接合材料及使用其的接合方法与流程

文档序号:13749745阅读:232来源:国知局
接合材料及使用其的接合方法与流程

本发明涉及接合材料及使用其的接合方法。



背景技术:

伴随着汽车及工业设备所用的电子零部件的大电流化,用于其内部的半导体的工作温度趋向高温。为此,迫切需要能够承受这样的高温环境的接合材料。目前,一直使用在高温下保持强度的含铅焊料,但是,由于现在的趋势是抑制铅的使用,因此迫切希望提供适合这样的条件的接合方法。

作为能够满足这样的要求的接合方法的候选方法,不使用铅且能够在比块状的银更低温的条件下实现接合的利用银纳米粒子的接合方法现在正越来越受到关注。在这样的技术潮流中,提出了例如将氧化银粒子和肉豆蔻醇混合形成接合材料的方法(非专利文献1及专利文献1),以及在将碳酸银或氧化银与银纳米粒子混合而成的混合物中添加羧酸,形成接合材料的方法(专利文献2)。

现有技术文献

专利文献

专利文献1:日本专利特开2009-267374号公报

专利文献2:日本专利特开2009-279649号公报

非专利文献

非专利文献1:守田等「使用微米级的氧化银粒子的面向高温环境的无铅接合技术的开发(マイクロメートルサイズの酸化銀粒子を用いた高温環境向け鉛フリー接合技術の開発)」日本金属学会会报(まてりあ)第49卷第1号(2010)



技术实现要素:

如非专利文献1所记载的技术等中所述,通常这样的利用银的接合方法中,大多在接合时需要从上部等加压。应用这样的技术时,至少需要能够同时进行加压和加热的装置,可以说通用性稍差。而且,还存在无法用于只具有不能承受加压的程度的机械强度的原材料的问题。

此外,形成接合体时的气氛由于至少在大气中这类含氧的氧化气氛下进行,因此可能会形成界面部的氧化银,而这可能对接合力带来不良影响。特别是,在微细的接合体中,这样的影响会变得更加显著。因而,如果能够提供在能够排除这种影响的以氮为代表的惰性气氛下发挥足够的接合力的接合材料,则这样的膏料的利用领域及可用性有望能够得到飞跃性地扩展。

因此,本发明提供能够在氮气中形成接合体,且无需进行加压及高温下的热处理操作也能够发挥可经受实用的接合强度的接合材料。

本发明人为了解决该课题进行了深入的研究,发现如果是以下所示的接合材料,则即使在原来不可能的作用环境下形成接合体也能够发挥可经受实用的强度,从而完成了本发明。

即,上述课题可以通过如下的接合材料来解决,该接合材料的构成中含有银纳米粒子、至少具有2个羧基的焊剂成分及分散介质,该银纳米粒子的平均一次粒径为1~200nm,被碳数8以下的有机物质被覆。

还有如下的接合材料,其构成中除了上述构成以外,还含有平均粒径为0.5μm以上3.0μm以下的银粒子。

更好是焊剂成分中醚键和二羧酸结构皆有的接合材料。

特别是焊剂成分为醚键和二羧酸结构皆有的氧联二乙酸的接合材料。

含有上述焊剂成分并且特别是被覆银纳米粒子的表面的有机物的碳数为6的接合材料。

含有具有上述结构的银纳米粒子、焊剂成分并且构成接合材料的分散介质为极性物质的接合材料。

本发明中提供的技术内容是使用上述构成中的任一种的接合材料的接合方法。即,使用银纳米粒子的接合方法,特别是其接合材料使用添加了焊剂成分的接合材料,该焊剂成分中使用具有含有至少2个羧基的二羧酸的结构的物质。

特别是具有如下特征的接合方法:上述焊剂成分使用具有至少含有2个羧基的二羧酸的结构和醚键的物质。

在使用上述接合材料形成接合体时,在以氮为代表的惰性气体气氛下进行接合的接合方法。

上述接合通过500℃(773K)以下的加热来进行的接合方法。

通过使用本发明所揭示的接合材料,能够形成在氮气环境下也发挥具有实用性的接合强度的接合体。而且,虽然无需加热时的加压,也能够提供具有与原来使用的焊料同等的接合强度的接合体。

附图的简单说明

[图1]本发明的接合材料、原料粉、添加剂、表面被覆材料各自的、以10℃/分钟的扫描速度测定的TG图。注,纵轴(减少量)以相对值表示,与实际值不同。

[图2]本发明的膏料和未添加添加剂的膏料在惰性气体中50~250℃的区域的山梨酸(M/Z=97)的检出量的示意图。

[图3]实施例1的烧成品的SEM像。

[图4]实施例2的烧成品的SEM像。

[图5]比较例1的烧成品的SEM像。

[图6]比较例2的烧成品的SEM像。

具体实施方式

<银纳米粒子>

本发明使用的银纳米粒子使用由透射型电子显微镜(TEM)照片算出的平均一次粒径为1~200nm、优选1~150nm、更好为10~100nm的银纳米粒子。通过使用具有这种粒径的粒子,可以形成具有强接合力的接合体。

透射型电子显微镜的评价中,将清洗后的金属纳米粒子2质量份添加到环己烷96质量份和油酸2质量份的混合溶液中,用超声波使其分散。将分散溶液滴在带支持膜的微细Cu网上,将其干燥,作为TEM试样。对制备的微细网使用透射型电子显微镜(日本电子株式会社(日本電子株式会社)制JEM-100CXMark-II型)、以倍率300,000倍拍摄以100kV的加速电压、在亮视野内观察到的粒子的图像。

这样得到的照片可以直接通过卡尺等测定,也可以通过图像软件算出。这时的平均一次粒径是对TEM照片中的各自独立的粒子,至少测定200个,算出其平均数。

本发明中使用的银纳米粒子具有上述粒径,且表面被有机物被覆。该有机物适宜使用总碳数为8以下的有机物。尤其优选使用碳数为8以下,且具有1个以上羧基的有机物。具体是,虽然不限于以下的物质,但可例举作为饱和脂肪酸的辛酸、庚酸、己酸、戊酸、丁酸、丙酸等。此外,作为二元酸,可例举草酸、丙二酸、甲基丙二酸、乙基丙二酸、琥珀酸、甲基琥珀酸、乙基琥珀酸、苯基琥珀酸、戊二酸、己二酸、庚二酸、辛二酸等。不饱和脂肪酸可例举山梨酸、马来酸等。

上述中,特别是用己酸、庚酸、己二酸、山梨酸、丙二酸被覆银纳米粒子表面时,可易于制造且能以粉末的形态提供。这种以粉末状态提供,如本发明这样形成接合材料时,容易调配,因此是理想的。而且,由这种物质被覆表面的粒子在保持一次粒子的形态的同时,能够聚集从而易于回收。这时的聚集块可以说是至少能够以JISP-3801的5种C回收的2.5μm以上。但是,这里的聚集(二次)粒径只不过是表示能够通过过滤来分离。即,与所说的银粒子的平均粒径(D50)不同(若是D50值,则用滤纸无法过滤、通过的聚集块变多,回收效率变差。另一方面,如果是本发明的粒子,不会发生这样的粒子的通过而能够得到澄清的滤液。因此可以解释为变成具有非平均值的、至少2.5μm程度的大小的聚集块)。还有,如果施加低温(小于100℃)下的干燥操作,则也可以作为干燥粒子回收。因此,作为接合材料设计时,优选使用由该程度大小的分子被覆的粒子。

此外,也可以使用由多种有机物被覆的银纳米粒子,或者并用具有不同的平均一次粒径的银纳米粒子。

<银粒子>

还有,如果在上述银纳米粒子之外,还添加亚微米级的银粒子,则能够有助于进一步提高接合强度。具体是,优选平均粒径为0.5μm以上的银粒子。本说明书中的平均粒径的计算基于激光衍射法进行。即,平均粒径是将银粒子的试样0.3g投入异丙醇50mL中,用功率50W的超声波清洗机使其分散5分钟后,通过MICRO TRAC粒度分布测定装置(霍尼韦尔-日机装公司(ハネウエル-日機装)制9320-X100)以激光衍射法测定时的D50(累积50质量%粒径)的值。通过并用这时的平均粒径的范围为0.5~3.0μm、优选0.5~2.5μm、更好为0.5~2.0μm的范围的粒子,能够提供接合力高的接合体。

<分散介质>

本发明的呈膏料态的接合材料中,使银纳米粒子分散于分散介质。这时所用的分散介质优选极性溶剂,因为蒸气压低、适于操作。

具体例可例举水、醇、多元醇、二醇醚、1-甲基吡咯烷酮,吡啶,辛二醇,萜品醇,丁基卡必醇,丁基卡必醇乙酸酯,TEXANOL(注册商标),苯氧基丙醇,二甘醇单丁醚,二甘醇单丁醚乙酸酯,γ-丁内酯,乙二醇单甲基醚乙酸酯,乙二醇单乙醚乙酸酯,甲氧基丁基乙酸酯,甲氧基丙基乙酸酯,二甘醇单乙醚乙酸酯,乳酸乙酯,1-辛醇等。

对上述分散液有时也可以添加促进烧结温度的降低及密着的物质。这些添加剂可以具有粘度调整功能。这时添加的添加物可以是水溶化树脂及水性分散树脂,具体是,可以添加丙烯酸树脂、马来酸树脂、富马酸树脂、苯乙烯-马来酸共聚树脂的高酸值树脂、聚酯树脂、聚烯烃树脂、苯氧树脂、聚酰亚胺树脂、聚酰胺树脂或醋酸乙烯酯系乳液、丙烯酸乳液、合成橡胶胶乳、环氧树脂、酚醛树脂、DAP树脂、聚氨酯树脂,氟树脂,有机硅树脂,乙基纤维素及聚乙烯醇等,无机粘合剂可例示二氧化硅溶胶,氧化铝溶胶,氧化锆溶胶,二氧化钛溶胶等粘合剂。但是,这种树脂的过度添加会导致降低金属的纯度,因此不优选。优选相对于总金属量为数质量份程度。

如果要例举具体的名称,已知如下的物质,但是具有上述性质时,不排除使用本段记载的物质以外的物质。丙烯酸树脂可例示三菱丽阳株式会社(三菱レイヨン株式会社)制的BR-102树脂等、东亚合成株式会社(東亞合成株式会社)制的アルフォンUC-3000树脂等。此外,聚酯树脂可例示东洋纺织株式会社(東洋紡績株式会社)制的バイロン220等、荒川化学工业株式会社(荒川化学工業株式会社)制的マルキ一ドNo1等。此外,作为环氧树脂可例示艾迪科株式会社(株式会社ADEKA)制的アデカレジソEP-4088S等、日本环氧树脂株式会社(ジヤパンエポキレジン株式会社)制的871等。作为酚醛树脂可例示群荣化学工业株式会社(群栄化学工業株式会社)制的レヂトップPL-4348等。作为苯氧树脂可例示日本环氧树脂株式会社制的1256等、荒川化学工业株式会社制的タマノル340等。此外,DAP树脂可例示大创株式会社(ダイソ一株式会社)制的ダツプA等。聚氨酯树脂可例示日本聚氨酯工业株式会社(日本ポリウレタン工業株式会社)制的ミリオネ一トMS-50等。乙基纤维素可例示日进化成株式会社(日進化成株式会社)制的エトセルSTANDARD4等。此外,聚乙烯醇可例示可乐丽株式会社(株式会社クラレ)制的RS-1713等。

<焊剂成分>

本发明的接合材料中除了上述成分之外,还添加作为焊剂成分的有机物。具体是,可以选择具有至少两个羧基的二元酸,更优选具有醚键且具有至少两个羧基的二元酸。通过选择这样的结构的物质来添加,即使在氮气中较低温度下的热处理,也能够将由有机物被覆的银纳米粒子转换成块状的银。

上述焊剂成分也优选分解成尽可能单纯的结构(具体是最终形态为二氧化碳和水等)的物质。因此,最好是,在有机物中,仅由碳、氢、氧这类元素构成的物质。此外,其分解温度也优选至少在热处理的设定温度以下。如果从使其分解的观点出发,作为分子结构一般是分子量1000以下、优选500以下、更好是300以下。

上述焊剂成分可例示具有二元酸结构的乙醇酸。还有,如果分子变得过大,则分解时需要高温,因此不理想。分解温度最好是至少低于正式烧成中的设定温度。具体可以选择500℃以下、更优选300℃以下。注,为具有不分解直接气化的性质的物质时,上述“分解温度”解读为“蒸发(气化)温度”。

更具体来说,结构中的总碳数最多在15以下,优选为10以下。为具有这种程度的碳数的结构时,即使是接合温度程度的较低温下也能够使其分解或蒸散。

<分散剂>

本发明的膏料中可以添加使纳米银粒子粉末适当地分散的分散剂。通过使用这样的分散剂,可以确保膏料中粒子的独立性,此外,在焊剂成分与银纳米粒子的反应时提高反应性,在更低温度下形成均匀的接合体。只要是其性质为与粒子表面具有亲和性,且对分散介质也具有亲和性的分散剂,则可以是市售通用的分散剂。此外,不仅可以单独一种使用,也可以并用。其添加量相对于膏料整体为10质量%以下、优选5质量%以下、更好为3质量%以下。

作为具有这样的性质的分散剂,典型的有:脂肪酸盐(皂)、α-磺基脂肪酸酯盐(MES)、烷基苯磺酸盐(ABS)、直链烷基苯磺酸盐(LAS)、烷基硫酸盐(AS)、烷基醚硫酸酯盐(AES)、烷基硫酸三乙醇这类低分子阴离子性化合物,脂肪酸乙醇酰胺、聚氧乙烯烷基醚(AE)、聚氧乙烯烷基苯基醚(APE)、山梨糖醇、山梨糖醇酐这类低分子非离子系化合物,烷基三甲基铵盐,二烷基二甲基氯化铵,烷基氯化吡啶鎓这类低分子阳离子性化合物,烷基羧基甜菜碱、磺基甜菜碱、卵磷脂这类低分子两性系化合物,萘磺酸盐的甲醛缩合物、聚苯乙烯磺酸盐、聚丙烯酸盐、乙烯基化合物与羧酸系单体的共聚物盐、羧甲基纤维素、聚乙烯醇等为代表的高分子水系分散剂,聚丙烯酸部分烷基酯、聚亚烷基多胺这类高分子非水系分散剂,聚乙烯亚胺、甲基丙烯酸氨基烷基酯共聚物这类高分子阳离子系分散剂。但是,只要是适合应用于本发明的粒子的分散剂,不排除具有这里所例示的形态以外的结构的分散剂。

作为分散剂,如果要例举具体的名称,已知如下的分散剂,但是具有上述性质时,不排除使用本段记载的分散剂以外的分散剂。可例示例如,三洋化成株式会社制的ゼエ一ライトLCA-H,LCA-25NH等、共荣社化学株式会社(共栄社化学株式会社)制的フロ一レンDOPA-15B等、日本陆博润株式会社(日本ル一ブリゾ一ル株式会社)制的ソルプラスAX5、ソルスパ一ス9000、ソルシツクス250等、艾芙卡德德布斯公司(エフカアデイデイブズ社)制的EFKA4008等、味之素精细化学株式会社(味の素フアインテクノ株式会社)制的アヅスパ一PA111等、库古尼克斯日本株式会社(コゲニクスジヤパン株式会社)制的TEXAPHOR-UV21等、毕克化学日本株式会社(ビツクケミ一·ヅヤパン株式会社)制的DisperBYK2020及BYK220S等、楠本化成株式会社制的デイスパロン1751N、ハイプラツドED-152等、奈奥斯株式会社(株式会社ネオス)制的FTX-207S、フタ一ジエント212P等、东亚合成株式会社(東亞合成株式会社)制的AS-1100等、花王株式会社制的カオ一セラ2000、KDH-154、MX-2045L、ホモゲノ一ルL-18、レオド一ルSP-010V等、第一工业制药株式会社(第一工業製薬株式会社)制的エパンU103、シヤロ一ルDC902B、ノイゲンEA-167、プライサ一フA219B等、DIC株式会社制的メガファックF-477等、日信化学工业株式会社(日信化学工業株式会社)制的シルフェイスSAG503A、イノ一ル604等、圣诺普科株式会社(サンノプコ株式会社)制的SNスパ一ズ2180、SNレベラ一S-906等、AGC清美化学株式会社(AGCセイミケミカル社)制的S-386等。

这样形成的接合材料如果具有适度的粘度,则易于涂布于接合对象部位。根据本发明人的研究,常温下宜为10~250Pa·s、优选10~100Pa·s、更好是10~50Pa·s程度。还有,该粘度值是在25℃条件下、以5rpm、C(锥)35/2的值。

<接合材料(膏料)的制造>

本发明所述的接合材料大致经如下所述的制造方法来提供。例如,使用由专利第4344001号所记载的方法等得到的银纳米粒子。将这样所得的银纳米粒子和具有上述性质的焊剂成分和根据情况添加的分散剂添加到上述极性溶剂中。其后,导入混炼脱泡机形成该成分的混炼物。然后,视情况进行机械式分散处理形成膏料。

在上述机械式分散处理中不伴随粒子的显著改性的条件下,也能够采用公知的任意的方法。具体是,可例示超声波分散、分散器、三辊机、球磨机、珠磨机、双轴捏合机、行星式搅拌机(自公転式攪拌機)等,这些可单独使用或多种并用。

<接合体的形成>

接合部的形成例如通过金属掩膜、涂布器或丝网印刷法,以厚20~200μm程度涂布接合材料。其后,贴附被接合物,通过加热处理将接合材料金属化。本发明的膏料,在氮气中的加热处理能够金属化,在大气中的加热处理也能够金属化。

这时,如果使用本发明的接合材料,则无需对接合物和被接合物加压即可形成接合体。但是,并不排除加压的工序。如果追加对接合物和被接合物加压的工序,则能够进一步除去由银纳米粒子或分散介质产生的气体,因此是理想的。

进行加压时,通常越高越好,但是无需过度加压。只要有5MPa左右的加压,就能够得到足够高的接合强度。

<预烧工序>

在使用本发明的膏料形成接合体时,优选进行经多段热处理的金属化。具体是经过如下的工序。第一阶段的烧成(预烧工序)的目的是蒸发除去在接合材料中添加的溶剂。但是,如果在太高的温度下实施热处理,则不仅溶剂,有时连构成银纳米粒子表面的有机物也会除去。这时,会产生接合强度变低的危害,因此不理想。具体是,宜在低于银纳米粒子的分解温度的温度下进行。

银纳米粒子的分解温度由于有时因被覆其表面的有机物及分散介质、或添加物而发生较大变化,因此优选预先通过TG测定等掌握该接合材料的热性质。一般,优选设定为比作为正式烧成设定的温度低50~400℃程度的温度。此外,预烧所需的时间取决于该接合对象面积,但大致10分钟程度就足够了,有时可以是30秒左右的加热。

<正式烧成工序>

经预烧后,通过正式烧成工序,将膏料完全金属化。在从预烧工序至正式烧成工序之间可具备升温工序。这时的升温速度为0.5~10℃/秒、优选0.5~5℃/秒的范围。

正式烧成为在150℃以上500℃以下的温度保持60分钟以下、或者30分钟以下。这时,可以根据其用途进行10MPa以下的加压。

由此所得的接合体在惰性气氛下也能够获得结晶的显著生长,如果具体到数值化,则以250℃10分钟的热处理,也显示出由X射线的半高宽计算出的Ag(111)面的微晶径为65nm以上。该值越大越好,因为表示在粒子间不产生晶界。较好是具有67nm以上、更好达到70nm以上的性质。

实施例

<银纳米粒子的合成>

在500mL烧杯中使13.4g硝酸银(东洋化学株式会社(東洋化学株式会社)制)溶于72.1g纯水,制成银溶液。

接着,在5L烧杯中加入1.34L的纯水,通30分钟氮气,除去溶解氧的同时,升温至60℃。添加17.9g山梨酸(和光纯药工业株式会社(和光純薬工業株式会社)制)。然后,添加2.82g28%氨水(和光纯药工业株式会社制)以调整pH。以后的实施例、比较例均是以该氨水添加作为反应开始。一边对其进行搅拌,一边在反应开始5分钟后添加5.96g含水肼(纯度80%/大塚化学株式会社(大塚化学株式会社)制)。

反应开始9分钟后,添加银溶液使其反应。然后,熟化30分钟,形成由山梨酸被覆的银纳米粒子。接着,用No5C的滤纸过滤,用纯水清洗,得到银纳米粒子聚集体。将该聚集体用真空干燥机以80℃、12小时的条件进行干燥,得到银纳米粒子干粉的聚集体。

将经如上所述的方法得到的山梨酸被覆银纳米粒子聚集体干粉(平均一次粒径:60nm)90.0g与萜品醇(结构异构体混合/和光纯药工业株式会社制)8.80g、作为湿润分散剂的ビュ一ライト(BEAULIGHT)LCA-25NH(三洋化成株式会社制)1.00g(相对于总膏料重量,1.0%)、氧联二乙酸0.20g(相对于总膏料重量,0.2%)混合,用混炼脱泡机(EME公司(EME社)制V-mini300型)混炼30秒钟(混炼条件/转数;1400rpm、转数;700rpm)后,利用三辊机(艾卡特公司(EXAKT Apparatebau社)制EXAKT 80S型)、使其通过5次,制成接合材料膏料。将制得的接合材料用印刷法涂布在基板上。这时的条件设为金属掩膜(掩膜厚50μmt)、图案设为□2mm、50μm厚,通过利用金属刮刀(metal squeegee)的手工印刷在镀银的铜基板上涂布。配比等示于表1或2。

将芯片(□2mm、厚2mm的镀银的铜基板)安装于上述涂布面。将这样得到的装配品用炉(爱发科理工公司(アルバツク理工社)制台式灯管加热装置MILA-5000型)在氮气氛(氧浓度:50ppm以下)中、以100℃加热10分钟,除去膏料中的溶剂成分(预烧)。此外,为了确认烧成膜的比电阻及烧结状态,还同时制作在接合材料上不设置芯片,仅接合材料印刷在基板上烧成而得的试样。

接着,将经预烧的试样以1℃/秒的升温速度升温至250℃,达到250℃后加热处理10分钟,得到接合体(正式烧成)。预烧、正式烧成这两工序在本实施例中都不进行加压。试验条件示于表3。

进行所得的接合体的接合力的确认。具体是,按照JISZ-03918-5:2003《无铅焊料试验方法第5部分焊接接头的拉伸及剪切试验方法(鉛フリーはんだ試験方法第5部はんだ継ぎ手の引張およびせん断試験方法)》所记载的方法进行。即,沿水平方向挤压被接合在基板上的被接合体(芯片),测定无法承受推力而接合面断裂时的力的方法。本实施例中使用达格公司(DAGE社)制焊接强度测试仪(ボンドテスタ)(系列4000)进行试验。剪切高度为150μm,试验速度5mm/min,测定在室温下进行。此外,烧成膜的比电阻用4探针法测定。

其结果,实施例1的剪切强度为63.5MPa。还有,这时的烧成膜的比电阻值为3.11μΩ·cm,具有极高的导电性。此外,所得的烧成膜的SEM像示于图3。从照片可知,尽管在氮气中烧成,但进行粒子间烧结,达到无法判别粒子形态的程度。这是表示进行粒子间烧结的结果。剪切试验方法直接测定接合面断裂时的力(N),是取决于接合面积的值。因此,为了设定标准值,将测得的断裂时的力除以接合面积(这次是2(mm)×2(mm)=4mm2)所得的值(MPa)定为剪切强度。以后的试样也同样。

此外,对图3的SEM测定中使用的膜,使用X射线衍射装置确认微晶的大小。作为本发明的微晶径的测定方法,使用理学株式会社(株式会社リガク)制RINT2100,采用Co射线源(40kV/30mA),对(111)面在40~50°/2θ的范围以6次累计进行测定。由该测定所得的半高宽β用以下的(1)式表示的Scherrer公式(谢乐公式)算出微晶径。

Dhkl=(K·λ)/(β·cosθ)…(1)

式中,各变量如下。

D:微晶径(nm)

λ:测定X射线波长(nm)

β:微晶的衍射峰宽

θ:衍射角的布拉格(Bragg)角

K:Scherrer常数(谢乐常数)

还有,上述(1)式中的测定X射线波长为1.79、Scherrer常数K代入0.94。这样确认的微晶径为76.33nm、确认了进行晶粒的生长。

此外,使用TG-MS装置,确认在惰性气氛中50~250℃的区域内的山梨酸(M/Z=97)的检出量。作为测定方法,使用理学株式会社(株式会社リガク)制的Thermo Plus TG8120、一边以100ml/min流通氦气,一边以升温条件10℃/min测定TG。MS使用岛津制作所(島津製作所)制的质量分析装置QP-5000复合系统,注入口温度250℃、接口温度300℃。离子化法采用EI法70eV、扫描质量范围设为10~500。

结果示于图2。横轴为温度,纵轴为检出量(统计数)。得到如下的结果:本实施例(实施例1)的膏料中,在纳米银粒子的表面被覆着的山梨酸在100~150℃的区域被大量确认。另一方面,未添加时,在100~200℃的较广的范围内山梨酸被大量确认,在150~200℃的区域具有极大点。

<实施例2>

在实施例1中,除了将正式烧成设为350℃5分钟的条件以外,其他同样地操作,形成接合体及烧成膜。剪切强度为56.2MPa、显示极高的值。此外,这时的烧成膜的比电阻为2.4μΩ·cm、具有极高的导电性。还有,所得的烧成膜的SEM像示于图4。尽管在氮气中烧成,但进行粒子间烧结,达到无法判别粒子形态的程度。这表示进行粒子间烧结。配比等示于表1或2。此外,试验条件示于表3。与实施例1同样地确认的微晶径为73.58nm,由照片的结果同样可知进行晶粒的生长。

<实施例3>

实施例1中,除了将金属成分的纳米粒子(山梨酸被覆)90.0g改为混合球状亚微米银粒子(同和电子株式会社(DOWAエレクトロニクス株式会社)制/平均粒径D50值:1.0μm)45.0g与由实施例1所记载的方法得到的山梨酸被覆的银纳米粒子45.0g以外,按同样的配比,重复实施例1。金属成分的合计量为90.0g,相同。使用所得的接合材料的评价结果示于表3。

<实施例4>

实施例2中,除了将金属成分的纳米粒子(山梨酸被覆)90.0g改为混合球状亚微米银粒子(同和电子株式会社制/平均粒径D50值:1.0μm)45.0g与由实施例1所记载的方法得到的山梨酸被覆的银纳米粒子45.0g以外,按同样的配比,重复实施例2。金属成分的合计量为90.0g,相同。使用所得的接合材料的评价结果示于表3。

<实施例5>

实施例2中,除了将金属成分的纳米粒子(山梨酸被覆)90.0g改为混合球状亚微米银粒子(同和电子株式会社制/平均粒径D50值:1.0μm)22.5g与由实施例1所记载的方法得到的山梨酸被覆的银纳米粒子67.5g以外,按同样的配比,重复实施例2。金属成分的合计量为90.0g,相同。使用所得的接合材料的评价结果示于表3。

<实施例6>

实施例2中,除了将金属成分的纳米粒子(山梨酸被覆)90.0g改为混合球状亚微米银粒子(同和电子株式会社制/平均粒径D50值:1.0μm)67.5g与由实施例1所记载的方法得到的山梨酸被覆的银纳米粒子22.5g以外,按同样的配比,重复实施例2。金属成分的合计量为90.0g,相同。使用所得的接合材料的评价结果示于表3。

<实施例7>

在实施例4中,除了将0.2g氧联二乙酸改为0.1g氧联二乙酸以外,按同样的配比,重复实施例4。使用所得的接合材料的评价结果示于表3。

<实施例8>

在实施例7中,除了将在基板上实施镀银改为采用铜无垢的表面以外,重复实施例7。使用所得的接合材料的评价结果示于表3。

<实施例9>

在实施例4中,除了将在基板上实施镀银改为采用铜无垢的表面以外,重复实施例4。使用所得的接合材料的评价结果示于表3。

<实施例10>

在实施例4中,除了将在焊剂成分使用0.2g氧联二乙酸改为使用0.1g丙二酸以外,重复实施例4。使用所得的接合材料的评价结果示于表3。

<比较例1>

除了不添加氧联二乙酸制作接合材料以外,按照实施例1进行试验。剪切强度最大为4.0MPa、平均值为2.7MPa(5点平均)、无法发挥接合力。试样中的1个无法算出接合强度。这时的烧成膜的比电阻为7.77μΩ·cm、比电阻较实施例1高。此外,所得的烧成品的SEM像示于图5。确认了由于氮气中的烧成,不进行粒子间的烧结残存单个粒子的形状。配比等示于表1或2。试验条件示于表3。此外,与实施例1同样地确认的微晶径为57.92nm,由照片所示的结果同样可知,与实施例相比,未进行结晶的生长。

<比较例2>

除了不添加氧联二乙酸制作接合材料以外,按照实施例2进行试验。剪切强度最大为13.2MPa、平均值为9.5MPa(5点平均)、无法发挥接合力。这时的烧成膜的比电阻为4.20μΩ·cm、比电阻较实施例1高。此外,所得的烧成品的SEM像示于图6。确认了由于氮气中的烧成,虽然并不是比较例1的程度,但不进行粒子间的烧结残存单个粒子的形状。配比等示于表1或2。试验条件示于表3。此外,与实施例1同样地确认的微晶径为62.68nm,由照片所示的结果同样可知,与实施例相比,未进行结晶的生长。

<参照例1>

接合对象物的接合使用市售的高温铅焊料膏料(日本斯倍利亚株式会社(日本スペリア株式会社)制的SN515RMA AMQM-293T)进行。接合如下进行:在大气中将膏料涂布于基板上后,搭载接合物,以0.5N加压后,在150℃干燥2分钟后,在350℃加温40秒,将金属接合面的接合材料金属化。所得的接合体的接合强度为36.7MPa。

<参照例2>

接合对象物的接合使用市售的无铅焊料膏料(千住金属工业株式会社(千住金属工業株式会社)制的M705-K2-V)进行。接合方法如下进行:在大气中将膏料涂布于基板上后,搭载接合物,以0.5N加压后,在150℃干燥2分钟后,在250℃加温40秒,将金属接合面的接合材料金属化。所得的接合体的接合强度为40.0MPa。

[表1]

[表2]

[表3]

能够获得上述效果的详细理由尚不明确,但反应机理可以作如下推断。参照图1所示的TG图,考察反应机理。通常的银纳米粒子(图1中由山梨酸被覆的银纳米粒子)显示如曲线10所示的行为。属于发明的构成的膏料的TG图的行为显示如曲线20所示的行为,可知在更低的温度进行反应。由于所添加的焊剂成分的二甘醇酸的分解温度为更高的温度(曲线30),可知该减少并不是来自二甘醇酸。将它与点划线(曲线40)的山梨酸的TG行为综合来看,可知膏料的TG行为与山梨酸的TG行为基本一致。由此看,意味着山梨酸不附着在银纳米粒子的表面,在膏料中单独存在。因此可推定,通过对膏料添加二甘醇酸,具有至少使被覆表面的山梨酸剥离的效果。可以认为,由于发生该行为,即使是周围无氧等缺乏反应性的环境下,纳米银粒子也能够转变为银。

还可知,尽管在氮气中烧成,但如果使用本发明的接合剂,则能够得到高于用市售的焊料膏接合而得的接合强度的接合体。

工业上利用的可能性

本发明的接合可应用于非绝缘型半导体装置、裸芯片安装组装技术,也可应用于功率器件(IGBT、整流二极管、功率晶体管、功率MOSFET、绝缘栅双极晶体管、晶闸管、栅极可关断晶闸管、三端双向可控硅开关元件的制造时的接合工序。还有,也能够作为表面经过铬处理的玻璃上的接合材料,也可以用作使用LED的照明装置的电极及框架的接合材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1