用于热喷涂的纳米结构的进料的制作方法

文档序号:3394875阅读:221来源:国知局
专利名称:用于热喷涂的纳米结构的进料的制作方法
技术领域
本发明一般涉及纳米结构材料领域,特别是涉及纳米结构的进料应用于通过热喷涂工艺沉积高品位的纳米结构涂层。
有关超细微观结构的材料在工艺上所展现的引人注意的特性,很早就为大家所注意。在过去的几年中,一类新型的亚微粒结构的材料已出现了,它是超微粒子或颗粒组成的。这种新材料,一般称为“纳米结构材料”(Nanostructured Materials)。纳米结构材料的的特征在于在颗粒的晶界面上依附有大量的材料的原子。例如,若一个晶粒的直径为5纳米,大约有一半的原子,以纳米晶体或纳米相固体依附在颗粒的晶界面上。
虽然在纳米结构材料领域的研究中,目前是关注于纳米结构疏松材料的的合成和加工上,但对纳米结构涂层,正在日益增长兴趣,它包括热屏阻涂层,硬及超硬度涂层。这种具有预定目的的多功能涂层的纳米结构疏松材料,对于其材料的性质的发展以及在结构的应用方面的广泛的性能,会为今后创造极大的机会。
从1980年代后期开始,Rutgers大学及康奈狄克州立大学就主要从事纳米结构材料的研究,在合成技术的进展上包括(1)用有机溶液反应(OSR)和水溶液反应(ASR)法制成的纳米结构金属粉末,(2)用喷雾转化加工(SCP)法制成纳米结构的陶瓷金属粉末,及(3)用气体凝缩加工(GCP)法制成的纳米结构粉末。通过固态及液态烧结方法(对疏松材料),在保持合乎需要的纳米结构前提下固结纳米结构粉末的研究上,也取得了很大进展。
目前有三个不同的工艺用于纳米结构粉末的合成上,这些工艺包括
(1)用有机溶液反应(OSR)及水溶液反应(ASR)方法以合成纳米结构的金属粉末。如纳米结构的Cr3C2/Ni粉末;(2)喷雾转化加工(SCP)法以合成纳米结构的金属陶瓷粉末。如碳化钨/钴及Fe3Mo3C/Fe粉末;及(3)气体凝缩加工(GCP)法以合成纳米结构陶瓷粉末,如TiO2,ZrO2,及硅/碳/氮(Silicon/Carbon/Nitrogen)。
用OSR及ASR方法制备纳米结构金属及合金有三个步骤(1)制备一混合的金属氯化物的有机或水溶液;(2)用金属氢化物将起始溶液进行还原分解,以制得含有金属成分的胶体溶液;及(3)过滤,冲洗,及干燥,接着在控制的碳和氧活性(carbon andoxygen activity)条件下,通过气相碳化,俾在金属基体相上形成所要的碳化相的纳米分散体。
采用以上步骤,合成各种纳米结构的金属/碳化物粉末,包括纳米结构的Cr3C2/NiCr粉末,它可应用在热喷涂防腐硬涂层方面。在最后冲洗时,可加少量有机钝化剂,如己烷中的石蜡溶液,以保护具有大表面积的粉末使其在干燥及与空气接触时,不会自燃。经此法合成的粉末,是松散附聚的,这里所用的术语“附聚的”,它也包括被集结在一起的许多纳米颗粒。
用SCP方法合成纳米结构的金属陶瓷(Cermet)的复合粉末时,包括三个连续步骤(1)制备含有各种构成成份的盐混合物的含水溶液;(2)将起始溶液喷雾干燥,以形成均匀的前体粉末;及(3)将前体粉末经流化床转化(还原及碳化),以得到所需要的纳米结构金属陶瓷粉末。
SCP法已用于制备纳米结构的WC/Co,纳米结构的Fe3Mo3C/Fe,及类似的金属陶瓷材料,该颗粒可能是中空的球状外壳的形式,为避免在曝露于大气中时,起过度的氧化作用,粉末在合成后,常经钝化处理。
GCP法是当今具有最多种用途的合成法,此法可制成实验室份量的、具纳米结构的金属陶瓷粉末,此工艺的特点是它能产生在相对低温下,可烧结的松散的附聚的纳米结构的粉末。
在GCP法中如采用惰性气体凝结(IGC)办法,就是用高温蒸发源去产生粉末颗粒,对流传送到冷却的基底上而收集之。由于热的蒸气物质和较冷的惰性气体原子(通常在1-20mbar压力下)在反应室内的交互作用使在蒸发源上的热化区逐渐产生纳米颗粒。生产陶瓷粉末,通常有两个步骤首先是把金属源蒸发,或最好蒸发有高蒸气压的金属低氧化物,然后慢慢氧化以逐渐产生所需要的纳米结构陶瓷粉末颗粒。
在GCP法中,如采用化学蒸气凝结方法(CVC),用热壁管状反应器去分解前体/载气以形成从反应器管内流出的连续的簇状物或纳米颗粒的气流。此CVC加工法的成功关键是(1)载气中的前体是低浓度的;(2)经过均匀加热的管状反应器时,气流应是快速扩散的;(3)急速骤冷从反应管出来的气态的有核的簇状物或纳米颗粒;及(4)反应室的压力要低。
正如IGC方法一样,所得到的纳米结构陶瓷粉末颗粒是松散附聚的,且具有低温的烧结性,这和传统的用常压燃烧火焰及电弧等离子粉末加工法所制造出的超微粒粉末不同,后者所生产的凝结的聚集体只有在高温烧结下固结。因此用CVC方法可合成各种陶瓷材料纳米结构粉末,该种粉末是难以用IGC方法生产的。例如,纳米结构的SiCxNy粉末,它有多种适合的有机金属前体,如六甲基二硅氨烷(Hexamethyldisilazane,HMDS),其所得粉末的真正组成会强烈地受到所选择的载气影响。因此HMDS/H2O,HMDS/H2,及HMDS/NH3,会产生纳米结构的陶瓷粉末分别接近SiO2,SiC及Si3N4的组成。
在当前工业的应用上,通过热喷涂或等离子沉积的方法用以沉积金属、陶瓷或复合涂层所用粉末,其颗粒直径大约在5-50微米之间。当粉末在火焰或等离子体中短暂停留时,使其颗粒快速加热,形成部分或完全熔化的液滴喷雾,这些被熔化的小滴喷在基底的表面时,由于高的冲击力,使颗粒和基底产生很强的粘着作用并形成几乎任何所需的材料的致密的涂层,其厚度可以从25微米到几个毫米并能有相对高的沉积率。
一般而言,用于热喷涂涂层的传统粉末生产,经过几个步骤,它包括球磨,机械混合,高温反应以及有时使用粘合剂的喷雾干燥。在热喷涂工艺中的粉末输送系统,是为用于从5-25微米粒度的粉末附聚物而设计的,传统粉末的构成粒子的最小粒度是在1-0.5微米之间,反之,纳米结构的材料,其构成粒子或颗粒的粒度可在1-100纳米的范围。因此合成的纳米颗粒粉末,不适合于一般传统热喷涂涂层,它必需经过再加工处理,才能满足传统喷涂工艺的粒度要求。因此,为使合成的粉末能适宜于为传统的工业喷雾沉积采用,就必需有对合成纳米粉末的再处理工艺。换言之,为达到可再现的高质量的纳米结构的涂层的沉积,必需要能使,可靠价廉高生产率的合成粉末或用于原地合成颗粒的化学前体能直接注入热喷涂器械内。
传统喷涂工艺的以上所谈的和其他问题与缺陷,本发明均把它克服了或减少了。本发明的一个特色,就是它首先能产生适合使用传统的热喷涂工艺的纳米颗粒进料。
因此,本发明的实施方案之一,就是提供再加工合成纳米颗粒粉末的方法,使形成聚集体的形式以适用于传统的喷涂方法沉积纳米结构涂层,它是首先将合成的粉末藉超声波方法分散在液体介质中,然后喷雾干燥,此喷雾干燥的附聚的纳米结构粉末,是呈球状,具有在10-50微米的理想的较窄粒径分布范围内。在热喷涂上,该粉末有很好的供喂性能,在燃烧火焰或等离子体中,并具有均匀的熔化性质。因此,其涂层呈现有均匀的纳米结构,几乎没有孔隙,与基底的粘合性好,更具有很好的抗磨性能。与用球磨或机械混合的传统粉末相比,例如,本发明之方法,其材料的各种构成成份之混合可以达到分子级水平。
本发明的另一实施方案是它提供了一种方法,该方法能使合成的纳米颗粒直接注入传统的热喷涂沉积装置的燃烧火焰或等离子体内,其中合成粉末首先藉超声波方法分散在液体介质中。这种直接注入法,可以再现高质量的纳米结构涂层的沉积,而不需要经过一个中间的再加工步骤。其非常短的扩散矩离,使得纳米颗粒和气流中的蒸气物质之间,发生快速反应,例如,炭化、氮化和硼化反应。本实施方案同时也能使给定材料的成份,在分子水平上混合。
本发明还有一实施方案,就是它提供能生产纳米结构涂层的方法,它是用超声波方法,产生有机金属气溶胶进料,该方法,将纳米颗粒的合成、熔化及骤冷等均在一个操作程序中完成。
由下面的附图及其详细描述,本领域的普通的技术人员,对以上所谈的有关本发明的特性及优点,将会有深刻的认识与理解。
以下附图中,在几个附图中的相似的各部分均以类似的数字表示。


图1是用于热喷涂的附聚的纳米结构粉末的合成的实施例的流程图,此图包括本发明对合成粉末的再加工过程。
图2是本发明合成的纳米结构粉末再加工方法的详细流程图。
图3是本发明方法再加工得到的WC/Co纳米结构粉末的扫描电子显微图。
图4A与4B是传统的陶瓷金属粉末颗粒与本发明的附聚的陶瓷金属粉末颗粒的热喷涂的比较图。
图5是指本发明用超声波方法产生的有机金属气溶胶原料制造纳米结构涂料方法的描述。
图1与图2是本发明的的一种实施方案的描述,它提供了一种方法,使纳米颗粒粉末加工成附聚的形式以适合对纳米结构涂层的热喷涂沉积。按此方法将合成的纳米结构粉末10,12,及14用超声波法分解并分散在液体介质中,然后喷雾干燥,以形成球状的纳米颗粒附聚物16,俾适合热喷涂沉积之用。原有粉末,通常小于50微米。可降低至亚微米级的尺寸。在几分钟内形成一种粘稠的淤浆或胶状悬浮物,通过溶液反应法(OSR或ASR)合成的纳米颗粒10,SCP法合成的纳米颗粒12,或者是CVC法合成的纳米颗粒14,均可用本发明的方法加工处理。换言之,任何方法合成的纳米颗粒,均可适用于本发明。此外,附聚的纳米颗粒粉末,除特别适合热喷涂沉积外,此项技术对其它需要附聚的纳米颗粒的技术也有其应用价值。
在这个及其混合物实施方案的方法的实践中,此合成粉末包括颗粒10,12,14及其混合物,首先将其悬浮在液体介质中,以形成悬浮液18,按所需的最终的附聚的粉末的性质而定,液体介质可以是水-基的,也可以是有机-基的。合适的有机溶剂,包括甲苯,煤油,甲醇,乙醇,异丙醇及丙酮等,但并不限于这些。
然后将介质以超声波处理以分散纳米结构材料使形成分散液20。在超声波发生端24的顶部的空穴作用区22,超声波的分散作用最为显著。纳米结构的粉末,可以只是在溶液中分散,也可能在数分钟内,形成一种胶体悬浮液。
也可将一种粘合剂加入溶液中,以形成一种混合物26,在有机-基的液体介质中,粘合剂含5-15wt%,优选约10wt%的石蜡,溶解在合适的有机溶剂中。合适的有机溶剂包括己烷,戊烷,甲苯等,但并不限于这些。在水-基的液体介质中,粘合剂包括市面上可以买到的聚乙烯醇(PVA),聚乙烯吡咯烷酮(PVP),羧甲基纤维素(CMC)或某些其他溶于去离子水中的水可溶的聚合物的乳液。此粘合剂以溶液总重量计占约0.5-5wt%之间,最好是在1-10wt%之间,优选的粘合剂是CMC。
经过机械混合,如还需要,在进一步超声波处理之后,在液体介质中的纳米结构粉末的悬浮液26,在热空气中喷雾干燥而形成附聚的颗粒16。虽然任何适合的非反应气体或其混合气体均可使用,但还是热氮气,或热氩气较佳,因为不需要从水-基液体介质的喷雾干燥操作中处理废气,当其可能时,这是优选的。
喷雾以后,将粉末16在低温(<250℃)加热处理以除去剩余水分,使有机成分(聚合物或石蜡)作为粘合剂相。若有必要,可加入在高温进一步加热处理步骤,以有效地排除吸附的和化学吸收的氧气,以及促进部分烧结。例如,用600℃的热处理是有效的,然后将所得的粉末用于传统的热喷雾沉积方法中。以下非限制性的实施例,说明用超声波分散技术对合成纳米结构粉末的再加工的方法。
例1制备纳米结构碳化钨/钴WC/Co粉末附聚物的典型加工条件如下即将以现有技术公知方法制备的纳米结构的碳化钨/钴WC/Co,在去离子及脱氧的水中制成约50Wt%的溶液,在频率20,000赫兹及电力300-400瓦特之下,用超声波仪将纳米结构的WC/Co分散以形成低粘度的淤浆。输入此能源后,原来合成的中空球形壳的颗粒,直径约10-50微米就会迅速在液体介质中离解及分散,而形成颗粒大小约为100毫微米的分散相。接着将5-10Wt%的碳黑及2-3Wt%PVP在去离子及脱氧的水中的溶液加到悬浮液中,任选地添加碳黑的目的在于补偿由于燃烧中或等离子高度反应中WC颗粒的碳的损失。CMC也适合用于WC/Co材料。
经过混合,及进一步超声波处理,该淤浆即在一个可商购的装置中喷雾干燥而形成为图3所示的约平均直径为5-20微米的固态球状颗粒的粉末。最后经过附聚作用处理以后粉末最好在减压之下,通过低温脱气处理以清洁粉末,然后再回填以干燥氮气。此粉末即可长期储藏在氮气中而不会分解。
由于纳米结构的WC/Co粉末附聚物的高表面积,由于在氧或富氧物质存在下在附聚物内有原地脱碳的可能。为解决此问题,最好进行钝化处理,即在粉末加工的某些阶段,使用适当的无氧化合物如石蜡。石蜡被化学吸收在高表面积的纳米颗粒上,最好是将石蜡溶于已烷溶液中(浓度为5-10Wt%)加入。
由于相对较低的火焰温度,及短暂的颗粒运行时间,它可减少在火焰中的不良反应,所以高速的含氧燃料“HOVF”方法,用以沉积纳米结构金属陶瓷的涂层,是很理想的。
用本发明的方法,在应用纳米结构金属陶瓷粉末如再加工的WC/Co时,它的一个主要特性,就是在热喷涂时其基体(粘合剂)相的均匀熔化形成半固体或“软泥状”颗粒。由图4A及4B可看出,传统粉末颗粒40包含一硬颗粒相42其周围围绕着固态基体相44。在喷涂设备的热区中,此固态基体相44,即变为一个熔化的基体相46。因此,在传统的金属陶瓷粉末颗粒40,大的碳化物颗粒(直径为5-25微米)42,在热区中,其粒度大小,几乎没有改变,因为在喷枪嘴到接触基底之间的运行时间,只有1毫秒的有限的热转移时间。这样的颗粒形成的涂层48,可能会有很多空隙。
反之,本发明的附聚的金属陶瓷粉末颗粒50包含在基体相54内的硬颗粒52,粒度大小约为5-50毫微米之间,通过粘合剂56而附聚。在热喷涂过程中此已附聚的的纳米结构颗粒50中的各碳化物小粒52,使得颗粒很快地溶解在熔化的基体58中而产生泥状的金属陶瓷颗粒60。此泥状颗粒60很快就流射在基底上而形成高度粘结的致密的而具低空隙度的涂层62。藉选择高于喷出颗粒的低共低熔点的过热程度,可以控制此冲击颗粒的流动性程度。除此以外,这种泥状纳米结构的金属陶瓷颗粒的高的冲击速度有利于促进分散以及与基底表面的粘结作用。
例2用ASR和OSR方法所产生的纳米结构的Cr3C2/NiCr粉末都是呈松散附聚物的形式,有不同粒度及形态。按以上一般步骤,这些粉末可以在含水或有机液体介质中,加入聚合物或石蜡粘合剂等,藉超声波分散,然后喷雾干燥以形成约2-25微米直径大小的均匀粒度的球形附聚物。而且在热喷涂时,当这些纳米复合粉末碰撞在基底表面时,会遭受到部分熔化和形成薄片而骤冷,这种现象和上述纳米结构碳化钨/钴,WC/Co,粉末所述情况一样。
例3用商业上的一种火焰燃烧合成方法,可以制造出纳米结构的SiO2粉末,这种合成的粉末,有很大的表面积(>400m2/gm),它是一种已知的称为“凝结的聚集体”(cemented aggregates)的硬的附聚物的形式。每个聚集体有高达10-100纳米颗粒。此粉末由于它特有的亲水性能,它可以很快地分散在水溶液中,其产生的胶态悬浮物,含有PVA,PVP或CMC等作为粘合剂。然后通过如前所述的喷雾干燥可以转化成球形的附聚物,但它在热喷涂时其现象是不一样的,因为SiO2颗粒,只是变软而非熔化的缘故。
以上两例中所述的喷雾干燥的附聚的纳米结构粉末是球状的,具有最佳的10-15微米之间的窄的粒度分布。这样,它们在热喷涂中具有优良的进料特性,在燃烧火焰中或等离子喷涂时,它有均匀的熔化现象,从该方法形成的的涂层,显示均匀的纳米结构,极低的空隙率,有极佳的的其底粘着性及极佳的耐磨性能。特别是由本方法的从,金属陶瓷材料,如WC/Co,Cr3C2/Ni,Fe3Mo3C/Fe形成的涂层均具有新的纳米结构,此结构是由坚硬碳化物相的纳米分散体分布在非晶态或纳米结晶富含金属的基体相所组成。从而显示极佳硬度和耐磨性。
在本发明的另一实施方案中,纳米结构粉末的进料,在超声波分散之后,直接注入热喷涂系统,就本发明的实际应用而言,合成的纳米结构粉末,不论是用GCP物理方法,或IGC及CVC的化学方法合成的均可适用。这些粉末都是单分散的和松散地附聚的。通过小心调节技术上已知的某些关键的加工参数,即可很容易地将颗粒大小控制在3-30纳米之间。这些松散地附聚的粉末,在去离子水、各种醇类或液态烃中,利用超声波的搅拌可以很容易地分散而成胶态悬浮物或淤泥状物。此纳米颗粒的悬浮液或淤泥状物,配以液态煤油燃料,通过液体进料可直接注入HVOF装置的燃烧仓中。除此以外,此悬浮液或淤泥状物也可以气溶胶的形式,注入等离子或“HVOF”喷枪的气体进料中。
此实施方案的特征在于颗粒在离枪嘴短距离内即被很快地被加热使立即赶上达到超声波范围的喷枪气流的速度,有时候,此纳米颗粒,在冷却的基底上凝结以前,就可能气化。在此情况下,此方法变成高速的CVD方法。
当应用一种单一的成份,用此法直接将纳米颗粒注入,有几个好处。第一、它不需要对粉末进行再加工处理。第二、两个或两个以上的纳米颗粒供料系统,不论是连续地操作,或是顺序地操作,可产生出多个纳米涂层,或调整过的组成结构甚至少到纳米级的尺寸。第三、用作为热喷涂装置的燃料的同样液体,如煤油,也可用于制取分散体。最后,因为只有很短的扩散距离,在纳米颗粒与气流中的蒸气物质之间,会发生非常迅速的反应(如炭化,氮化,及硼化等)。
其它纳米结构金属陶瓷的细丝,中空壳及其它颗粒状物等均可用此直接注入方法掺入到纳米复合涂层中。市面上可以买到中空的陶瓷微球(直径为1-5微米之间)。一般而言,用不同的相和颗粒形态的混合物差不多可产生出所企盼的各种涂层结构,包括细丝增强的和叠层的纳米复合物。
这种将纳米颗粒直接注入之法,是既简单,又变化多样,而且又具规模化的生产能力。因此它为开发新类型的纳米热喷涂的结构涂层的创造了机会。更有甚者,即此直接注入技术,可以直接应用在现存的热喷涂系统的热喷涂设备上,成本也合算。以下所举的非限制性的例子,可进一步说明在超声波分散后,将合成的纳米结构粉末直接注入的本发明的实施方案的方法。
例4如用CVC方法制成的纳米结构的ZrO2,Al2O3,SiO2及SiCxNy粉末等,或用OSR方法制成的纳米结构粉末Cr3C2/Ni Cr,由于它们的超细颗粒尺寸,所以很快在有机液体介质中形成胶状悬浮物。因此这些纳米材料是很理想的,将其纳米颗粒直接注入传统热喷枪的液流中,从纳米结构的SiO2及纳米结构的Cr3C2/NiCr粉末,可分别制造出高密度的非晶态及部分非晶态结构的涂层。
例5若是连续地用机械搅拌,经过超音波处理后,则亚微米的纳米结构WC/Co颗粒也可在液相中保持高度分散状态,因此,没有必要一定要形成纳米结构的WC/Co粉末的完全稳定的胶态悬浮液。这种直接注入热喷枪燃烧仓办法所得的涂层和以粉末附聚物作为进料材料的方法而得的涂层是一样的。
例6在预先被氧化的金属-Cr AlY基底上,用直接注入法去喷涂沉积纳米结构的钇稳定化的氧化锆(YSZ)涂层。为增强在热循环条件下的抗分裂性质,涂层最好是按成份逐渐变化的,以减少热膨胀失配应力是必要的。
例7一种新型的“热屏阻涂层”(TBC)可以通过在金属-CrAlY结合层支持的纳米结构的YSZ覆盖层之中再加入空心的陶瓷微球来制备。换言之,此陶瓷微球可以加入到金属-CrAlY结合层中。在此情形下,需要高体积分数的微球以保证涂层的高热抗阻性。
例8当陶瓷的纳米颗粒和空心微球所组成的泥状混合物导入到燃烧火焰或等离子中,很可能只有纳米颗粒被熔化而此微球体仍保持非熔状态。因此而发展出一种复合涂层,其中空心陶瓷微球通过一个致密的纳米颗粒陶瓷涂层结合到基底上。
纳米结构的YSZ的“热屏阻涂层”,可通过再加工的方法,也可通过直接注入方法制造。但不论是那种方法主要看在沉积涂层时颗粒沉积率及温度梯度之不同,其最后涂层不是由各方等大的颗粒,就是由园柱状颗粒构成。
在本发明的另一实施方案中,就是作为热喷涂加工的供喂原料,是经过超音波喷嘴,而产生的有机金属前体气溶胶。它最大优点,是将纳米的合成,融化,及骤冷结合为单一的操作过程。如图5,前体液体80导入到超声波的喷嘴82。当等离子气体经电极时88,产生等离子火焰86,此喷嘴将所得到的气溶胶84喷在火焰上,而产生纳米颗粒90,它然后在基底上急速冷却。例如,有机金属前体,六甲基二硅氨烷(HMDS)在空气中经超声波的处理而雾化并送至DC等离子喷枪的出口处,此前体化合物的快速热解而形成纳米结构的Si CxNy的簇状物或纳米颗粒,它可以高速的气体束从喷枪上喷出,当这些热的颗粒撞击及结合在基底表面上时,就形成了涂层。
本发明方法所形成的纳米结构涂料,有广泛而实际的应用价值,特别是用hydroxyapatite,或vitellium所制成的纳米结构涂料,它应用在医疗设备上。本涂料有规范一致的纳米结构,低空隙率,优良的基底粘结性及抗耗磨性能。例如,不像传统的粉末,是用球磨和机械搅拌混合,而本发明的方法,是让材料的组成要素在分子的水平上进行混合,例如,在直接注入实施方案中,非常短的扩散距离使得纳米颗粒与在气流中的蒸气物质之间可以发生快速反应,例如炭化,氮化,及硼化作用。
以上只是对本发明的优选的实施方案作了简单描述而已,在本发明的精神实质及范围之内,还可以做很多修改及替换,基于此,这里只是对现有发明做了陈述,而非限制其在其他领域的应用。
权利要求
1.一种产生附聚的纳米结构颗粒的方法,它包括如下步骤(a)用超声波方法,在液体介质中,分散纳米结构的材料;(b)向介质中加入一种有机粘合剂,以产生溶液;及(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒。
2.按照权利要求1的方法,还含有处理喷雾干燥的颗粒的步骤,以将残余的水份除掉。
3.按照权利要求1的方法,其中所述的除去残余的水份的处理步骤是加热处理。
4.按照权利要求1的方法,其中纳米结构颗粒的粒度,其直径大约是从5-20微米之间。
5.按照权利要求1的方法,其中所述的液体介质选自水,甲苯,煤油,甲醇,乙醇,异丙醇及丙酮的组中。
6.按照权利要求1的方法,其中有机粘合剂选自聚乙烯醇,聚乙烯吡咯烷酮及羧甲基纤维素的组中。
7.按照权利要求6的方法,其中有机粘合剂,以总溶液的重量计约为0.5-5wt%之间。
8.按照权利要求1的方法,其中有机粘合剂含有溶解在有机溶剂中的以总溶液重量计约为5-15%之间的石腊的混合物。
9.按照权利要求1的方法,还包括在高温下,流通氢气的热处理步骤,以除去吸附的或化学吸收的氧气,以促进部分烧结。
10.一种将纳米结构颗粒直接注入喷枪内以用于热喷雾沉积的方法,该方法包括几个步骤(a)用超声波方法,在液体介质中分散纳米结构材料,以形成一种分散的溶液;(b)将所述的分散的溶液直接注入热喷涂装置的进料中。
11.按照权利要求10的方法,其中分散液注入到热喷涂装置的液体进料中。
12.按照权利要求10的方法,其中分散液以气溶胶的形式注入到热喷涂装置的进料中。
13.按照权利要求10的方法,其中分散液中还含有颗粒状的物质,该物质选自陶瓷细丝和陶瓷空心壳,金属陶瓷细丝及金属陶瓷壳中空壳的组中。
14.一种用于热喷涂沉积的,按照权利要求1或10的方法生产的纳米结构的进料。
15.按照权利要求14的纳米结构进料,其中进料是选自WC/Co,Cr3C2/Ni,Fe3Mo3C/Fe,钇稳定化的二氧化锆(YSZ),SiC,Si3N4及MnO2的组中的纳米结构材料衍生的。
16.按照权利要求14的纳米结构进料,其中进料还包括碳黑。
17.一种制造纳米结构涂层的方法,该方法包括如下步骤(a)用超声波方法,在液体介质中分散纳米结构的材料;(b)向所述介质中,加入一种有机粘合剂,以产生溶液;(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒;及(d)再将纳米结构的颗粒,喷涂在物件上,以形成纳米结构的涂层。
18.按照权利要求17的方法制成的纳米结构涂层,其中,所述的涂层是由金属陶瓷材料制成,含有在非晶态富金属相上的硬的碳化物相的纳米分散物。
19.一种制造纳米结构涂层的方法,该方法包括如下步骤(a)用超声波方法,在液体介质中分散纳米结构的粉末;(b)将所述的分散液直接注入热喷枪的进料中;及(c)将纳米结构的粉末喷涂在物件上,以形成有纳米结构的涂层。
20.按照权利要求19的方法,其中被分散的溶液中还含有颗粒状物质,该物质选自陶瓷细丝及陶瓷的中空壳的组中。
21.按照权利要求17或19的方法,其中在喷涂步骤中的过热量是在低共熔点之上,以有效地形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
22.按照权利要求17或19的方法制成的纳米结构的涂层。
23.按照权利要求22的纳米结构涂层,其中纳米结构的材料包括钇稳定化的二氧化锆(YSZ),由此形成热屏阻涂层。
24.按照权利要求23的纳米结构涂层,其中该涂层含有各方等大的颗粒。
25.按照权利要求23的纳米结构涂层,其中该涂层含有园柱状颗粒。
26.按照权利要求22的纳米结构涂层,其中纳米结构的材料包括陶瓷,金属陶瓷,及金属材料等。
27.按照权利要求26的纳米结构涂层,其中纳米结构粉末选自WC/Co,Cr3C2/Ni,Fe3Mo3C/Fe,SiC,Si3N4,钇稳定化的二氧化锆,hydroxyapatite,vitellium,及MnO2的组中。
28.一种制造纳米结构涂层的方法(a)制成一种有机金属进料的储液;(b)用超声波方法将有机金属溶液雾化;及(c)然后将雾化的溶液输入等离子喷枪的喷咀,而喷涂在待涂覆的物件上。
29.按照权利要求28的工艺所制造的纳米结构的涂层。
30.按照权利要求29的涂层,其中有机金属储液是六甲基二硅氨烷。
全文摘要
本发明涉及将经过再加工的纳米颗粒粉末进料,纳米颗粒悬浮液,及有机金属液体应用在传统的热喷涂沉积上,以制造高质量的纳米结构的涂层的方法。在本发明中例举了三种实施方案。在这些不同的方法中,都是用超声波方法分解合成的颗粒附聚物,分散在液体介质中的纳米颗粒以及雾化液体前体。
文档编号C23C4/12GK1175984SQ96191409
公开日1998年3月11日 申请日期1996年11月13日 优先权日1995年11月13日
发明者P·R·斯特拉特, B·H·基尔, R·F·保兰特 申请人:康涅狄格大学, 新泽西州州立大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1