一种具有金刚石涂层的硬质合金件及其制备方法与流程

文档序号:11937658阅读:200来源:国知局

本发明涉及金刚石涂层制备技术领域,特别是涉及一种具有金刚石涂层的硬质合金件及其制备方法。



背景技术:

随着汽车及航空航天工业的迅速发展,高强度轻质量材料如铝合金、钛合金及玻璃纤维增强复合材料等受到广泛关注,而金刚石涂层硬质合金刀具被认为是加工这些材料的最佳选择。一方面,硬质合金(WC-Co)具有硬度高、耐磨、耐热、较高断裂韧性等优良的综合性能;另一方面,金刚石具有高强的硬度、耐磨性,高导热率及化学钝性,可提高刀具耐磨性、寿命、加工效率和加工精度。

然而,由于金刚石涂层与硬质合金刀具之间的粘合力不足,实际上很难实现在硬质合金基体上沉积出粘附性很好的金刚石薄膜,从而极大阻碍了该刀具的应用,成为工业发展中的主要瓶颈。而导致金刚石薄膜在切削刀具上的粘附性不足的主要原因有:(1)硬质合金基体中的粘结剂Co抑制金刚石生长,而有利于粘附性差的石墨沉积;(2)在金刚石薄膜与基体的界面上,金刚石晶粒与基体之间存在微小孔隙,这些微小孔隙的存在,减少了金刚石薄膜与基体的接触面积,削弱了薄膜与基体间的结合力;(3)金刚石膜与基体材料之间热膨胀系数相差很大,并且通常在高温下(800℃)沉积产生残余热应力,造成基体边缘处膜--基界面因高热诱发的切应力使金刚石膜的结合力变差,薄膜与基体分层。

目前,为提高金刚石涂层与硬质合金基体粘附性主要有两条途径:一是采用表面脱Co处理;二是在金刚石涂层与硬质合金之间沉积合适的中间层,以阻止基体中的钴向表面扩散。表面脱Co处理法虽然在一定程度上能够改善金刚石涂层与基体粘着性,但基体中Co的缺失会大大降低基体的强度,刻蚀Co的深度大于WC平均晶粒会形成一个脆性贫钴层,在刀具使用过程中,在基体的贫钴层处仍会发生分层。且在沉积金刚石薄膜的过程中,基体内部未被刻蚀掉的Co仍会向表层扩散,促进非金刚石相的形成。而现有设置中间层的方法大都制备过程复杂,且金刚石涂层与硬质合金刀具之间的粘附力提高有限。



技术实现要素:

鉴于此,本发明第一方面提供了一种具有金刚石涂层的硬质合金件,其通过在硬质合金基体上先沉积碳化硅层和碳化硅-金刚石梯度复合涂层作为中间层,再沉积金刚石涂层,以解决现有金刚石涂层与硬质合金基体粘附性不足的问题,从而提高金刚石涂层在硬质合金件上的使用寿命。

具体地,第一方面,本发明提供了一种具有金刚石涂层的硬质合金件,包括硬质合金基体,以及依次设置于所述基体上的碳化硅层、碳化硅-金刚石梯度复合涂层和金刚石涂层,所述碳化硅-金刚石梯度复合涂层中,沿厚度方向由所述碳化硅层向所述金刚石涂层,碳化硅含量逐渐减少而金刚石含量逐渐增加。

碳化硅层的存在能够阻碍基体中的钴向金刚石涂层扩散,并与钴形成少量的钴化硅化合物,消除钴催化石墨的作用。

碳化硅-金刚石梯度复合涂层中,成分、硬度和热膨胀系数均呈梯度分布,无新界面的产生和成分突变的界面,因此可将薄膜热应力降至趋于零,具有优异的膜基结合强度;且其中的碳化硅可以增强涂层的韧性。

本发明中,碳化硅层、碳化硅-金刚石梯度复合涂层和金刚石涂层的厚度可根据实际需要设定,例如根据硬质合金件的尺寸、用途等设定。

本发明中,所述碳化硅层的厚度为0.1-2微米,也可以为300-500纳米。所述碳化硅层中的碳化硅晶粒大小为纳米级别(即100纳米以内),具体可以是30-80纳米。适合的厚度能保证碳化硅层能很好地附着在基体表面,以及为后续沉积碳化硅-金刚石梯度复合涂层和金刚石涂层提供良好基础,且能有效阻碍基体中的钴向金刚石涂层扩散。

本发明中,所述碳化硅-金刚石梯度复合涂层的厚度为1-8微米,也可以为2-4微米;适合的梯度复合涂层厚度,有利于形成良好的中间过渡层,使该涂层的弹性模量和热膨胀系数在基体与金刚石涂层的弹性模量和热膨胀系数之间均匀地梯度变化,从而降低金刚石涂层的切应力峰值,提高金刚石涂层与基体的粘附性。所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒大小为纳米级别,具体可以是30-80纳米,金刚石晶粒的大小为纳米级别或微米级别(即1-5微米),具体可以是10-80纳米、1-4微米。

本发明中,所述金刚石涂层的厚度为1-15微米,优选范围2-4微米,所述金刚石涂层的金刚石晶粒为纳米或微米级别。

当涂层中金刚石晶粒为纳米级别时,涂层中石墨相增加,涂层的断裂韧性更高;当涂层中金刚石晶粒为微米级别时,涂层硬度、强度会更高。不同结构性能可以满足人们对硬质合金件的不同需求。

本发明中,整个碳化硅-金刚石梯度复合涂层中,碳化硅所占体积分数可为30-70%,例如40%、50%、60%。碳化硅相对含量大,能增强薄膜的粘贴性和断裂韧性;相对含量小则涂层硬度、强度会更高。

本发明中,为了使金刚石涂层获得更好的粘附性,金刚石涂层的设置厚度最好不超过4倍所述碳化硅-金刚石梯度复合涂层的厚度,例如可以是1-3倍或1-2倍所述碳化硅-金刚石梯度复合涂层厚度。

本发明中,沿所述碳化硅-金刚石梯度复合涂层的厚度方向,碳化硅和金刚石的含量在大于0小于100%之间变化,使从碳化硅层到金刚石涂层,碳化硅含量由100%至0逐渐减少,而金刚石含量由0至100%逐渐增加,即基体表面整个涂层从基体到顶层,碳化硅含量由100%至0逐渐减少,而金刚石含量由0至100%逐渐增加,无新界面的增加。

本发明中,硬质合金基体可以是硬质合金刀具或其他工具(如模具)、部件等。即所述具有金刚石涂层的硬质合金件可以是刀具、模具、机械零部件等。硬质合金具体可以是以高硬度难熔金属的碳化物(碳化钨、碳化钛)微米级粉末为主要成分,以钴、镍或钼为粘结剂烧结成的粉末冶金制品,钴在硬质合金中的质量含量一般为6wt.%-10wt.%。

本发明具有金刚石涂层的硬质合金件,通过在硬质合金基体上先设置碳化硅层和碳化硅-金刚石梯度复合涂层作为中间层,再设置金刚石涂层,使得基体表面整个涂层从基体到顶层不仅成分呈梯度变化,无新界面的增加,而且热膨胀系数呈梯度变化,从而有效降低金刚石薄膜中的热应力,提高薄膜结合力。

相应地,本发明第二方面提供了一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

取硬质合金基体,将其进行喷砂预处理;

采用热丝化学气相沉积设备,以氢气和有机硅烷为反应气体,在预处理后的硬质合金基体表面沉积碳化硅层,所述有机硅烷占总气体体积的0.01%~1%;

然后向所述热丝化学气相沉积设备通入甲烷,即以氢气、甲烷和有机硅烷为反应气体,控制甲烷占总气体体积的0.4%~5%,有机硅烷占总气体体积的0.01%~1%,在所述碳化硅层表面沉积形成碳化硅-金刚石梯度复合涂层,反应过程中逐渐增加所述甲烷流量,同时逐渐降低所述有机硅烷流量,使所述碳化硅-金刚石梯度复合涂层中,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

将所述有机硅烷流量降至零时,控制甲烷占总气体体积的1%~4%,以氢气和甲烷为反应气体,在所述碳化硅-金刚石梯度复合涂层上沉积金刚石涂层;最终得到具有金刚石涂层的硬质合金件;

上述沉积过程中,真空室气压为0.5~10kPa,灯丝温度为1500~2600℃,基体温度为600~900℃。

本发明中,所述有机硅烷包括四甲基硅烷、甲硅烷、乙硅烷、单甲基硅烷、二甲基硅烷中的一种或多种。

本发明中,沉积碳化硅-金刚石梯度复合涂层时,可通过控制反应气体的含量,以及真空室气压、灯丝及基体温度等,以得到含不同粒径大小金刚石晶粒的碳化硅-金刚石梯度复合涂层。例如,控制甲烷占总气体体积的0.4%~3%,有机硅烷占总气体体积的0.01%~0.2%,真空室气压为3~10kPa,灯丝温度为1900~2600℃,基体温度为700~900℃,使梯度复合涂层中形成微米级别金刚石晶粒;控制甲烷占总气体体积的3%~5%,有机硅烷占总气体体积的0.1%~1%,真空室气压为0.5~4kPa,灯丝温度为1500~2600℃,基体温度为600~900℃,使梯度复合涂层中形成纳米级别金刚石晶粒。

本发明中,各层的沉积时间可根据具体需要沉积的厚度而具体设定,可选地,沉积碳化硅层的沉积时间为0.5~2.5h,沉积碳化硅-金刚石梯度复合涂层的沉积时间为2~6h,沉积金刚石涂层的沉积时间为1~8h。可选地,所述碳化硅层的厚度为0.1-2微米;所述碳化硅-金刚石梯度复合涂层的厚度为1-8微米;所述金刚石涂层的厚度为1-15微米。

本发明提供的具有金刚石涂层的硬质合金件的制备方法,通过调节梯度复合涂层中碳化硅和金刚石的含量的变化可改变涂层的内应力,可使梯度复合涂层的弹性模量和热膨胀系数从基体到顶层薄膜呈梯度变化,有效改善薄膜的力学性能,降低薄膜内应力;本发明采用同一台热丝化学气相沉积设备,实现了碳化硅层、梯度复合涂层及顶层金刚石涂层的连续性生长,整个工艺流程时间大大缩短,工艺参数易于控制,可大面积制备CVD金刚石涂层,使成本大幅降低,非常适用于金刚石涂层工具的大规模工业化生产。

本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。

附图说明

图1为本发明实施例中具有金刚石涂层的硬质合金件的截面结构示意图。

图中,101为硬质合金基体,102为碳化硅层,103为碳化硅-金刚石梯度复合涂层,104为金刚石涂层,10代表碳化硅。

具体实施方式

以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。

实施例1

一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

(1)以国内市场上出售的YG6X(WC-6wt.%Co)硬质合金转位刀片作为基体,将其进行喷砂预处理,喷注压强200kPa,碳化硅砂粒度300目,然后分别在丙酮和酒精中将硬质合金基体超声清洗15分钟;

(2)将预处理完的硬质合金基体放入真空室内,采用热丝化学气相沉积法沉积碳化硅薄膜,通入氢气和四甲基硅烷,四甲基硅烷占总气体体积的0.05%,真空室气压0.5kPa,灯丝温度1900℃,基体温度750℃,沉积时间为1h,得到厚度为0.5微米的碳化硅层;碳化硅层中,碳化硅晶粒尺寸为50nm;

(3)向热丝化学气相沉积设备中通入甲烷,在碳化硅层上沉积碳化硅-金刚石梯度复合涂层,起初控制甲烷占总气体体积的1%,四甲基硅烷占总气体体积的0.08%,制备过程中逐渐增加甲烷流量,同时逐渐降低四甲基硅烷流量趋近于零,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压4kPa,沉积时间为2h,得到厚度为2微米的碳化硅-金刚石梯度复合涂层;所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒为50纳米,金刚石晶粒为2微米,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

(4)将四甲基硅烷流量降低至零,以氢气和甲烷为反应气体,继续在梯度复合涂层上沉积纳米金刚石涂层,控制甲烷占总气体体积的4%,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压4kPa,沉积时间2h,得到厚度为3微米的金刚石涂层。

实施例2

一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

(1)以国内市场上出售的YG8(WC-6%Co)硬质合金转位刀片作为基体,将其进行喷砂预处理,喷注压强200kPa,碳化硅砂粒度300目,然后分别在丙酮和酒精中将硬质合金基体超声清洗15分钟;

(2)将预处理完的硬质合金基体放入真空室内,采用热丝化学气相沉积法沉积碳化硅薄膜,通入氢气和四甲基硅烷,四甲基硅烷占总气体体积的0.1%,真空室气压0.5kPa,灯丝温度1900℃,基体温度750℃,沉积时间为1h,得到厚度为0.3微米的碳化硅层;碳化硅层中,碳化硅晶粒尺寸为30nm;

(3)向热丝化学气相沉积设备中通入甲烷,在碳化硅层上沉积碳化硅-金刚石梯度复合涂层,起初控制甲烷占总气体体积的4%,四甲基硅烷占总气体体积的0.3%,制备过程中逐渐降低四甲基硅烷流量趋近于零,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压2kPa,沉积时间为3h,得到厚度为1.5微米的碳化硅-金刚石梯度复合涂层;所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒为40纳米,金刚石晶粒为20纳米,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

(4)将四甲基硅烷流量降低至零,以氢气和甲烷为反应气体,继续在梯度复合涂层上沉积纳米金刚石涂层,控制甲烷占总气体体积的4%,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压2kPa,沉积时间1h,得到厚度为1.5微米的金刚石涂层。

实施例3

一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

(1)以国内市场上出售的YT15(WC-15%TiC)硬质合金转位刀片作为基体,将其进行喷砂预处理,喷注压强300kPa,碳化硅砂粒度300目,然后分别在丙酮和酒精中将硬质合金基体超声清洗15分钟;

(2)将预处理完的硬质合金基体放入真空室内,采用热丝化学气相沉积法沉积碳化硅薄膜,通入氢气和甲硅烷,甲硅烷占总气体体积的0.1%,真空室气压2kPa,灯丝温度2200℃,基体温度850℃,沉积时间为1h,得到厚度为0.3微米的碳化硅层;碳化硅层中,碳化硅晶粒尺寸为60nm;

(3)向热丝化学气相沉积设备中通入甲烷,在碳化硅层上沉积碳化硅-金刚石梯度复合涂层,起初控制甲烷占总气体体积的5%,甲硅烷占总气体体积的0.15%,制备过程中逐渐降低甲硅烷流量趋近于零,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压1kPa,沉积时间为6h,得到厚度为3微米的碳化硅-金刚石梯度复合涂层;所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒为50纳米,金刚石晶粒为30纳米,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

(4)将甲硅烷流量降低至零,以氢气和甲烷为反应气体,继续在梯度复合涂层上沉积纳米金刚石涂层,控制甲烷占总气体体积的3%,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压1kPa,沉积时间2h,得到厚度为4微米的金刚石涂层。

实施例4

一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

(1)以国内市场上出售的YG6(WC-6%Co)硬质合微型铣刀作为基体,将其进行喷砂预处理,喷注压强300kPa,碳化硅砂粒度300目,然后分别在丙酮和酒精中将硬质合金基体超声清洗15分钟;

(2)将预处理完的硬质合金基体放入真空室内,采用热丝化学气相沉积法沉积碳化硅薄膜,通入氢气和甲硅烷,甲硅烷占总气体体积的0.1%,真空室气压7kPa,灯丝温度2200℃,基体温度850℃,沉积时间为0.5h,得到厚度为0.3微米的碳化硅层;碳化硅层中,碳化硅晶粒尺寸为80nm;

(3)向热丝化学气相沉积设备中通入甲烷,在碳化硅层上沉积碳化硅-金刚石梯度复合涂层,起初控制甲烷占总气体体积的0.8%,甲硅烷占总气体体积的0.10%,制备过程中逐渐增加甲烷流量,同时逐渐降低甲硅烷流量趋近于零,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压7kPa,沉积时间为6h,得到厚度为4微米的碳化硅-金刚石梯度复合涂层;所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒为80纳米,金刚石晶粒为3微米,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

(4)将四甲基硅烷流量降低至零,以氢气和甲烷为反应气体,继续在梯度复合涂层上沉积纳米金刚石涂层,控制甲烷占总气体体积的3%,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压7kPa,沉积时间2h,得到厚度为4微米的金刚石涂层。

实施例5

一种具有金刚石涂层的硬质合金件的制备方法,包括以下步骤:

(1)以国内市场上出售的YG8(WC-8%Co)硬质合微型铣刀作为基体,将其进行喷砂预处理,喷注压强300kPa,碳化硅砂粒度300目,然后分别在丙酮和酒精中将硬质合金基体超声清洗15分钟;

(2)将预处理完的硬质合金基体放入真空室内,采用热丝化学气相沉积法沉积碳化硅薄膜,通入氢气和二甲基硅烷,二甲基硅烷占总气体体积的0.04%,真空室气压3kPa,灯丝温度2200℃,基体温度850℃,沉积时间为0.5h,得到厚度为0.3微米的碳化硅层;碳化硅层中,碳化硅晶粒尺寸为30nm;

(3)向热丝化学气相沉积设备中通入甲烷,在碳化硅层上沉积碳化硅-金刚石梯度复合涂层,起初控制甲烷占总气体体积的3%,二甲基硅烷占总气体体积的0.25%,制备过程中逐渐增加甲烷流量,同时逐渐降低二甲基硅烷流量趋近于零,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压3kPa,沉积时间为5h,得到厚度为4微米的碳化硅-金刚石梯度复合涂层;所述碳化硅-金刚石梯度复合涂层中,碳化硅晶粒为80纳米,金刚石晶粒为50纳米,碳化硅含量沿厚度增长方向逐渐减少而金刚石含量逐渐增加;

(4)将二甲基硅烷流量降低至零,以氢气和甲烷为反应气体,继续在梯度复合涂层上沉积纳米金刚石涂层,控制甲烷占总气体体积的4%,沉积过程中基体温度850℃,灯丝温度2300℃,真空室气压3kPa,沉积时间2h,得到厚度为4微米的金刚石涂层。

需要说明的是,根据上述说明书的揭示和和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围之内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1