一种致密氧离子-电子混合导体氧化物涂层的制备方法

文档序号:9612057阅读:420来源:国知局
一种致密氧离子-电子混合导体氧化物涂层的制备方法
【技术领域】
[0001]本发明涉及一种致密氧离子-电子混合导体氧化物涂层的制备方法,属于表面技术领域,特别涉及一种采用超音速等离子喷涂在多孔金属材料表面沉积致密Laa 6Sr0.4Co。.sFea 203 δ 涂层的制备方法。
【背景技术】
[0002]氧离子-电子混合导体氧化物是一类同时具有氧离子和电子导电性能的陶瓷材料,此类材料制得的致密薄膜在高温(尤其是700°C以上)、氧浓度梯度的驱使下,氧可以透过致密膜由高氧分压侧向低氧分压侧扩散。该类材料一般会具有钙钛矿或类钙钛矿型晶体结构,钙钛矿结构是混合导体氧化物材料中最为理想的一种结构形式,本发明选用的La0.6Sr0.4Co0.8Fe0.203 δ氧化物即具有典型的钙钛矿结构,其晶格中极易形成氧离子缺陷(氧空位),氧得以在这些空位中进行传输,这种氧空位机制使得混合导体氧化物材料对氧有100%的选择透过性。因此,由混合导体氧化物材料制备出的透氧膜在氧分离(如制氧,C02、NO等有害排放分解)、涉氧工业过程(如天然气部分氧化制合成气等)以及固体燃料电池等领域具有十分诱人的应用前景。
[0003]目前制备膜多采用成型-烧结方法,该类方法存在制备周期长,制备出的膜脆性大、机械强度低、高温下不易连接密封等缺点,导致目前混合导体透氧膜仍难以进入工业化应用。为解决这些问题,有研究提出在透气性能良好的多孔金属上制备透氧膜。多孔金属的支撑作用保证透氧膜具有较高的机械强度,从而可大幅降低透氧膜厚度,有助于提高其透氧性能。与陶瓷透氧膜材料相比,金属在高温下也更易于连接密封。由于传统制备过程中多孔金属与膜材料不能共烧结,因此现有方法已不能在金属上进行致密膜的制备,而等离子喷涂方法可实现在多孔金属支撑上快速大面积沉积透氧膜,在显著提高透氧膜的制备效率、机械强度的同时更易于封接和组件化,在未来工业化应用方面具有明显优势。然而目前常规的等离子喷涂涂层结构较为疏松,涂层致密性无法满足混合导体透氧膜的要求。新型的超音速等离子喷涂方法的特点是焰流集中、温度高、速度高,有利于获得结构致密的陶瓷涂层,很适合用于透氧膜的制备。

【发明内容】

[0004]本发明的目的为了克服现有混合导体致密透氧膜制备方法上的不足,提出了一种在多孔金属材料上制备致密混合导体透氧膜的方法,即利用热喷涂方法将La。.6Sr。.4Co。.sFea 203 δ粉末原材料制备成可以用于透氧的致密涂层,这种涂层即为透氧膜。所述方法利用超音速等离子喷涂技术在多孔金属表面沉积的Laa6Sr0.4Co0.8Fe0.203 δ涂层具有结构致密、热化学性能稳定等优点。
[0005]本发明是通过下列技术方案来实施的:具体制备步骤如下:
(1)多孔金属的前处理:用丙酮超声清洗多孔金属基体表面,然后采用120#白刚玉或46#错刚玉砂,喷砂压力0.18~0.4MPa喷砂处理; (2)制备 La0.6Sr0.4Co0.sFea203 δ涂层:以 La a6Sr0.4Co0.sFe0.203 5氧化物粉末为热喷涂材料,喷涂电流250~270A,喷涂电压440~475V,压缩空气压力3~4bar,丙烷流量为
1.5~2.5L/min,送粉氮气流量9~12L/min,送粉率6~10g/min,喷涂距离150~250mm,制备La0.6Sr0.4Co0.8Fe0.203 δ 涂层厚度约为 60~90 μπι。
[0006]上述步骤(1)中的多孔金属为开孔率34~37%的316L不锈钢和开孔率15%的NiCrAlY 合金。
[0007]上述步骤(2 )中La。.6Sr0.4Co。.8Fe0.203 δ热喷涂材料为团聚烧结粉末,粒径为-45 土 15 μ m。
[0008]本发明的优点。
[0009](1)本发明实现了由多孔金属支撑的混合导体透氧膜的制备。
[0010](2)本发明利用超音速等离子喷涂方法可实现快速、大面积沉积透氧膜,避免了传统制备方法所必需的烧结过程,简化了工艺流程,提高了制备效率。
[0011 ] (3)本发明通过超音速等离子喷涂方法制备的La。.6Sr0.4Co0.8Fe0.203 δ混合导体氧化物涂层结构致密,热化学稳定性良好。
【附图说明】
[0012]图1为实施例1中的多孔NiCrAlY合金支撑Laa6SrQ.4CoQ.sFea203 δ涂层的金相图片。
[0013]图2为实施例中的多孔316L不锈钢支撑LaQ.6SrQ.4CoQ.sFea203 δ涂层的扫描电子显微图片。
[0014]图3为为实施例中涂层经850°C保温5小时后的扫描电子显微图片。
[0015]图4为实施例中的Laa6Sra4CoasFea203 5涂层气密性测试结果。
[0016]图5为Laa6Sra4CoQ.sFeQ.203 δ粉末、喷涂态涂层以及涂层经850°C保温5小时后XRD图谱。
【具体实施方式】
[0017]下面结合附图和实施例对本发明做进一步详细说明。
[0018]实施例1
本实施例中涂层支撑体为多孔NiCrAlY合金,La0.6Sr0.4Co0.8Fe0.203 δ涂层厚度为60 ± 10 μ m。
[0019](1)多孔NiCrAlY合金制备:原材料为平均粒径位45 μπι的NiCrAlY粉末(Cr,21-23 wt% ;Al,9~ll%wt% ;Υ,0.8-1.2wt% ;),粘结剂为汽油,石蜡作为造孔剂,三者以重量比16:5:2混合,并在80°C下搅拌均匀;在800~100010^压力下压制成型;在氢气保护气氛下进行烧结,烧结制度如下:首先升温到200°C保温1小时,再升温到500°C保温1小时,然后升温到1225°C保温5小时,以上过程升温速度均为每分钟5°C。该法制备的多孔NiCrAlY合金的开孔率为15%。
[0020](2)多孔NiCrAlY合金基体的前处理:将多孔NiCrAlY合金表面用砂纸打磨平整,用丙酮超声清洗lOmin后,采用120#白刚玉进行喷砂,喷砂压力0.18-0.25MPa。
[0021](3)制备LaQ.6Sra4CoQ.sFeQ.203 δ涂层:具体工艺参数为:喷涂电流253Α,喷涂电压450V,压缩空气压力3.5bar,丙烷流量为1.5L/min,送粉氮气流量12L/min,送粉率6g/min,喷涂距离230mm。
[0022]本实施例中制备的La。.6Sr0.4Co0.8Fe0.203 δ涂层形貌如图1所示。
[0023]本实施例中制备的La。.6Sr0.4Co0.8Fe0.203 δ涂层XRD图谱如5所示,图中涂层衍射峰均为钙钛矿结构峰且与粉末各峰位置保持一致,无其他衍射峰形成,涂层相成分稳定。
[0024]实施例2
本实施例中涂层支撑体为开孔率为35%的多孔316L不锈钢,La0.6Sr0.4Co0.8Fe0.203 5涂层厚度为80±5 μπι。
[0025](1)多孔316L不锈钢前处理:将多孔316L不锈钢表面用砂纸打磨平整,用丙酮超声清洗lOmin后,采用46#锆刚玉进行喷砂,喷砂压力0.3-0.4MPa。
[0026](2)制备LaQ.6Sra4CoQ.sFeQ.203 δ涂层:具体工艺参数为:喷涂电流260Α,喷涂电压470V,压缩空气压力3.0bar,丙烷流量为2.5L/min,送粉氮气流量12L/min,送粉率8g/min,喷涂距离230mm。
[0027]本实施例中制备的La。.6Sr0.4Co0.8Fe0.203 δ涂层形貌如图2所示。
[0028]本实施例中LaQ.6Sra4CoasFeQ.203 δ涂层经850°C保温5小时后形貌如图3所示。
[0029]本实施例中通过测定涂层单位厚度氦气泄漏率反映La0.eSrt^Co0.gFe。.^ δ涂层气密性,测试结果如图4所示。测定方法部分参考ISO 4022-1987《渗透性烧结金属材料.液体渗透性的测定》。具体内容如下:采用GP-01型气体透过率测试仪,测定气体采用氦气,测试压差范围为0.12-4.8bar,每隔0.12bar记录氦气泄漏率,涂层的厚度采用Leica DMIRM金相显微镜测量,根据涂层厚度计算单位厚度氦气泄漏率。
[0030]本实施例中LaQ.6Sra4CoasFeQ.203 δ涂层及涂层经850°C保温5小时后XRD图谱如5所示。XRD图谱表明,涂层在空气中经850°C保温后,其衍射峰位置未发生变化,未出现碳酸锶衍射峰,说明涂层中锶元素未发生化学反应,涂层仍保持钙钛矿结构,表现出良好的热化学稳定性。
【主权项】
1.一种致密氧离子-电子混合导体氧化物涂层的制备方法,其特征在于由以下步骤组成: (1)多孔金属材料的前处理:用丙酮超声清洗多孔金属基体表面,然后采用120#白刚玉或46#锆刚玉砂,喷砂压力0.18-0.4MPa喷砂处理; (2)制备La0.6Sr0.4Co0.sFea203 δ涂层:以 La a6Sr0.4Co0.sFe0.203 5氧化物粉末为热喷涂材料,喷涂电流250~270A,喷涂电压440~475V,压缩空气压力3~4bar,丙烷流量为1.5~2.5L/min,送粉氮气流量9~12L/min,送粉率6~10g/min,喷涂距离150~250mm,制备La0.6Sr0.4Co0.8Fe0.203 δ 涂层厚度为 60~90 μπι。2.根据权利要求1所述的一种致密氧离子-电子混合导体氧化物涂层的制备方法,其特征在于所述步骤⑴中的多孔金属为开孔率34~37%的316L不锈钢和开孔率15%的NiCrAlY 合金。3.根据权利要求1所述的一种致密氧离子-电子混合导体氧化物涂层的制备方法,其特征在于所述步骤⑵中La0.eSi^Co0.gFe。.;^ δ热喷涂材料为团聚烧结粉末,粒径为-45 土 15 μ m。
【专利摘要】一种致密氧离子-电子混合导体氧化物涂层的制备方法,其特征是步骤如下:用丙酮超声清洗多孔金属材料表面,然后采用120#白刚玉或46#锆刚玉砂,喷砂压力0.18~0.4MPa喷砂处理;以La0.6Sr0.4Co0.8Fe0.2O3-δ氧化物粉末为热喷涂材料,利用超音速等离子喷涂系统制备La0.6Sr0.4Co0.8Fe0.2O3-δ涂层,喷涂电流250~270A,喷涂电压440~475V,压缩空气压力3~4bar,丙烷流量为1.5~2.5L/min,送粉氮气流量9~12L/min,送粉率6~10g/min,喷涂距离200~250mm,制备La0.6Sr0.4Co0.8Fe0.2O3-δ涂层厚度为60~90μm。本发明所述方法制备的涂层结构致密、相成分均匀稳定,具有良好的热化学稳定性。
【IPC分类】C23C4/134, C23C4/11
【公开号】CN105369180
【申请号】CN201510865563
【发明人】周克崧, 牛少鹏, 徐丽萍, 刘敏, 邓畅光, 毛杰
【申请人】广州有色金属研究院
【公开日】2016年3月2日
【申请日】2015年12月2日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1