高强度熔融镀锌钢板及其制造方法与流程

文档序号:11285683阅读:219来源:国知局

本发明涉及高强度熔融镀锌钢板及其制造方法。



背景技术:

从保护地球环境的观点考虑,为了降低co2排放量,在汽车工业中,在保持汽车车身强度的同时谋求其轻质化、改善汽车的油耗始终是重要的课题。为了在保持汽车车身强度的同时使其轻质化,通过使作为汽车部件用原材料的钢板高强度化而使钢板变薄是有效的。另一方面,以钢板作为原材料的汽车部件多数通过压制加工、翻边加工等而成型。因此,对于用作汽车部件用原材料的熔融镀锌钢板而言,不仅要求具有希望的强度,还要求具有优异的成型性。

近年来,作为汽车车身的骨架用原材料,高强度熔融镀锌钢板的应用正在扩大。在高强度熔融镀锌钢板的成型时,大多会实施主要涉及弯曲的加工,因而需要优异的弯曲加工性。在这样的背景下,开发了弯曲加工性优异的各种高强度熔融镀锌钢板。专利文献1及专利文献2中公开了涉及从断裂的观点考虑弯曲加工性优异的高强度熔融镀锌钢板的技术。

现有技术文献

专利文献

专利文献1:日本特开2012-12703号公报

专利文献2:日本特开2010-70843号公报



技术实现要素:

发明要解决的课题

然而,专利文献1及专利文献2中记载的技术均仅单纯地提高了从断裂的观点考虑的弯曲加工性,未考虑到成型后的形状、褶皱等外观等。在高强度熔融镀锌钢板的弯曲加工中,因合金元素的偏析等而导致在弯曲棱线处出现条纹状的起伏,存在涂装性、外观等受损的问题。特别是在合金元素含量多的高强度熔融镀锌钢板中大多确认到了该问题。

本发明是鉴于以上的情况而完成的。本发明所要解决的课题在于提供一种弯曲加工性优异的高强度熔融镀锌钢板及其制造方法。

解决课题的方法

本发明人等为了实现上述课题,从钢板的成分组成、组织及制造方法等多种观点进行了深入研究,结果发现了以下见解。

即,将c量设为0.07~0.25质量%,并对其它合金元素进行适当调整,在此基础上适当地组合钢板组织各相的面积率、马氏体相的平均结晶粒径、维氏硬度的波动等,由此能够兼顾高强度和优异的弯曲加工性。本发明是基于这样的见解而完成的,其主旨如下所述。

[1]一种高强度熔融镀锌钢板,其具有以下成分组成:以质量%计,含有c:0.07~0.25%、si:0.01~3.00%、mn:1.5~4.0%、p:0.100%以下、s:0.02%以下、al:0.01~1.50%、n:0.001~0.008%、ti:0.003~0.200%、b:0.0003~0.0050%,且满足ti>4n,余量由fe及不可避免的杂质构成,

以板厚方向上距基础钢板表面1/4位置的截面的面积率计,铁素体相为70%以下(包含0%),贝氏体相为20%以下(包含0%),马氏体相为25%以上,残留奥氏体相小于3%(包含0%),所述马氏体相的平均结晶粒径为20μm以下,所述马氏体相的维氏硬度的波动以标准差计为20以下。

[2]上述[1]所述的高强度熔融镀锌钢板,以质量%计,其还含有选自cr:0.01~2.00%、mo:0.01~2.00%、v:0.01~2.00%、ni:0.01~2.00%、cu:0.01~2.00%中的至少一种元素。

[3]上述[1]或[2]所述的高强度熔融镀锌钢板,以质量%计,其还含有nb:0.003~0.200%。

[4]上述[1]~[3]中任一项所述的高强度熔融镀锌钢板,以质量%计,其还含有选自ca:0.001~0.005%、rem:0.001~0.005%中的至少一种元素。

[5]一种高强度熔融镀锌钢板的制造方法,该方法包括依次进行以下各工序:

热轧工序,在精轧结束后,对具有上述[1]~[4]中任一项所述的成分组成的钢坯进行冷却,并使得在600~700℃下的停留时间总计为10秒钟以下,在卷取温度低于600℃下进行卷取;

冷轧工序,以大于20%的压下率进行冷轧;

退火工序,以15℃/秒以下的平均加热速度加热至退火温度750~950℃,并在该退火温度下保持30秒钟以上;

一次冷却工序,以3℃/秒以上的平均冷却速度进行冷却;

镀锌工序,实施镀锌;以及

二次冷却工序,在以1℃/秒以上的平均冷却速度冷却至ms点以上后,实施以100℃/秒以上的平均冷却速度冷却至100℃以下的冷却。

[6]上述[5]所述的高强度熔融镀锌钢板的制造方法,其中,在所述镀锌工序中,在实施了镀锌后进一步加热至460~600℃实施镀锌的合金化处理。

需要说明的是,在本发明中,“高强度熔融镀锌钢板”的拉伸强度(ts)为980mpa以上,不仅包括熔融镀锌钢板,还包括合金化熔融镀锌钢板。另外,在需要区别说明熔融镀锌钢板与合金化熔融镀锌钢板时,将上述钢板区别记载。

发明的效果

根据本发明,可以得到弯曲加工性优异的高强度熔融镀锌钢板。本发明的高强度熔融镀锌钢板可以在弯曲加工后实现良好的外观。本发明的高强度熔融镀锌钢板适于用作汽车部件用原材料。

具体实施方式

以下,详细地对本发明的实施方式进行说明。需要说明的是,在没有特别说明的情况下,表示成分元素的含量的“%”是指“质量%”的意思。

1)成分组成

c:0.07~0.25%

c(碳)是使马氏体相生成、使ts提高的必须元素。c量低于0.07%时,马氏体相的强度降低,无法得到980mpa以上的ts。另一方面,c量超过0.25%时,弯曲加工性变差。因此,c量设为0.07~0.25%。从得到1180mpa以上的ts的观点考虑,c量优选为0.08以上,更优选为0.10%以上。另一方面,c量的上限侧优选为0.23%以下。

si:0.01~3.00%

si(硅)是使钢固溶强化而提高ts的有效元素。为了获得这样的效果,需要使si量为0.01%以上。另一方面,si含量增加时,钢变脆,弯曲加工性变差。在本发明中可以允许si量至3.00%。因此,si量设为0.01~3.00%,si量优选为0.01~1.80%,更优选为0.01~1.00%,进一步优选为0.01~0.70%。

mn:1.5~4.0%

mn(锰)是使钢固溶强化而提高ts、抑制铁素体相变、贝氏体相变而生成马氏体相来提高ts的元素。为了充分地获得这样的效果,需要将mn量设为1.5%以上。另一方面,mn量超过4.0%时,钢变脆,弯曲加工性变差。因此,mn量设为1.5~4.0%,mn量的下限侧优选为1.8%以上,上限侧优选为3.8%以下,更优选为3.5%以下。

p:0.100%以下

由于晶界偏析而使钢变脆,使弯曲加工性变差,因此希望尽量降低p(磷)量。但是,从制造成本方面等考虑,p量设为0.100%以下,优选为0.050%以下,更优选为0.025%以下,进一步优选为0.015%以下。完全不含有p在原理上不存在问题,因此没有特别限定下限,但通常低于0.001%时会导致生产效率降低,因此p量优选为0.001%以上。

s:0.02%以下

s(硫)以mns等夹杂物的形式而存在,会使弯曲加工性变差,因此优选尽量降低其量,在本发明中,s量可以允许至0.02%。因此,s量为0.02%以下。完全不含有s在原理上不存在问题,因此没有特别限定下限,但通常低于0.0005%时会导致生产效率降低,因此s量优选为0.0005%以上。

al:0.01~1.50%

al(铝)作为脱氧剂发挥作用,优选在脱氧工序中含有al。为了获得这样的效果,需要使al量为0.01%以上。另一方面,如果al量超过1.50%,则导致在退火时过量生成铁素体相,ts降低。因此,al量设为0.01~1.50%,al量优选为0.01~0.70%,更优选为0.01~0.10%。

n:0.001~0.008%

n(氮)超过0.008%时,tin粗大化,会促使生成以其为核的铁素体相而无法获得本发明的钢板组织。另一方面,低于0.001%时,aln、tin等氮化物微细化,对铁素体相、马氏体相的晶粒生长的抑制效果降低,该晶粒粗大化,无法得到本发明的钢板组织。因此,n量设为0.001~0.008%。

ti:0.003~0.200%

ti(钛)是退火时抑制铁素体的再结晶,使最终组织中马氏体相的晶粒微细化的有效元素。另外,是固定n而抑制bn的生成,发挥b的效果的有效的元素。为了获得这样的效果,需要使ti量为0.003%以上。另一方面,ti量超过0.200%时,生成粗大的碳氮化物(包括ticn、tic),钢中的固溶c量降低,ts降低。因此,ti量设为0.003~0.200%,ti量的下限侧优选为0.010%以上,上限侧优选为0.080%以下,更优选为0.060%以下。

b:0.0003~0.0050%

b(硼)是均匀地抑制来自于晶界的铁素体相和贝氏体相成核而获得硬度波动小的马氏体相的有效元素。为了充分获得这样的效果,需要将b量设为0.0003%以上。另一方面,b量超过0.0050%时,夹杂物增加,使弯曲性变差。因此,b量设为0.0003~0.0050%,b量的下限侧优选为0.0005%以上,上限侧优选为0.0035%以下,更优选为0.0020%以下。

ti>4n

ti(钛)是固定n而抑制bn的生成,发挥b的效果的有效元素。为了充分获得这样的效果,ti和n的含量需要满足ti>4n。

余量为fe及不可避免的杂质,可以根据需要适当含有以下元素中的一种以上。另外,本发明中可以含有zr、mg、la、ce、sn、sb等杂质元素总计至0.002%。

选自cr(铬):0.01~2.00%、mo(钼):0.01~2.00%、v(钒):0.01~2.00%、ni(镍):0.01~2.00%、cu(铜):0.01~2.00%中的至少一种元素

cr、mo、v、ni、cu是生成马氏体相等低温相变相、对高强度化有效的元素。从获得这样的效果的观点考虑,选自cr、mo、v、ni、cu中的至少一种元素的含量优选分别为0.01%以上。另一方面,cr、mo、v、ni、cu各自的含量超过2.00%时,其效果饱和,导致成本增加。因此,在含有这些元素的情况下,cr、mo、v、ni、cu的含量分别优选为0.01~2.00%,更优选cr为0.01~1.50%,mo为0.01~0.80%,v为0.01~0.80%,ni为0.01~1.50%,cu为0.01~0.50%。

nb:0.003~0.200%

nb(铌)是退火时抑制铁素体相的再结晶,使最终组织中马氏体相的晶粒微细化的有效元素。从获得这样的效果的观点考虑,nb含量优选为0.003%以上。另一方面,超过0.200%时,生成粗大的碳氮化物(包括nbcn、nbc),钢中的固溶c量降低,存在ts降低的隐患。因此,在含有nb的情况下,nb量优选为0.003~0.200%。nb量更优选为0.005~0.080%,进一步优选为0.005~0.060%。

选自ca(钙):0.001~0.005%、rem(稀土元素):0.001~0.005%中的至少一种元素

ca、rem均是通过控制硫化物的形态而使弯曲加工性得到改善的有效元素。从获得这样的效果的观点考虑,优选将选自ca、rem中的至少一种元素的含量设为0.001%以上。另一方面,如果ca、rem各自的含量超过0.005%,则夹杂物增加,存在弯曲加工性变差的隐患。因此,在含有这些元素的情况下,优选ca、rem的含量为0.001%~0.005%。

2)钢板组织

铁素体相的面积率:70%以下(包含0%)

铁素体相的面积率超过70%时,难以兼顾980mpa以上的ts和弯曲加工性。因此,铁素体相的面积率设为70%以下。为了获得1180mpa以上的ts,铁素体相的面积率优选为60%以下,更优选为20%以下,进一步优选为8%以下。

贝氏体相的面积率:20%以下(包含0%)

贝氏体相的面积率超过20%时,弯曲加工性变差。因此,贝氏体相的面积率设为20%以下。需要说明的是,本发明中的贝氏体相由上部贝氏体相(upperbainitephase)和下部贝氏体相(lowerbainitephase)构成。特别是从弯曲加工性(特别是外观)的观点考虑,下部贝氏体相优选为1%以下。

马氏体相的面积率:25%以上

马氏体相的面积率低于25%时,难以兼顾980mpa以上的ts和弯曲加工性。因此,马氏体相的面积率设为25%以上。从获得1180mpa以上的ts的观点考虑,马氏体相的面积率优选为40%以上,更优选为80%以上,进一步优选为90%以上。需要说明的是,在本发明中,马氏体相是指没有碳化物的马氏体相,不包括自回火马氏体相(autotemperedmartensitephase)、回火马氏体相等具有碳化物的马氏体相。

残留奥氏体相的面积率:低于3%(包含0%)

残留奥氏体相通过在弯曲加工时成为硬质的马氏体相而使弯曲加工性变差。因此,残留奥氏体相的面积率设为低于3%。残留奥氏体相的面积率优选为低于2%,更优选为低于1%。

需要说明的是,对于残留奥氏体相而言,通过后面叙述的方法求出体积率。然后,将该体积率的值作为面积率的值对待。

马氏体相的平均结晶粒径:20μm以下

马氏体相的平均结晶粒径超过20μm时,弯曲加工性变差。因此,马氏体相的平均结晶粒径设为20μm以下,马氏体相的平均结晶粒径优选为15μm以下。

马氏体相的维氏硬度的波动的标准差:20以下

马氏体相的维氏硬度的波动的标准差超过20时,弯曲加工性(特别是外观)变差。因此,马氏体相的维氏硬度的波动的标准差设为20以下,该标准差优选为15以下。

需要说明的是,本发明中的马氏体相的维氏硬度优选为300~600。

本发明的钢板组织可以是马氏体相单相。另一方面,作为铁素体相、马氏体相、贝氏体相、残留奥氏体相以外的其它相,本发明的钢板组织有时还含有上述具有碳化物的马氏体相、珠光体相等。但是,在本发明中,优选其它相的面积率总计低于10%,更优选低于5%。

这里,钢板组织中的铁素体相、马氏体相、贝氏体相等的面积率是指组织观察中各相的面积在观察面积中所占的比例。各相的面积率可以通过以下方式求出:由除去了镀锌层(进行了合金化的情况下为合金化镀锌层)的基础钢板裁切出样品,对与轧制方向平行的板厚截面进行抛光,然后用3%硝酸乙醇腐蚀液进行腐蚀,使用sem(扫描电子显微镜)以1500倍的倍率对板厚方向上距基础钢板表面1/4位置分别拍摄3个视野,使用分析软件(例如mediacybernetics公司制造的image-pro)根据得到的图像数据求出各相的面积率,将上述3个视野的平均面积率作为各相的面积率。在上述图像数据中,铁素体相为黑色,马氏体相为不含碳化物的白色,回火马氏体相及自回火马氏体相为含有方位不一致的碳化物的亮灰色,下部贝氏体相为含有方位一致的碳化物的亮灰色,上部贝氏体相为含有碳化物或岛状白色组织的黑色,珠光体相为白色与黑色的层状,由此能够进行区分。其中,由于难以根据图像数据区别马氏体相与残留奥氏体相,因此将通过后面叙述的x射线衍射法求出的残留奥氏体相体积率的值减去白色组织面积率的值所得到的值作为马氏体相的面积率。

马氏体相的平均结晶粒径如下:对于求出了面积率的上述图像数据,通过将上述3个视野的马氏体相面积的总计除以马氏体相的个数而求出平均面积,将其1/2次方作为平均粒径。需要说明的是,在含有残留奥氏体相的情况下,不区别马氏体相和残留奥氏体相,全部作为马氏体相来求出平均结晶粒径。

如下所述求出板厚方向上距基础钢板表面1/4位置截面的残留奥氏体相的体积率。即,在基础钢板的板厚方向上抛光至距表面1/4位置,然后通过化学抛光进一步抛光了0.1mm,对于该面,通过x射线衍射装置使用mo的kα射线测定fcc铁(奥氏体)的(200)面、(220)面、(311)面、以及bcc铁(铁素体)的(200)面、(211)面、(220)面的积分反射强度。然后,根据来自于fcc铁(奥氏体)各面的积分反射强度相对于来自于bcc铁(铁素体)的各面的积分反射强度的强度比求出体积率,将该体积率作为残留奥氏体相的体积率。

马氏体相的维氏硬度如下所述进行测定。采取具有与轧制方向平行的方向的截面且宽度为10mm、长度(轧制方向)为15mm的试验片,对于该截面,在基础钢板的板厚方向上距表面为板厚1/4的位置随机选出马氏体相进行维氏硬度测定,负荷为20g,测定20个点。

接着,根据除了维氏硬度的最大值和最小值以外的测定得到的18个点利用下述数学式1所示的式子求出标准差σ。

数学式1

σ:标准差

n:打点数(本发明中为18)

x:各维氏硬度

维氏硬度的平均值

3)制造条件

本发明的高强度熔融镀锌钢板可以通过依次进行以下各工序的高强度熔融镀锌钢板的制造方法来制造,例如:热轧工序,在精轧结束后,对具有上述成分组成的钢坯进行冷却,并使得在600~700℃下的停留时间总计为10秒钟以下,在卷取温度低于600℃下进行卷取;冷轧工序,以大于20%的压下率进行冷轧;退火工序,以15℃/秒以下的平均加热速度加热至退火温度750~950℃,并在该退火温度下保持30秒钟以上;一次冷却工序,以3℃/秒以上的平均冷却速度进行冷却;镀锌工序,实施镀锌;以及二次冷却工序,以1℃/秒以上的平均冷却速度冷却至ms点以上后,实施以100℃/秒以上的平均冷却速度冷却至100℃以下的冷却。需要说明的是,可以根据需要实施镀锌的合金化处理。在热轧中,将600~700℃下的停留时间设为10秒钟以下,并进一步在低于600℃下进行卷取,由此保持b的固溶状态。在退火中,通过以15℃以下进行加热并在750~950℃下保持,使奥氏体相、即最终组织中的马氏体相微细化。在随后的冷却中,通过固溶b和3℃/秒以上的冷却来抑制铁素体相的生成,保持微细晶粒,并在ms点以下进行100℃/秒以上的冷却,由此可以使马氏体相的硬度均匀化,能够获得优异的弯曲性和弯曲外观。以下详细进行说明。

3-1)热轧工序

600~700℃下的停留时间总计:10秒钟以下

在精轧后,如果600~700℃温度范围内钢板的停留时间超过10秒钟,则生成b碳化物等含b化合物,钢中的固溶b量降低,退火时的b的效果、即抑制微细组织中的贝氏体相面积率的效果降低,无法得到本发明的钢板组织。因此,600~700℃下的停留时间总计设为10秒钟以下,600~700℃下的停留时间总计优选为8秒钟以下。需要说明的是,温度是钢板表面的温度。

卷取温度:低于600℃

卷取温度为600℃以上时,生成b碳化物等含b化合物,钢中的固溶b量降低,退火时的b的效果降低,无法得到本发明的钢板组织。因此,卷取温度设为低于600℃,其下限没有特别限定,从温度控制性的观点考虑,卷取温度优选为400℃以上。

为了防止宏观偏析,优选利用连续铸造法来制造钢坯,也可以通过铸锭法、薄钢坯铸造法来制造。在对钢坯进行热轧中,可以暂时将钢坯冷却至室温,然后进行再加热并进行热轧,也可以不将钢坯冷却至室温,而是装入加热炉中进行热轧。或者也可以应用在稍微进行保温后立即进行热轧的节能工艺。在加热钢坯时,为了防止碳化物溶解、轧制负荷增大,优选加热至1100℃以上。另外,为了防止氧化皮损失增大,钢坯的加热温度优选设为1300℃以下。需要说明的是,钢坯温度是钢坯表面的温度。

在对钢坯进行热轧时,从即使降低钢坯的加热温度也能防止轧制时的不良情况的观点考虑,还可以对粗轧后的粗钢条进行加热。而且,可以应用将粗钢条彼此接合而连续地进行精轧的所谓的连续轧制工艺。在低于ar3相变点结束精轧时,各向异性增大,有时使冷轧、退火后的加工性降低,因此优选在ar3相变点以上的精轧温度下进行。另外,为了降低轧制负荷、使形状、材质均匀化,优选在精轧的全部道次或部分道次中进行摩擦系数为0.10~0.25的润滑轧制。

另外,对于卷取后的钢板而言,通常可以在通过酸洗等除去氧化皮后实施冷轧、退火、熔融镀锌等。

3-2)冷轧工序

冷轧的压下率:大于20%

压下率为20%以下时,退火时不发生再结晶而残留伸展组织,无法得到本发明的钢板组织。因此,冷轧的压下率设为大于20%,冷轧的压下率优选为30%以上。需要说明的是,其上限没有特别限定,从形状稳定性等的观点考虑,压下率优选为90%以下。

3-3)退火工序

以15℃/秒以下的平均加热速度加热至退火温度750~950℃

平均加热速度超过15℃/秒时,由积累了很大轧制应变的未再结晶组织剧烈地进行逆相变,晶粒生长,易于生成粗大的奥氏体相、即最终组织中的粗大的马氏体相,无法得到本发明的钢板组织。因此,平均加热速度设为15℃/秒以下,平均加热速度优选为8℃/秒以下,其下限没有特别限定,但由于低于1℃/秒时有时生成粗晶粒,因此优选为1℃/秒以上。需要说明的是,平均加热速度是开始加热至退火温度的钢板温度差除以所需要的时间而得到的值。在本发明中,加热速度及冷却速度的单位中“s”是“秒”的意思。

在低于750℃的加热中,不能充分生成奥氏体相、即最终组织中的马氏体相,无法得到本发明的钢板组织。另一方面,超过950℃进行加热时,奥氏体晶粒粗大化而无法得到本发明的钢板组织。因此,退火温度设为750~950℃的范围内。

退火温度下的保持时间:30秒钟以上

退火温度750~950℃下的保持时间低于30秒钟时,未充分生成奥氏体相,无法得到本发明的钢板组织。因此,退火温度下的保持时间设为30秒钟以上,其上限没有特别限定,从生产效率等观点考虑,保持时间优选为1000秒钟以下。

3-4)一次冷却工序(退火结束时至浸渍熔融镀锌浴的冷却工序)

平均冷却速度:3℃/秒以上

退火工序后的平均冷却速度低于3℃/秒时,冷却中、保持中过量生成铁素体相、上部贝氏体相,无法得到本发明的钢板组织。因此,平均冷却速度设为3℃/秒以上,平均冷却速度优选为5℃/秒以上。另一方面,平均冷却速度的上限侧优选为50℃/秒以下,更优选为40℃/秒以下。该平均冷却速度是钢板的退火温度与镀锌浴温度的温度差除以退火结束时至浸渍镀锌浴时所需要的时间而得到的值。需要说明的是,只要满足了上述冷却速度,则在该冷却工序中可以在ms~550℃的范围内进行冷却加热保持等。

3-5)镀锌工序

对于通过一次冷却工序从退火温度冷却后的钢板实施熔融镀锌。熔融镀锌处理的条件没有特别限定。例如,优选将经过上述处理的钢板浸渍于440℃以上且500℃以下的镀锌浴中,然后通过气体吹扫等调整镀层附着量来进行熔融镀锌处理。在熔融镀锌处理中,优选使用al量为0.08~0.25质量%的镀锌浴。另外,在对镀锌层进行合金化时,优选在460℃以上且600℃以下的温度范围保持1秒钟以上且40秒钟以下来进行合金化。

3-6)二次冷却工序(镀锌后冷却工序)

以1℃/秒以上的平均冷却速度冷却至ms点以上

在ms点以上的温度范围进行平均冷却速度1℃/秒以上的缓慢冷却。该缓慢冷却的平均冷却速度低于1℃/秒时,冷却中生成上部贝氏体相、下部贝氏体相,无法得到本发明的钢板组织。因此,缓慢冷却的平均冷却速度设为1℃/秒以上。该平均冷却速度是镀锌后的钢板温度与冷却结束时的钢板温度之差除以冷却所需要的时间而得到的值。缓慢冷却速度过快时,容易发生温度波动,有时导致硬度波动,因此优选为50℃/秒以下。

冷却结束温度:ms点以上

缓慢冷却结束温度低于ms点时,生成自回火马氏体相、下部贝氏体相,无法得到本发明的钢板组织。因此,缓慢冷却结束温度设为ms点以上,缓慢冷却结束温度优选为ms点~500℃。在本发明中,ms点通过线性膨胀变化来求出。

以100℃/秒以上的平均冷却速度冷却至100℃以下

在缓慢冷却后,以100℃/秒以上的平均冷却速度快速冷却至100℃以下。至100℃以下的平均冷却速度低于100℃/秒时,生成自回火马氏体相、下部贝氏体相,无法得到本发明的钢板组织。因此,至100℃以下的平均冷却速度设为100℃/秒以上。该平均冷却速度是上述缓慢冷却的冷却结束时钢板温度与二次冷却结束时钢板温度之差除以所需要的时间而得到的值。

二次冷却结束温度:100℃以下

二次冷却结束温度超过100℃时,生成自回火马氏体相、下部贝氏体相,无法得到本发明的钢板组织。因此,快速冷却结束温度设为100℃以下。

3-7)关于其它工序

本发明的高强度熔融镀锌钢板可以实施树脂、油脂涂敷等各种涂装处理。另外,镀锌层实施了合金化处理后的钢板可以进行以形状矫正、表面粗糙度调整等为目的的调质轧制。

4)其它条件等

本发明的高强度熔融镀锌钢板的板厚没有特别限定,优选为0.4~3.0mm。另外,本发明的熔融镀锌钢板的ts为980mpa以上,优选使钢板的ts为1180mpa以上。

本发明的高强度熔融镀锌钢板的用途没有特别限定。为了能够有助于汽车的轻质化及汽车车身的高性能化,优选为汽车部件用途。

实施例

以下,对本发明的实施例进行说明,本发明的技术范围并不限定于以下的实施例。

使用具有表1所示的成分组成的钢(余量为fe及不可避免的杂质),按照表2所示的条件制造了熔融镀锌钢板。具体而言,用真空熔化炉对表1所示成分组成的钢进行熔炼、轧制,制成钢坯。将这些钢坯加热至1200℃后进行粗轧、精轧、冷却、卷取,制成热轧钢板。接着,冷轧至板厚1.4mm,制成冷轧钢板,供于退火。使用模拟了连续熔融镀锌线的红外线加热炉(infraredimagefurnace)按照表2所示的条件进行退火,制作了熔融镀锌钢板(gi)及合金化熔融镀锌钢板(ga)(钢板no.1~31)。将钢板浸渍于460℃的镀敷浴中使其形成附着量35~45g/m2的镀敷层,制作了熔融镀锌钢板。按照上述步骤形成镀敷层后,在460~600℃的范围内进行合金化处理,由此制作了合金化熔融镀锌钢板。以下,将gi及ga称为熔融镀锌钢板。

对得到的熔融镀锌钢板实施伸长率0.2%的表皮光轧,然后按照以下的试验方法求出拉伸特性及弯曲加工性。另外,按照上述方法调查了钢板组织及马氏体相的维氏硬度波动的标准差,将结果示于表3。需要说明的是,在发明例中,测定的马氏体相的维氏硬度为300~600的范围内。

<拉伸特性试验>

在与轧制方向成直角方向从制作的熔融镀锌钢板上采取jis5号拉伸试验片(jisz2201),按照应变速度设为10-3/秒的jisz2241的规定进行拉伸试验,求出ts。将ts为980mpa以上的试验片评价为合格,将ts为1180mpa以上的试验片评价为更良好。

<弯曲加工性试验>

从制作的熔融镀锌钢板上采取以与轧制方向平行的方向作为弯曲试验轴方向、且宽度35mm、长度100mm的长方形试验片,进行了弯曲试验。在冲程速度为10mm/秒、压入负载为10ton、按压保持时间为5秒钟、弯曲半径r为2.0mm的条件下进行90°v弯曲试验,用10倍的放大镜观察弯曲顶点的棱线部,按照下述5级对断裂及条纹状起伏进行评价,分别将评分为3以上作为合格。另外,在评分为3以上时,评分越高评价越好。

在断裂的评价中,将确认到5mm以上的裂纹的情况评价为“1”,将确认到1mm以上且小于5mm的裂纹的情况评价为“2”,将确认到0.5mm以上且小于1mm的裂纹的情况评价为“3”,将确认到0.2mm以上且小于0.5mm的裂纹的情况评价为“4”,将确认到小于0.2mm的裂纹的情况或无裂纹的情况评价为“5”。

在条纹状起伏的评价中,将确认到明显的条纹状起伏的情况评价为“1”,将确认到一般的条纹状起伏的情况评价为“2”,将确认到轻微的条纹状起伏的情况评价为“3”,将确认到稍有条纹状起伏的情况评价为“4”,将完全未确认到条纹状起伏的情况评价为“5”。

表3

*v(f):铁素体的面积率,v(m):马氏体的面积率,v(atm):自回火马氏体的面积率,v(ub):上部贝氏体的面积率,v(lb):下部贝氏体的面积率,v(γ):残留奥氏体的体积率,其它:上述以外的相的面积率,d(m):马氏体的平均结晶粒径

**以马氏体的硬度的标准差计,“-”为极微细粒而无法测定

对于发明例而言,可以确认弯曲加工性优异,且可得到980mpa以上、特别是1180mpa以上的ts。因此,根据发明例,可以得到弯曲加工性优异的高强度熔融镀锌钢板,有助于汽车的轻质化,起到明显有助于汽车车身的高性能化的优异效果。

工业实用性

根据本发明,能够得到弯曲加工性优异且ts为980mpa以上、特别是为1180mpa以上的强度的熔融镀锌钢板。如果将本发明的高强度熔融镀锌钢板用于汽车部件用途,则能够有助于汽车的轻质化,可以明显有助于汽车车身的高性能化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1