胶膜贴合在一起,得到银箔/石墨烯/硅胶膜

2.将银箔/石墨烯/硅胶膜浸入常温(20℃)的刻蚀液中刻蚀;

3.银箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为150Ω/□,透过率88.0%(400-800nm),耐候性良好。

实施例7:

本实施例所用的刻蚀液:盐酸的浓度为0.7mol/L、双氧水630mv、硝基甲烷120g/L。

石墨烯薄膜转移方法:

1.将CVD法生长的厚度25um镍箔/石墨烯与硅胶膜贴合在一起,得到铜箔/石墨烯/硅胶膜

2.将镍箔/石墨烯/硅胶膜浸入常温(20℃)的刻蚀液中刻蚀;

3.镍箔刻蚀干净后,取出浸入纯水中清洗干净,吹干,得到石墨烯/静电膜;

4.将石墨烯/静电膜贴合在含背膜的PET上,PET的厚度为125um,90度10分钟烘烤后取出揭掉硅胶膜,得到PET/石墨烯;

所得的石墨烯导电薄膜的方阻为150Ω/□,透过率88.0%(400-800nm),耐候性良好。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1