一种铁基非晶合金及其制备方法与流程

文档序号:12779464阅读:228来源:国知局

本发明涉及非晶合金技术领域,尤其涉及一种铁基非晶合金及其制备方法。



背景技术:

由于具有低铁损、高饱和磁通量密度、高磁导率及其它优点,Fe基无定形合金薄带如Fe-Si-B无定形合金薄带被广泛用作电源变压器与高频变压器的铁心。基于以上特点,非晶铁基材料在面世很长一段时间内,在变压器领域独领风骚。

随着硅钢材料的持续更新,非晶材料的优势相对弱化。比如,非晶材料饱和磁密明显偏低,且随着硅钢片轧制设备以及工艺的升级,硅钢片材料一直呈现厚度变薄趋势,性能也在逐渐降低;非晶材料在提高磁密以及降低损耗方面做了大量的工作,但从市面非晶产品性能来讲,一直未出现损耗性能低且饱和磁密偏高的非晶材料。

例如,在提高饱和磁感应强度方面,公开号为No.平6-220592的日本专利披露了一种由式FeaCobSicBdMx表示的无定形合金薄带的组成,其原子百分量为:60≤a≤83,3≤b≤20,80≤a+b≤86,1≤c≤10,11≤d≤16;当M是Sn时,0.1≤x≤1.0;当M是Cu时,0.1≤x≤2.0;当M是S时0.01≤x≤0.07;a+b+c+d+x=100。上述方案由于加入了Co使合金具有大的饱和磁通量密度;然而Co是非常贵的元素,虽然含Co的铁基无定形合金薄带可用在一些要求质量较高的场合,但成本高仍是这项技术的不足之处。

公开号为CN1124362C的专利公开了在高铁含量的情况下也可保持高磁通量密度的铁基无定形合金薄带,且用这种薄带甚至在退火期间铁心的不同部位间存在着温度差异的条件下,仍可制成具有良好软磁性的铁心;其主要成分中含有Fe、Si、B、C和P元素及不可避免的杂质,它的组成以原子百分数计:82<Fe≤90,2≤Si<4,5<B≤16,0.02≤C≤4,0.2≤P≤12,退火后Bs值为1.74T。然而,上述方案一方面P元素的添加含量较大,结合目前国内外磷铁行业的实际情况,磷铁的制备条件相对粗放,杂质含量过高,无法达到非晶合金的使用条件,在制备过程中,大量使用常规条件的磷铁会导致带材晶化、偏脆;另一方面,含磷合金制备的带材热处理过程极易被氧化,且热处理后带面表观质量以及性能都较差。若使用此种合金成分进行工业化成产,必须添加磷铁精炼的环节以及退火工艺的防氧化工艺,既增加了工艺流程的复杂性,又需提高目前的冶炼水平,导致工业化生产难度加大。

公开号为CN100549205C的中国专利提到通过合理控制吹送到铜辊表面CO或CO2气体量以及Si/C重量比,从而形成在合金带的两个表面到其内部径向测量得到的C浓度分布在深度2~20nm范围内具有C偏析层峰值,有效的解决Fe基非晶态合金带中由提高饱和磁通密度Bs造成的脆化、表面结晶化和矩形比下降的问题;其合金成分为FeaSibBcCd和不可避免的杂质,以原子百分比计,其中a为76~83.5%,b为12%或以下,c为8~18%,d为0.01~3%;但是本发明没有具体提及CO或CO2添加工艺以及控制偏析层厚度的控制手段,而且表面碳偏析层对于其所在范围的要求,使得其制备过程过于苛刻;另外对于带面表面粗糙度也有严格的要求,表面粗糙度大,则氧化层的厚度不均匀,导致产生的C-偏析层深度和范围不均匀,这样使得应力松施不均匀,部分地产生易碎部分,在因为表面粗糙而导热性降低的C-偏析层中,表面结晶化加速。上述问题使得制备过程变得复杂且难以控制。

公开号为No.平7-33139的日本专利披露了一种具有改善铁损性能及不脆裂的薄带材料,该专利公开说明书公开了无定形薄带具有极好的磁性和耐脆性,该材料的平均粗糙度Ra在中心线0.6μm~0.6μm以下,组成表达式为FexBySizMna,按原子百分数计75≤x≤82,7≤y≤15,7≤z≤17,0.2≤a≤0.5;虽然Mn对改善铁损有效,但增加它的含量会降低磁通量密度并使材料发脆。

公开号为US8968490B2的美国专利中提到非晶合金熔体需要保证其表面张力大于1.1N/m,低于该表面张力带材表面及易产生表面突起,从而影响带材封装因子;公开号为US8968489B2的美国专利中同样提到,表面张力低于1.1N/m容易在带材表面产生划痕、光亮线等表面缺陷。上述两个专利所述合金具有由FeaSibBcCd表示的成分,以原子百分比计,其中,80.5%≤a≤83%、0.5%≤b≤6%、12%≤c≤16.5%、0.01%≤d≤1%,所述带材具有超过1.60T的饱和磁感应强度,并且当在60Hz及1.3T感应强度水平下测量时表现出小于0.14W/kg的磁芯损耗。但是对于熔体表面张力控制的说明不具体,且熔体表面张力控制在1.1N/m以上难度大,对于缺陷的控制以及制带顺行的难度加大。

从上面的背景资料介绍可知:研究者集中研究了提高非晶材料饱和磁感应强度的方法,开展了系统的成分研究和带材性能评估。但无人从解决高饱和非晶材料制带顺行、降低成分以及铁芯处理、变压器综合需求方面做深入研究,且只认识到在磁心制造和运行方面明显优越的必要性能的组合,因此发现了各种不同的合金,但每种合金只针对这种总的组合中的一部分。但是非晶合金制备是集材料的饱和磁密、结晶温度、居里温度、单片损耗、励磁功率等参数,结合制带顺行度、材料成本、工艺复杂度,而获取的相对高工作磁密、宽泛退火区间、高延展性、低损耗以及低励磁功率等多维度的综合体。



技术实现要素:

本发明解决的技术问题在于提供一种铁基非晶合金,本申请提供的铁基非晶合金具有高工作磁密度、宽泛的退火区间、高延展性、低损耗以及低励磁功率。

有鉴于此,本申请提供了一种如式(Ⅰ)所示的铁基非晶合金,

FeaBbSic (Ⅰ);

其中,a、b与c分别表示对应组分的原子百分含量;80.0≤a≤82.0,11.0≤b≤13.0,6.5<c≤8.0,a+b+c=100。

优选的,所述铁基非晶合金的饱和磁感应强度≥1.60T。

优选的,所述Fe的原子百分含量为80.0≤a≤81.0。

优选的,所述B的原子百分含量为11.5≤b≤12.5。

优选的,所述Si的原子百分含量为7.0≤b≤7.5。

优选的,所述铁基非晶合金中,a=80.0,12.0≤b≤13.0,7.0≤c≤8.0。

优选的,所述铁基非晶合金中,a=80.5,11.5≤b≤12.5,7.0≤c≤8.0。

优选的,所述铁基非晶合金中,81.0≤a≤81.5,11.0≤b≤13.0,7.0≤c≤8.0。

本申请还提供了所述的铁基非晶合金的制备方法,包括:

按照式FeaBbSic的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后进行单辊快淬,得到铁基非晶合金。

优选的,所述单辊快淬之后还包括:

将得到的铁基非晶合金进行热处理。

优选的,所述热处理的温度为335~385℃,热处理的宽泛区间不低于40℃。

优选的,所述热处理后的铁基非晶合金带材的矫顽力≤3.5A/m;在50Hz,1.35T条件下,所述热处理后的铁基非晶合金的激磁功率<0.1450VA/kg,铁芯损耗<0.1100W/kg;在50Hz,1.40T条件下,所述热处理后的铁基非晶合金的激磁功率<0.1700VA/kg,铁芯损耗<0.1500W/kg。

优选的,所述铁基非晶合金带材为完全非晶状态,临界厚度至少为75μm。

优选的,所述铁基非晶合金带材的厚度为23~32μm,宽度为100~300mm。

本申请提供了一种铁基非晶合金,其具有如式FeaBbSic的原子组成,其中a、b与c分别表示对应组分的原子百子含量;80.0≤a≤82.0,11.0≤b≤13.0,6.5<c≤8.0,a+b+c=100;本申请提供的铁基非晶合金中的Fe可保证能够稳定的制备性能更低、成带率更高的非晶铁基合金;Si元素有利于稳定地形成无定形材料,合适的Si范围可以有效的降低损耗,保证淬态非晶的良好的韧性;B是对合金非晶态化贡献最大的元素。B含量不足,所得非晶态合金带的热稳定性下降。本申请通过调整Fe、Si和B的含量,使其具有高饱和磁感应强度与高延展性;同时,本申请的铁基非晶合金在宽泛的退火区间内具有低损耗与低励磁功率。

具体实施方式

为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。

本发明实施例公开了一种如式(Ⅰ)所示的铁基非晶合金,

FeaBbSic (Ⅰ);

其中,a、b与c分别表示对应组分的原子百子含量;80.0≤a≤82.0,11.0≤b≤13.0,6.5<c≤8.0,a+b+c=100。

本申请提供的铁基非晶合金中,以原子百分数计,Fe的含量80.0≤a≤82.0,其含量低于80%,则铁基非晶合金的饱和磁感应密度过低,起不到改善普通非晶低磁密的缺陷,不能得到足够的磁通量密度和结构密实的铁芯设计,含量大于82.0%,则降低了铁基非晶合金的热稳定性和带材可成形性,会使带材顺行变得困难,且不能得到好的磁性产品。在具体实施例中,所述Fe的原子百分含量可为80.0%、80.5%、81.0%或81.5%。

Si的含量为6.5<c≤8.0,其含量小于6.5%,则降低带材可成形性以及非晶合金带材的热稳定性,使稳定的形成无定形材料变得困难;其含量高于8.0%,使非晶材料脆性变大,退火后带材的延展性变差。在具体实施例中,所述Si的含量为8.0%、7.5%或7.0%。

B的含量为11.0≤b≤13.0,其含量低于11.0%,使稳定的形成无定形材料变得困难,而超过13%,则不会使形成无定形状态的能力进一步增加,即上述范围的B含量可使本发明的非晶铁基合金具有优异的软磁性能。在具体实施例中,所述B的含量为11.5%、11.0%、12.0%、12.5%或13.0%。

更具体的,在某些实施例中,所述铁基非晶合金中,a=80.0,12.0≤b≤13.0,7.0≤c≤8.0;在某些实施例中,铁基非晶合金的a=80.5,11.5≤b≤12.5,7.0≤c≤8.0;在某些实施例中,铁基非晶合金的81.0≤a≤81.5,11.0≤b≤13.0,7.0≤c≤8.0。

因此,本申请的铁基非晶合金的组分及含量分别从提高磁感应强度、提高非晶形成能力以及降低制备难度的合理组合,而形成了一种高饱和磁感应强度的铁基非晶合金。

本申请还提供了上述铁基非晶合金的制备方法,包括以下步骤:

按照式FeaBbSic的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后采用单辊快淬,得到铁基非晶合金带材。

在制备铁基非晶合金的过程中,本申请采用了本领域常规的技术手段,制备了本申请具体成分的铁基非晶合金。对于其制备方法关于配料与熔炼的过程,本申请对其具体操作手段不进行特别的说明。在熔炼过程中,使用中频冶炼炉将金属原材料熔炼,所述熔炼的温度为1300~1500℃,时间为80~120min。在熔炼之后,本申请将熔炼后的熔液升温保温后采用单辊快淬,而得到了铁基非晶合金带材。所述升温的温度优选为1350~1470℃,所述保温的时间优选为20~50min。经过单辊快淬之后,本申请得到了铁基非晶合金带材,为完全非晶状态,其形成非晶极限带厚至少为75μm,且带材韧性较好,对折180度不断。对本发明而言,其可剪极限带厚至少29μm,对于本产品的工业化生产有相当大的制备余量,降低了在其工业化过程中对冷却设备的要求。

本申请在初级制备非晶铁基合金之后,为了便于应用,将其进行热处理,本申请提供的非晶铁基合金的组分,可使非晶铁基合金实现在较宽泛的退火区间内进行热处理,且使得到的非晶铁基合金带材具有较低的励磁功率与损耗。本申请所述热处理的温度为325~395℃,热处理的宽泛区间不低于40℃;在具体实施例中,所述热处理的温度为335~385℃。

为了进一步理解本发明,下面结合实施例对本发明提供的铁基非晶合金进行详细说明,本发明的保护范围不受以下实施例的限制。

按照FeaBbSic表示的合金成分进行配料,使用工业用纯铁、硅、硼铁配制如表1所示的合金成分;合金成分除主元素外,具有不可避免的杂质元素,如C、Mn、S等。将不同成分所配物料依次按照硼铁、硅、纯铁的顺序顺次加入炉容为100kg的中频感应冶炼炉重熔(熔炼的温度为1300~1500℃,时间为80~120min);钢水镇静结束,浇筑到喷包中,通过单辊平面流铸法制备非晶带宽为20mm非晶带材,制带过程中通过调整辊速、液位等参数制备出不同带厚的合金成分带材(制带过程中的辊速1000~1400r/min,控制出带线速度为20~30m/s,液位高度为200~300mm)。

采用XRD测试不同成分带材自由面,直至带厚到非晶态为止,表1显示各合金成分非晶极限带厚,使用VSM测试各非晶合金带材的饱和磁化强度值。通过带材非晶形成能力以及饱和磁感应强度值综合评价合金成分。根据带材脆点数量评估带材可剪最大厚度,脆点评估是取带材长度为结晶器周长相等,沿着带材长度方向剪切带材,脆点个数不超过2个认为带材可剪切,等于2个则认为是该合金成分带材的极限可剪带厚。

表1不同成分的非晶铁基合金及其性能数据表

表1呈现了不同合金成分随对应的非晶极限带厚、制带韧性极限带厚以及饱和磁感应强度。非晶极限带厚以及制带韧性极限厚度是对合金成分制带工艺性的考量,上述带厚越厚,则对制带设备的要求度更加宽松。

相同的制带条件,合金成分非晶极限带厚愈厚,带材非晶度越高。对比例1~4虽然具有相对高的非晶极限带厚,可剪最大厚度在27μm以下,这不仅对制带设备的冷却强度提出更严苛的要求,也对铁芯组装效率,同时对变压器组装以及运行过程中易碎片埋下了伏笔,造成变压器运行的安全隐患增加;另外其饱和磁密不足1.57T,这使得非晶变压器设计宽泛性变窄,无法满足变压器高磁密的设计趋势;比较例6与实施例4~6对比可以看出,相同的Fe含量,Si含量越高,其可剪厚度变小。

对比例8~9合金非晶饱和磁密明显偏高这是变压器设计所期待的,最大可剪厚度介于36~38μm,在铁芯成型方面效率方面具有绝对优势,但是由其非晶极限带厚厚度值可以看出,其非晶形成能力明显不足,不具备制带顺行的工艺条件,同时也会影响其励磁功率和损耗。

从表1可以看出,从制带顺行和变压器设计综合考量,实施例1~11的合金成分具有较好的工艺顺行度和宽泛的变压器设计区间。

将表1中的选取带厚为26~28μm区间的带材,卷绕成内径为50.5mm,外径为53.5~54mm的样环,使用箱式退火炉将样环进行去应力退火,退火选择在氩气保护的气氛中进行,由325~395℃之间,每个间隔为10℃,保温1h。热处理过程加沿着带材制备方向的磁场,磁场强度为1200A/m。使用硅钢测试仪测试热处理后带材激磁和损耗,测试条件分别在1.35T/50Hz与1.40T/50Hz,性能测试结果如表2所示:

表2实施例与对比例热处理后的性能数据表

由表2可以看出,在1.35T/50Hz条件下,比较例1~3与比较例8~9损耗值偏大,性能在0.12W/kg以上;而1.4T/50Hz条件下,比较例1~4及6励磁与损耗较1.35T/50Hz明显增加,且较其他样品在1.4T/50Hz明显偏大,这主要跟上述样品的饱和磁密低有关。非晶材料励磁和损耗随着磁密的增加而增加,特别是励磁功率表现的尤为突出。饱和磁感应强度大的非晶材料较低饱和磁感应强度材料,允许工作磁密更大,即在1.4T磁密下工作会显示相对低的励磁功率和损耗。正常来讲,比较例8~9在1.4T下测试,性能会更优,但因为其1.35T下性能偏大,所以在1.4T损耗及励磁有所增加,导致在1.4T下性能偏大。

实施例1~11在1.35/50Hz与1.40/50Hz表现出优异的软磁性能;1.35/50Hz损耗在0.11W/kg以内,1.4T/50Hz损耗在0.15W/kg以内。

非晶材料具有相对低的损耗值,众所周知,通过增加纵向磁场去除带材制备过程中的应力,可以使每种成分均有实现其性能最优的最佳热处理温度值。一般而言,通过退火处理可以消除非晶磁性材料的应力,降低矫顽力,提高磁导率,获得优良的磁性能。热处理工艺控制是否合理是保证铁芯性能的关键环节。而非晶铁芯由于其体积大,若实现整个铁芯热处理温度的均匀性,需要缓慢的升温速率或者更长的保温时间,这对铁芯最终性能是不宜的。基于上述研究,发明了一种FeSiB合金系无定形合金薄带,即使在退火期间铁心不同部位出现温度的差异,也具有良好的磁性能。

本实施例主要是通过限定成分范围,实现将最佳热处理温度范围提高到更宽泛一个区间,实现铁芯热处理在更宽泛的热处理区间均能得到性能优良的铁芯数据。其中所需热处理温度为:325~395℃,保温时间:60~120min;磁场强度为:800~1400A/m。

表3不同热处理温度损耗性能数据表

表3不同热处理温度损耗性能数据表(续表)

表4不同热处理温度励磁功率性能数据表

表4不同热处理温度励磁功率性能数据表(续表)

表3、表4分别是不同热处理温度处的损耗与励磁值数据表,由表可知,实施例损耗整体标准偏差在325~395热处理温度范围内性能偏差0.017以内,对比例在0.020以上;实施例激磁功率在0.040以内,对比例在0.05以上,对比例3明显偏大,偏差在0.117,说明其热处理性能波动大。

规定一定偏差值作为评估热处理宽泛性的标准,本实验将规范标准偏差定在0.01以内;根据本标准实施例激磁和损耗的热处理宽泛区间均在40℃或以上,对比例损耗宽泛区间在30~40℃,其激磁宽泛区间仅20℃,综合考虑激磁和损耗,对比例宽泛区间为20℃。综上,实施例较对比例热处理宽泛区间宽20℃,允许更宽的热处理温度波动。

以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1