陶瓷预制坯,其制造方法和应用的制作方法

文档序号:3390293阅读:391来源:国知局
专利名称:陶瓷预制坯,其制造方法和应用的制作方法
技术领域
本发明涉及陶瓷预制坯及其制造方法。本发明还涉及该预制坯的应用,特别是在制造金属或陶瓷复合材料方面的应用。
在欧洲专利申请EP-A-0328805中已对金属复合材料的制造方法进行了叙述,按照此方法,将熔融态的金属放入一个空腔中,将一预制坯置于熔融金属上,在施加于该预制坯的压力作用下,该熔融金属浸渍所述预制坯。按照该专利,该预制坯由耐火纤维材料,如氧化铝、二氧化锆、二氧化硅、碳化硅、氮化硅或二硼化钛短切纤维组成。
在欧洲专利申请EP-A-0337732中也建议用纤维状结晶形式的β型氮化硅制造增强金属复合材料。这个方法包括,用熔融金属浸渍该纤维状结晶,然后固化后者,以得到由所述纤维状结晶增强的金属复合材料。该纤维状结晶本身是由无定形或α型氮化硅粉末在高温下烧结而制得的。其纤维形状是直径0.1~5微米,长度2~100微米。
在日本专利申请1,180,929中,通过向氧化铝、二氧化硅、氮化硅碳化硅、玻璃或碳的短纤维中加入润滑剂(如石墨、MoS2、WS2、Sn、Pb、氧化铝水泥、石膏或萤石)、树脂粘合剂和溶剂,然后进行压缩的方法制造用于铝基复合材料的预制坯。
在日本专利申请1,157,803中,为了制造预制坯,将细的无机粉末(氧化铝、碳化硅、硅酸盐、氧化钛、氧化锆、氮化硅、碳化硼或氮化硼)同选自水溶性树脂的粘合剂混合,将混合物搅拌并加到一个预先用聚乙烯醇缩醛片材衬里的模具中,加热使之固化,并将缩醛片材粘合到预制坯的表面上。
日本专利申请1,225,732也叙述了用金属基料浸渍(例如Al2O3)短纤维。此种预制坯含有不多于10%的无机粘合剂和不多于5%的二氧化硅颗粒。
日本专利申请87-139838叙述了含有形状整齐一致的碳化硅纤维状结晶的金属复合材料的制法。
日本专利申请87-299569叙述了含有无机纤维预制坯的金属(Al)复合材料的制法。这些纤维是以毡状使用的,该毡是在用超声波搅拌的浴中浸渍机织的SiC、Si3N4、Al2O3、C和金属纤维而制得,它含有陶瓷、碳和/或金属的短纤维、纤维状结晶和/或粉末。
在阅读这些较早的文献时可清楚地看到,至今为止,预制坯主要是由金属氧化物、金属碳化物或金属氮化物的纤维材料或纤维状结晶或粉末而形成,然后将这些材料用聚醋酸乙烯、醋酸纤维素或聚乙烯醇类的水溶性树脂或者是淀粉粘结在一起。
本发明提出一种新型预制坯,其特征在于,它含有呈六角形薄片状的α型氧化铝单晶。
在这类预制坯中,本发明一方面特别涉及主要由α型氧化铝的六角形薄片组成的预制坯,另一方面,也涉及混合预制坯,这种预制坯中所述的薄片与一种或几种其它增强材料(如陶瓷纤维状结晶、短纤维或细颗粒)结合在一起,这些材料可选自上述参考文献中所叙述的材料,α型氧化铝的含量最好占多数。
在这种主要由α型氧化铝的六角形薄片构成的预制坯中,α型氧化铝的含量至少为90%(重量)。
本发明还涉及主要由六角形薄片组成的其孔结构均匀的预制坯,更具体地说涉及其孔半径分布具有例如下列展开式的预制坯σ2= (R84)/(R16) ≤3其中R84表示累积孔隙率为84%时的孔半径,R16表示累积孔隙率为16%时的孔半径,而 (R84)/(R50) =σ,σ是孔半径分布的标准偏差。
本发明还涉及其中孔隙率至少为70%并且完全由半径大于0.1微米的孔构成的一类预制坯。
本发明还涉及在高于1500℃的温度下稳定的一类预制坯。
在本文件中,孔隙率是用汞泵孔率计测定的,并在已知该材料的绝对密度时,由测定的预制坯的表观密度计算出孔隙率。孔体积随孔半径的分布由汞泵孔率计测定。
在根据本发明的预制坯中,六角形薄片单晶主要包含其直径最好为2~50微米、厚度最好为0.1~2微米、而直径/厚度比最好为5~100的宏晶。
在这些宏晶中,特别提及那些直径为2~18微米、厚度为0.1~1微米、而直径/厚度比为5~40的薄片。
本发明还涉及一种制造这种预制坯的方法,该方法的特征在于,它包括,使无定形氧化铝、过渡氧化铝或氢氧化铝的压紧的细粉(必要时在增强材料的存在下)结晶成为α型氧化铝的六角形薄片的密实体。
使用“压紧的粉末”一词是表示在容器中压紧直至观察不到其体积有进一步减少的粉末(按照标准NF ISO 3953)。
按照这个方法,结晶成六角形薄片的过程是在含有化学结合的氟的助熔剂存在下并在它呈熔融态作为所用氧化铝的溶剂的条件下进行的。
所谓“过渡氧化铝或氢氧化铝”目前是表示除了α型氧化铝以外的,可以是水合的各种形式的氧化铝或氢氧化铝。
助熔剂亦称之为矿化剂,它具有如上所定义的特征,主要由一种或几种不可水解的含氟化合物或含有由所述不可水解的含氟化合物组成的相与由可水解的含氟化合物组成的相按一个相溶于另一相的方式的体系构成。
为了说明上述助熔剂,将特别提及如下体系,它包含三氟化铝和一种或几种碱金属或碱土金属氟化物,具体地说是氟化锂、氟化钠、氟化钾或氟化钙。更具体地说,将使用Li3AlF6(锂冰晶石)形式的AlF3-LiF体系、Na3AlF6(钠冰晶石)、K3AlF6(钾冰晶石)或Li3Na3(AlF6)2(锂冰晶石)或3AlF3·5LiF(锂锥冰晶石)。
本发明中所用的助熔剂呈粉末状,其粒度最好小于1毫米(对于至少50%(重量)的颗粒)。
在实施本发明的方法时,相对于所用氧化铝的重量应使用至少2%,最好4~20%(重量)的助熔剂。
按照本发明的方法,将原料氧化铝与助熔剂的混合物在模具中仔细压实,(必要时在惰性气氛如氮气氛下)加热到该助熔剂熔点以上的温度,最好是900~1200℃下,并保持在此温度下直至原料氧化铝转变成为α型氧化铝(刚玉)。作为说明,这个转变过程一般在几分钟至几小时的时间内完成。
按照本发明方法的一个实施方案,特别当目的是要得到直径和/或厚度接近上述较高值的薄片时,可以将原料氧化铝与前面制备的α型氧化铝的六角形薄片结合。
按照本发明方法的另一实施方案,可以不是如上所述由氧化铝和助熔剂或由含有氧化铝、助熔剂和α型氧化铝的六角形薄片的混合物,而是只由这类α型氧化铝的六角形薄片(必要时与增强材料结合)形成本发明的预制坯。
过渡氧化铝或水合氧化铝可以在宽范围的具有不同直径和比表面的粉末产物中选择。特别使用其中至少有50%(重量)的颗粒的直径小于50微米,较好是小于25微米,最好是小于1.5微米的氧化铝。在这些氧化铝中,优先权将给予比表面等于或大于100米2/克(按BET方法测定),最好是100~400米2/克的那些氧化铝。
氧化铝和助熔剂可以以干态混合物(粉末)的形式使用,也可以以用助熔剂水溶液(必要时在增溶剂如AlCl3存在下)浸渍的氧化铝的形式使用。
在冷却和脱模以后,可以用锯切、磨削或其它能使所得制品达到所需形状和尺寸的操作方法对该多孔制品进行加工。
按照本方法的一个实施方案,特别当目的是要增加预制坯的机械强度时,要在结晶结束时进行一次附加的热处理。此热处理最好在高于结晶温度的温度下进行。此高温处理能够除去助熔剂和/或由所述助熔剂得到的产物。
本发明的方法很容易实施,这种便利特别是因为此方法可在干态下实施。
由于本发明的预制坯具有耐火性,其本身可构成可用于高温绝热的轻质砖。
由于该预制坯的组成材料及其高多孔性,该预制坯还可以用于通过用熔融金属或合金,特别是用铝或铝合金浸渍来制造复合材料。
下列实例说明本发明。
实例1将氧化铝粉末和相对于氧化铝重量为5%(重量)的助熔剂Li3AlF6在环境温度下混合。
所用的氧化铝是比表面为172米2/克的γ型氧化铝,因此其组成颗粒中有50%(重量)的直径小于1.1微米;助熔剂的组成颗粒中有50%(重量)的直径小于0.9微米(该产物的熔点为776℃)。
将此混合物放入一个坩埚中并用手工压实直至密度达到约0.65。将此坩埚放入一空气焙烧炉中,在一小时内将炉温升至980℃,然后保持此温度一小时。在外部空气下进行冷却。
得到的产物是一个容易脱模的预制坯,它由平均直径d为7微米而平均厚度e为0.5微米的薄片组成。其密度为0.63,孔隙率为1.318厘米3/克。其孔分布方式定义为具有最大孔隙率的孔的范围,它是由R1=2微米和R2=2.5微米规定的范围。

图1给给出了这种预制坯孔隙率的矩形统计图,图6给出了所述预制坯的显微照片(放大1000倍)。
实例2将与实例1中相同的混合物先在107帕的压力下压实。然后以此形状放入焙烧炉中,在此情况下不必使用坩埚。焙烧情况同实例1。
实例3按照实例2的方法,但要先在5×107帕的压力下进行预压实。图2给出了与实例1的矩形统计图(实线)相似的孔隙率的矩形统计图(虚线),图7是这种预制坯的显微照片(放大1000倍)。
实例4按照实例3的方法,但在108帕压力下进行预压实。
实例5向实例1中所述的混合物中加入其重量的50%的将实例1中合成的预制坯破碎所得到的薄片。按照与实例1相同的压实与焙烧条件进行压实与焙烧。图3给出了与实例1的矩形统计图(实线)有些相似的预制坯孔隙率的矩形统计图(虚线)。图8的显微照片表示这种预制坯的宏晶。
实例6向实例1中所述的混合物中加入其重量的50%的将实例5中合成的预制坯破碎所得到的薄片。所有其它条件与实例1相同。图9是这种预制坯的宏晶的显微照片。
实例7将实例6的预制坯加热到1600℃保持3小时。图4给出实例6(实线)及实例7(虚线)预制坯孔隙率的矩形统计图。图10是该预制坯的显微照片。
实例8向实例1中所述的混合物中加入其重量的10%的SiC纤维结晶。所有其它条件都相同。图5给出此预制坯孔隙率的矩形统计图。图11是此预制坯的显微照片(放大1000倍)。图12是放大10,000倍的显微照片,显示出在纤维结晶周围有薄片形成。
实例9在如下条件下浸渍实例1的预制坯合金6061(Al/1% Mg/0.5% Si)浸渍压力100兆帕预制坯的温度600℃合金的温度800℃锻造时间30秒测得该复合材料的Vickers硬度为130HV而纯合金为40HV。图12表示这种浸渍的预制坯(放大800倍),黑色部分相当于α型氧化铝的宏晶,白色部分相当于该合金。
所有测量结果列于下表中
权利要求
1.陶瓷预制坯,其特征在于,它含有呈六角形薄片状的α型氧化铝单晶。
2.按照权利要求1的预制坯,其特征在于,它主要由α型氧化铝的六角形薄片构成。
3.按照权利要求1和2中任一项的预制坯,其特征在于,α型氧化铝的含量至少为90%(重量)。
4.按照权利要求1的预制坯,其特征在于它包含与一种或几种其它增强材料结合的α型氧化铝的六角形薄片。
5.按照权利要求4的预制坯,其特征在于,与六角形薄片结合的一种或几种材料选自包括纤维状结晶、短纤维或细颗粒的一组材料。
6.按照权利要求5的预制坯,其特征在于,α型氧化铝的六角形薄片的重量含量占优势。
7.按照权利要求2和3中任一项的预制坯,其特征在于,其结构是多孔的,孔半径的分布有如下式的展开式,即σ2= (R84)/(R16) ≤3,其中R84表示累积孔隙率为84%时的孔半径,R16表示累积孔隙率为16%时的孔半径,而且R84/R50=σ,σ是孔半径分布的标准偏差。
8.按照权利要求2、3和7中任一项的预制坯,其特征在于,其孔隙率至少为70%,并且完全由半径大于0.1微米的孔构成。
9.按照权利要求1至8中任一项的预制坯,其特征在于,所述六角形薄片主要由其直径最好为2~50微米、厚度最好为0.1~0.2微米、而直径厚度比最好为5~100的宏观晶体构成。
10.制造权利要求1至9中任一项的预制坯的方法,其特征在于,它包括使无定形氧化铝、过渡氧化铝或氢氧化铝的压实细粉(必要时可在增强材料存在下)结晶成α型氧化铝的六角形薄片的密实体。
11.按照权利要求10的方法,其特征在于,结晶过程是在含有化学结合的氟并处于熔融态作为所用氧化铝的溶剂使用的助熔剂存在下进行的。
12.按照权利要求10和11中任一项的方法,其特征在于,该助熔剂主要由一种或几种不可水解的含氟化合物,或含有由所述不可水解的含氟化合物组成的相与由可水解的含氟化合物组成的相按一个相溶于另一相的方式的体系构成。
13.按照权利要求10至12中任一项的方法,其特征在于,结晶在高于助熔剂熔点的温度下,最好是在900~1200℃下进行。
14.按照权利要求10至13中任一项的方法,其特征在于,除了氧化铝粉末和助熔剂以外,原料混合物含有由前面操作中得到的α型氧化铝的六角形薄片。
15.用按照权利要求1至9中任一项的预制坯制造的耐火砖。
16.通过用熔融态的金属或金属合金浸渍按照权利要求1至9中任一项的预制坯所得的复合材料。
全文摘要
本发明涉及陶瓷预制坯。此预制坯含有α型氧化铝的六角形薄片。其生产方法包括使用无定型氧化铝、过渡氧化铝或氢氧化铝以及含氟助熔剂。此预制坯可以原状使用或用来制造复合材料。
文档编号C22C1/10GK1056675SQ9110340
公开日1991年12月4日 申请日期1991年5月23日 优先权日1990年5月23日
发明者罗兰·巴舍拉尔, 安尼克·富尔 申请人:阿托化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1