冷均匀压制法的制作方法

文档序号:3436291阅读:187来源:国知局
专利名称:冷均匀压制法的制作方法
技术领域
本发明涉及一种冷均匀压制法,其中原材料在均匀压制模具内被挤压。更具体地说,本发明涉及一种这要的方法,在该方法中两层或多层生陶瓷材料在均匀挤压模具内层压,和其中的一层是带式铸型薄膜。尤其具体地说,本发明涉及这样一种方法,其中该层压层用于构成能够选择性地迁移氧离子或氢离子的陶瓷膜元件。
背景技术
冷均匀压制是用于形成滤器,结构元件和膜的一种熟知技术。在均匀压制中,将颗粒形的材料放大一个弹性均匀压制模具中挤压。该颗粒形材料可以是陶瓷或金属粉,或在陶瓷的情况下可以是陶瓷粉,粘合剂和增塑剂的混合物。然后将均匀压制模具在一个压力容器中定位,和用冷或温水给其缓慢施加流体静压,把粒形材料挤压成生形,继而,当合适时,可以烧制和烧结。适用于形成钨条的这种方法的一个实例是在U.S.P.No.5631029中公开。在此专利中细钨粉被均匀压制成钨锭。
各种各样的生陶瓷已通过生陶瓷材料的均匀压制制成。均匀压制模具可以是圆筒形的,如上关于钨锭所述的,或可以压平,产生像平板样的物品。陶瓷材料的一项重要应用是制造自原料流中分离氧或氢的陶瓷膜元件。这种陶瓷材料,尽管不能渗透氧或氢,但能传导氧离子或氢离子而实现分离。实际上,陶瓷经受高温,和氧或氢在陶瓷膜的一个表面上离子化。这些离子通过膜移动并在膜的另一面重新结合而放出电子。这些电子通过陶瓷材料本身或通过用于离子化目的的独立的电通路传导。
例如,一类这样的通称为混合导体的材料,能传导氧离子和电子。这些材料很适合于氧分离,因为它们可以以一种压力驱动模式运转,即陶瓷两个面上的氧活度差推动氧迁移。钙钛矿类如La1-xSrxCoO3-y,LaxSr1-xFeO3-y,LaxSr1-xFe1-yCoyO3-z是混合导体的实例。在高温下,这些材料含有流动的氧离子空位[Vo**],它们提供氧离子通过该材料迁移的传导位点,氧离子选择性地迁移和因此可充当一个对氧有无限选择性的膜。氧的迁移涉及如下的化学反应表面反应在电解质内的零反应氧离子消除了电解质中高流动的氧离子空位。为了使这个反应进行必须提供电子(并在膜的另一侧除去)。
横跨该膜的氧分压差引起一个称作能斯特电位的电动势(emf),其由下式给出V=(RT/zF)ln(Po2,2/Po2,1)式中 R=气体常数(8.314J/gmol-K)T=温度(K)F=法拉第常数(96488Coulomb/gmol)Po2,1和Po2,2=膜的相反两面上的氧分压z=一个氧分子放出的电子数,即4。
能斯特电位是内在地产生的,和它驱使氧空位逆着电解质的离子电阻流动。因此薄膜是特别合乎需要的,因为理想的氧流动与膜的厚度成反比。因此,较薄的膜可导致较高的氧通量,减低的面积,较低的操作温度和较小的横跨电解质的氧压差。
然而,陶瓷薄是脆的,因而必须有支撑。因此针对开发某种薄膜技术做了许多努力,这种薄膜技术包括把致密的氧迁移薄膜沉积在合适的多孔基片上。
通过把致密的混合导电氧化物层沉积到一种多孔混合导电支撑物上构成的固态气体分离膜已公开在Yasutake等人的“Development ofOxygen Semipermeable Membrane Using Mixed CanductivePerovskite-Type Oxides(用混合导电钙钛矿型氧化物研制氧半透膜)”Jour.Ceram.Soc.Japan.International Ed.Vol.97,No.4,pp458-462,1989和Yasutake等人的“Preparation of Dense Filmof Perovskite-Type Oxide on Porous Substrate(在多孔基片上的致密钙钛矿型氧化物膜的制备)”Jour.Ceram.Soc.Japan,International Ed.,Vol.97,No.5,pp523-599,1989中。在这些参考文献中公开的较厚的多孔混合导电支撑物为薄的、较脆的致密混合导电层提供机械稳定性。在这些参考文献中,由La.6Sr.4CoO3组成的薄膜通过rf喷镀和液体悬浮喷雾沉积方法沉积在相同材料的多孔支撑物上。
由喷镀产生的薄膜被证实是有裂缝的和多孔的。由液体悬浮喷雾继而在1400℃烧结制得的薄膜(厚度低于15μm)是致密的和无裂缝的。Pal等人的“Electrochemical Vapor Deposition of Yttria-Stabilized Films(氧化钇-稳定的氧化锆薄膜的电化学蒸汽沉积)”(来自第一次固体氧化物燃料电池国际专题讨论会会议文集,Vol.89-11,pp41-56,1989)公开了一种EVD方法,在该方法中氧化钇-稳定的氧化锆电解质膜沉积在一种多孔基片上。EVD是常规化学蒸汽沉积法的一种改进,它利用化学势梯度在多孔基片上逐渐形成电子或离子传导金属氧化物的薄的气体不渗透性层。该方法包括接触多孔基片一侧的金属卤化物的混合物和相反一侧上的氢和水的混合物。这些反应物扩散入基片孔中,并反应生成沉积在孔壁上的多组分金属氧化物。然而不断的沉积使孔变窄,直至最终这些孔被多组分金属氧化物堵塞。
美国专利5,240,480公开了一种有机金属化学沉积法(OMCVD)来制备用作无机膜的多组分金属氧化物薄膜。这种无机膜是通过相应于每个个别金属的有机金属络合物和一种氧化剂在足以把一个薄膜沉积在多孔基片上的条件下反应生成的。
EVD和OMCVD这两种方法牵涉及到昂贵和复杂的装置以及经常是有毒的和昂贵的母体材料。此外,用这些方法沉积的多组分金属氧化物(例如混合的导电钙钛矿类)的化学计量难于控制。
美国专利5,494,700公开了一种含有一种金属离子和一种可聚合的有机溶剂的无沉淀水溶液,用来制造用于固体氧化物燃料电池和气体分离应用在致密/多孔基片上的致密无裂缝薄膜(<0.5μm/涂层)。该方法包括首先制备一种无沉淀的起始溶液,此溶液含有溶解于包含一种可聚合有机溶剂的水性混合物中的氧化物组分的阳离子。通过旋转涂敷将母体膜沉积在基片上。沉积后在氧存在下于低于600℃的温度下干燥和煅烧,把该聚合的母体膜转变成金属氧化物膜。
前述的所有技术在应用于制造管形陶瓷膜时都有局限性,因为利用这些技术难于在管形基材的内部表面上施加致密层。以溶胶、淤浆或聚合的母体液体为基础的方法的主要缺点是难于有效地涂敷大孔径的基片,尤其是当孔径大小超过20μm时。通常必须多次涂敷或采用不同的制造步骤以减少表面孔径尺寸和/或孔隙度,从而避免涂敷溶液的渗透。另外,这些技术需要在烧结时涂层和基片之间收缩的紧密配合。
如将要讨论的,本发明提供一种在制造复合结构时有用的方法,对于制造具有内在定位的薄膜层的管形复合结构来说该法是非常经得起检验的。此外,和先前的工艺技术不同,本发明能够形成复合结构,其中薄膜是沉积在大孔径尺寸的基片上。从下面的讨论中本发明的其它优点将是显而易见的。
发明概述本发明提供一种冷均匀压制方法,其中至少两层材料在均匀压制模具中被均匀挤压,因而层压至少两层和压紧至少两层中的至少一层。至少两层中的一层由带式铸型薄膜组成。至少两层的另外一层可以由粒形材料构成。
本发明可用于形成陶瓷膜元件,其中所有的层均含有陶瓷材料(它们可以是不同或相同的材料),它们在高温下有氧或氢选择性的能力。在这种情况下,生成的生陶瓷可从均匀压制模具上移出和然后烧制,以除去有机添加剂如粘合剂和增塑剂,然后按照已知的方法烧结形成复合陶瓷。另外,由塑料或橡胶制成的均匀压制模具可保持完整并在烧制或烧结期间烧毁。
然而本发明并不限于制造陶瓷膜。本发明的方法适合于制造任何复合器件,包括用于气体或液体分离和过滤的非氧导体复合多孔膜,例如碳或沸石复合膜。还有,多孔支撑物和膜材料可以是其它的陶瓷或金属或它们的混合物。此外,本发明的应用不限于任何特定形状。例如,板、条、杆和管均在本发明的范围内。
尽管均匀压制模具可以是已知的平板均匀压制模具,以形成片状复合材料,但是它也可以是圆筒形构造,与至少两层是共轴的圆筒形层一致。至少两个共轴圆筒形层之一可以通过围绕均匀压制模具的心轴包裹带式铸型薄膜构成。带式铸型薄膜可含有陶瓷。至少两个共轴圆筒形层的另外一层可通过把可以是陶瓷形成材料的粒形材料引入带式铸型薄膜和外面的均匀压制模具的圆筒形压力轴承之间的环形空间而形成。如在这里和在权利要求中所用的术语“粒形”意味着或是粉末或是与添加剂混合的粉末,如在陶瓷的情况下添加剂是增塑剂、粘合剂等。此外,术语“陶瓷形成材料”意味着或是陶瓷粉或是与添加剂混合的陶瓷粉。在本发明用于制造陶瓷膜的情况下,围绕均匀压制模具心轴包裹的带式铸型薄膜可以在最终的管形陶瓷膜内侧形成一个致密层,以克服在管形膜内侧上形成这种层的问题。还应指出的是,由于带子是塑料形式的,所以没有溶液渗透入邻近的层。其结果,毗连的支撑层可制成具有大孔径尺寸的,即大于20μm。
本发明所期望的另一种可能性是至少两个共轴的圆筒形层的另一层是一种粒形材料的压紧管,可能仍是一种陶瓷形成材料。在这种情况下,至少两个共轴的圆筒形之一随后通过围绕该压紧管包裹带式铸型薄膜而形成。在这种考虑下,这种压紧的管可以有包含微孔形成材料的亚层,以提供活性和惰性的通过带式铸型薄膜形成的致密层的支撑层。其结果,一种致密层也可以(或除了在管内侧上的致密层外)在这种管形膜的外侧形成。
该带式铸型薄膜可包含能够传导氢和氧离子之一的混合导体氧化物,而至少两个共轴的圆筒形层的另一层可含有微孔形成材料。
这样,本发明可用于形成受多孔支撑物支持的致密层。至少两个共轴的圆筒形层的另一层也可含有混合导体氧化物,以便使这种支撑物构成一种活性支撑物。但是,这两层不必具有相同的混合导体氧化物,因而至少两个共轴的圆筒形层的另一层可包含另一种混合导体氧化物。
优选,在层压后至少两个层之一具有大约10-200μm的初始厚度和至少两个层的另一层具有约0.2-约5.0mm的第二厚度。
混合导体氧化物可具有的结构由下式给出AxA′x′A″x″ByB′y′B″y″O3-z,其中按照IUPAC(国际纯粹与应用化学联合会)采用的元素周期表,A、A′、A″选自1,2,3族和f-区镧系元素;而B、B′、B″选自d-区过渡金属。在该式中,0≤x≤1,0≤x′≤1,0≤x″≤1,0≤y≤1,0≤y′≤1,0≤y″≤1,和z是一个使该化合物为电中性的数。优选,每个A、A′和A″是镁,钙、锶或钡。
混合导体氧化物的另一种可能的结构是由下式给出的AsAtBuB′vB″wOx,其中A代表一个镧系元素、Y,或它们的混合物,A′代表碱土金属或它们的混合物;B代表Fe;B′代表Cr,Ti或它们的混合物,和B″代表Mn,Co,V,Ni,Cu或它们的混合物。每个s,t,u,v和w代表从零至约1的一个数。
此外,s/t为大约0.01-约100,u为约0.01-约1,和x是一个满足该式中A,A′,B,B′和B″的化合价的数。此外,0.9<(s+t)/(u+v+w)<1.1。
附图的简要说明本说明书以权利要求清楚地指出了本发明的论题,但相信,当结合附图时可更好地理想本发明,其中

图1说明在带式铸型薄膜围绕均匀压制模具包裹后用于进行本发明方法的均匀压制模具的示意图(有断开部分);图2是沿图1的2-2线取得的截面图;图3说明了在包裹带式铸型薄膜后被粒形陶瓷粉充满后示于图1的均匀压制模具;图4说明了完全充满和密封的图1的均匀压制模具;图5说明在流体静压松弛同时均匀压制模具部分拆卸后图1的均匀压制模具,和图6说明了在带式铸型薄膜围绕示于图5的生陶瓷管形膜包裹后图1的均匀压制模具。
所附图中没有一个是按比例绘制的。应当明白,均匀压制模具的长度可以比图示的长很多。此外,为了图示说明,材料层的厚度被夸大了。
详细说明参照图1和2,说明的是用于形成闭口管形的均匀压制模具1。第一层材料已由带式铸型薄膜10在均匀压制模具内形成。
均匀压制模具1包括心轴12和圆柱形压力轴承元件14。带式铸型薄膜围绕心轴12包裹,形成第一层材料。心轴12和圆柱形压力轴承元件通过直插入圆柱形压力轴承元件14的加宽的端口17的心轴12和基坐部分16相互连接。但心轴12和圆柱形压力轴承元件的结合不是固定的,以便在均匀压制过程终了时均匀压制模具1被拆开。
如将要讨论的,带式铸型薄膜10用常规的方法由陶瓷淤浆和增塑剂形成,它在一种聚合物上被铸注为一层薄膜,并使其干燥。此后,将带式铸型薄膜片10绕心轴12包裹,同时聚合物与该片分离。
接下去参考图3,在均匀压制模具1内用一种粒形陶瓷材料18形成另一个材料层。将陶瓷材料18加入到圆筒形压力轴承元件14的一侧,充满带式铸型薄膜10和圆柱形压力轴承元件14间限定的环形空间。
陶瓷材料18可包含陶瓷粉或含有陶瓷粉、有机粘合剂及一种增塑剂的混合物。为了促进陶瓷材料18向均匀压制模具1中的引入,可将均匀压制模具1放在一个振动器的振动面上。通过心轴12的基坐部分16传送的振传递到圆柱形压力轴承元件14。当要形成长陶瓷管时应用振动器是特别优选的,因为不需依靠夯实等措施就可防止陶瓷材料18的挂料。
参考图4,在均匀压制模具1被填满后,将端盖22插入圆筒形压力轴承元件14的20一端。从而端盖22完成了均匀压制模具1的密封。如图示说明的,端盖22的组态提供了一个与心轴12的微小间距,以制得具有一个封口端的成品陶瓷管。端盖22的内表面是圆形的,以使所需要的陶瓷管的封闭端是圆形的。正如可以意识到的,端盖22可以构造成与轴心12接触,这样,成品陶瓷管就是敞开末端的。
处于图4所示的状态的均匀压制模具1然后被浸在冷或温水中经受流体静压。过程的精确压力和时间随实际均匀压制模具1的尺寸而变化。接下去参考图5,在均匀压制造型结束后产生一个生陶瓷管形膜,其中由带式铸型薄膜和陶瓷材料18形成的两层材料已被挤压和相互叠合。然后可通过移开端盖22(如图示说明的)和将圆柱形管14与心轴12分离拆卸均匀压制模具1。然后生陶瓷管形膜可从心轴12取下,以进一步加工,如通过烧制和烧结。
另外,如图6中所示,另一个带式铸型薄膜26可以继而围绕生的管形陶瓷膜24缠绕,形成另外的材料层。尽管没有图示说明,但然后可将均匀压制模具1重新密封并经受流体静压来压紧并将带式铸型薄膜26与生的管形陶瓷膜24叠合。烧制后,成品陶瓷管将具有内和外致密层。如果陶瓷管18由多孔形成物提供,则内和外致密层可挤出该多孔层。另一个可能性是通过加另外替代的或除带式铸型薄膜24之外的陶瓷材料在生陶瓷管形膜铸注附加的层。如果不需要内致密层,则将粒状陶瓷材料对着心轴12紧压成生陶瓷管形膜,并同时向其上层压一个带式铸型薄膜。这样,在这些图中,没有可用于形成生陶瓷管形膜24的带式铸型薄膜10。带式铸型薄膜26可绕生陶瓷管形膜24包裹,产生两层的产品。事实上,在本发明的任何实施方案中,数层的粒形陶瓷材料或带式铸型薄膜都可以应用。这些层可以是相同的材料,以增加最终制品的厚度。不同的材料也可以应用,例如为了在用于分离目的的陶瓷膜中形成活性或惰性的多孔支撑层。
圆柱形元件14优选由这样的材料制成,即对于给定尺寸的圆柱形元件14来说,它将使其产生足够的刚性,以致陶瓷材料18可被引入均匀压制模具1(在圆柱形元件14和心轴12之间),同时圆柱形元件14保持其形状。在这一点上,应注意的是防止圆柱形元件14起皱,起皱可引起陶瓷材料在圆柱形元件14和心轴12之间形成的环形空间中挂料。此外,这种刚性保证这种环形装填空间的横截面会在沿着均匀压制模具1的长度上保持恒定,以致使成品陶瓷管具有不变的厚度。对于圆柱形元件14来说,另一个材料考虑是对于从均匀压制成形产品撤回或同样地脱出,它必须是具有充分回弹力的,以使成品生陶瓷制品在流体静压松弛后从均匀压制模具上取出。
优选,圆柱形元件由如具有硬度标度为95A的聚氨基甲酸酯制成。硬度标度75A-75D的硬度也可用。较硬的材料优于较软的材料,因为已经发现陶瓷材料不倾向于粘附到较硬的材料上。如果生成的制品起陶瓷膜元件的作用,则用于各层的陶瓷材料可以是能够传导氧离子和电子的混合导电陶瓷。混合导电陶瓷材料的实例在下表中列出。
混合导体固体电解质实例
下面的两个实施例描述了用不同的混合导体钙钛矿材料制造的氧迁移膜。这两个实施例详细描述了用于制造LSC和LSFC复合氧迁移膜的带式均匀压制铸模法的样品制备。然而这些实施例不应以任何方式构成对本发明的限制。
实施例1-La.05Sr.95CoO3-x(LSC)复合氧迁移膜的制造通过混合约65份LSC与35份粘合剂制备用于带式铸型致密薄膜的淤浆。将63.0g LSC粉末,37.0g含铁(Ferro)粘合剂B73210和200g3/8″研磨介质放入125m1 Na1gene瓶中,使其在瓷制球磨罐上滚动约16小时。然后将其通过125目单丝尼龙布过滤,并带式铸型到聚酯(MYLAR)薄膜上,控制刮刀的间隙,以得到25-50μm的原厚度。
通过把60.0g LSC,10.6g团块级石墨和少量甲基丙烯酸酯混合珠混入一个塑料管瓶制备底材LSC+15%重量石墨。然后将该管瓶插入SPEX Certi-prep混合器/磨机中,混合10分钟。
先将带式铸形薄膜切割成适合于均匀压制模具心轴的大小。对于测得的直径为9.5mm(周围=30mm)的心轴,该膜切成60mm宽,以使该膜绕心轴两圈。然后将该膜紧贴着绕心轴包裹。将均匀压制模具的圆柱形压力轴承元件置于心轴上方,并将多孔底材粉末在均匀压制模具和心轴振动时缓慢地注入均匀压制模具,达所需体积。然后将均匀压制模具盖顶,并在20kpsi下均匀挤压,形成复合生管。
在心轴从均匀压制的复合生管撤回后,将该管放入加热炉中,以每分钟升高1℃的速度加热(在周围空气下),至温度达450℃,维持1小时,以除去粘合剂和多孔形成物。然后以每分钟2℃增加温度,直至达到1150℃的目标温度。然后将此温度保持2小时不变,将该管在周围空气下烧结。将加热炉以每分钟降低2℃的速度冷却到室温。
所得到的复合材料的SEM显微照相显示,在烧结后在多孔LSC基片上形成了致密的无裂缝LSC膜。膜的厚度约25μm,基片的孔隙率约32%。利用不同的O2/N2混合物作为原料气和He作为吹扫气体在一个实验室单管反应器中对复合LSC管进行测试。该致密气体分离层面对原料气,而多孔支撑物暴露于He惰性吹扫气体。复合的OTM管之一显示,用80%O2作为原料气和He作为吹扫气体在1000℃下氧通量为19.7sccm/cm2。
对由上面指出的材料构成的、膜厚度为~25μm和基片厚度~0.8mm的复合材料片也进行了流动性能和稳定性测定。用封闭在具有金浆的氧化铝试验池的复合材料片样品测量氧渗透速度。渗透试验在温度900-1000℃用He惰性气体吹扫和进料侧上不同浓度的O2/N2混合物进行。用HP5890气相色谱仪和氧分析器分析气体组成并计算氧通量。用进料中80%O2,利用500sccm He的氦吹扫于900,950和1000℃下进行测试,得到的通量值分别为13.5,17.5和20.2sccm/cm2。氧渗透随温度的升高而增加。在理想的试验情况下于1000℃测试的LSC复合材料的稳定性随时间变化。测得的氧通量在大于~96小时期间是稳定的,没显示出通量降低。
实施例2-La.2Sr.8Fe.8Cr.2O3-x(LSFC)复合氧迁移膜的制造通过混合约65份LSFC与35份粘合剂制备用带式铸型致密薄膜的淤浆。将63.0g LSFC粉末,37.0g含铁粘合剂B73210和200g3/8″研磨介质放入125ml Nalgene瓶中,使其在瓷制球磨罐上滚动约16小时。然后将其通过125目单丝尼龙布倾倒(过滤),和带式浇铸到聚酯薄膜上,以得到50μm的原厚度。
通过把6.0g LSFC,15.0g淀粉StarPol469 WSP和少量甲基丙烯酸酯混合珠混入一个塑料管瓶中制备底材LSFC+20%重量淀粉。然后将该管瓶插入SPEX CertiPrep混合器/磨机中,混合10分钟。
先将带式铸形薄膜切割成适合于均匀压制模具心轴的大小。对于测得的直径9.5mm的心轴(周围等于30mm),该该膜切成60mm宽,以使该膜可绕心轴两圈。然后将该膜绕心轴紧紧包裹。将均匀压制模具的圆柱形压力轴承元件放在心轴上方,并将多孔底材粉末在均匀压制模具和心轴振动时缓慢地注入均匀压制模具中,达所需体积。然后将均匀压制模具盖顶,并在20kpsi下均匀挤压,形成复合生管。
在心轴从均匀压制的复合生管撤出后,将该管放入温度缓慢直线上升的(Slow-ramping)加热炉中,以备除去粘合剂和淀粉。该炉以每分钟0.5℃升温至450℃,并保持此温度1小时。然后温度以每分钟2℃的速率增加到950℃,保持1小时。然后使加热炉冷至室温,使有可能将该管转移到高温炉中。一旦转移完成,升温速率定在每分钟1℃,直至温度达450℃,此后使其在周围空气中均热1小时。将升温速率增加至每分钟2℃,达到1250℃(在N2中),保持时间2小时。然后将该炉在空气中以每分钟2℃的速率冷却至室温。
LSFC复合材料管的SEM显微照相显示,致密的LSFC薄膜已成功地在多孔LSFC管形基片内壁形成。此外,还发现LSFC沉积在具有表面孔径尺寸大于100μm的大尺寸多孔基片上。LSFC膜的厚度~50μm,在膜和基片之间有良好的结合。
已在实验室反应器中对LSFC复合材料管进行了测试。多孔支撑物是暴露于燃料,而致密气体分离层是暴露于空气。复合OTM管之一显示,用40%CH4在N2中作为燃料,氧通量为11.3Sccm/cm2。这是在理想条件下由致密堵塞(Walled)管(1mm厚)得到的氧通量的4倍还多。
尽管参考优选的实施方案说明了本发明,但本技术中的熟练技术人员将可想到不违背本发明的精神和范围可做出的许多变化,增加和省略。
权利要求
1.一种冷均匀压制法,包括在均匀压制模具(1)中均匀压制至少两层材料,从而层压该至少两层(10,18)和压紧至少两层中的至少一层(18);至少两层中的一层由带式铸型薄膜10组成。
2.权利要求1的方法,其中至少两层中的另一层是由粒形材料形成(18)。
3.权利要求1的方法,其中该均匀压制模具(1)是圆筒形构造,和该至少两层(10,18)是共轴的圆筒形层。
4.权利要求3的方法,进一步包括通过把带式铸型薄膜(10)绕该均匀压制模具(1)的心轴(12)包裹形成至少两个共轴的圆筒形层的该一层;和通过把粒形材料(18)引入该带式铸型薄膜(10)和外部的、该均匀压制模具的圆柱形压力轴承(14)之间限定的环形空间,形成至少两个共轴的圆筒形层的另一层。
5.权利要求3的方法,其中至少两个共轴的圆筒形层的另一层是粒形材料(18)的压紧管;和至少两个共轴的圆筒形层的该一层是通过把带式铸型薄膜(26)绕该压紧管(18)包裹而形成的。
6.权利要求3的方法,其中该带式铸型薄膜(10)含有能够传导氢和氧离子之一的混合导体氧化物;和至少两个共轴的圆筒形层的另一层(18)含有微孔形成材料。
7.权利要求6的方法,其中至少两个共轴的圆筒形层的另一层(18)还含有该混合导体氧化物。
8.权利要求6的方法,其中至少两个共轴和圆筒形层(18)还含有另一种混合导体氧化物。
9.权利要求7或8的方法,其中至少两层之一(10)具有第一厚度约10至约200μm;和至少两层中的另一层(18)具有第二厚度约0.2至约0.5mm。
10.权利要求6的方法,其中至少一种生陶瓷材料(10)是由下式给出的混合导体氧化物AxA′x′A″x″ByB′y′B″y″O3-z,按照IUPAC采用的元素周期表,其中A,A′和A″选自1,2,3族和f-区镧系元素;而B,B′,B″选自d-区过渡金属,式中0≤x≤1,0≤x′≤1,0≤x″≤1,0≤y≤1,0≤y′≤1,0≤y″≤1,和z是一个使该化合物电荷为中性的数。
11.权利要求10的方法,其中每个A,A′,A″是镁、钙、锶或钡。
12.权利要求6的方法,其中至少一种生陶瓷材料(1 8)是由下式给出的混合导体氧化物AsAtBuB′vB″wOx,式中A代表镧系元素、Y或它们的混合物,A′代表碱土金属或其混合物;B代表Fe;B′代表Cr,Ti或它们的混合物和B″代表Mn,Co,V,Ni,Cu或它们的混合物;s,t,u,v和w各代表从0-约1的一个数,s/t为约0.01至约100,u为约0.01-约1,x是满足该式中A,A′,B,B′和B″的化合价的数,和0.9<(s+t)/(u+v+w)<1.1。
13.权利要求10的方法,其中至少两个共轴的圆筒形层的另一层(18)也含有该混合导体氧化物。
14.权利要求13的方法,其中至少两层之一(10)具有第一厚度约10至约200μm;和至少两层之另一层(18)具有第二厚度约0.2至约5mm。
15.权利要求6的方法,其中该至少两个共轴的圆筒形层之一(10)通过把带式铸型薄膜绕该均匀压制模具(1)的心轴(12)包裹而形成;而至少两个共轴的圆筒形层的另一层(18)是通过把粒形陶瓷材料引入由该带式铸型薄膜(10)和外面的、该均匀压制模具(1)的圆柱形压力轴承元件(14)之间限定的环形空间而形成。
16.权利要求6的方法,其中至少两个共轴的圆筒形层的另一层(18)是粒形陶瓷形成材料的压紧管;和至少两个共轴的圆筒形层的一层(26)是通过把带式铸型薄膜绕该压紧管包裹形成。
17.权利要求15或16的方法,其中至少一种生陶瓷材料(26)是由下式给出的混合导体氧化物AxA′x′A″x″ByB′y′B″y″O3-z,按照IUPAC采用的元素周期表,其中A,A′,A″选自1,2,3族和f-区镧系元素;而B,B′,B″选自d-区过渡金属,式中0≤x≤1,0≤x′≤1,0≤x″≤1,0≤y≤1,0≤y′≤1,0≤y″≤1,和z是使该化合物电荷为中性的数。
18.权利要求17的方法,其中每个A,A′和A″是镁、钙、锶或钡。
19.权利要求15或16的方法,至少一种生陶瓷材料(26)是由下式给出的混合导体氧化物AsA′tBuB′vB″wOx,其中A代表镧系元素、Y或它们的混合物,A′代表碱土金属或其混合物;B代表Fe;B′代表Cr,Ti或它们的混合物和B″代表Mn,Co,V,Ni,Cu或它们的混合物,s,t,u,v和w代表0-约1的一个数,s/t为约0.01-100,u为约0.01-约1,x是满足该式中A,A′,B,B′和B″的化合价的数,和0.9<(s+t)/(u+v+w)<1.1。
20.权利要求17的方法,其中至少两个共轴的圆筒层的另一层(18)也含有该混合导体氧化物。
21.权利要求19的方法,其中至少两个共轴的圆筒形层的另一层(18)也含有该混合导体氧化物。
22.权利要求17的方法,其中至少两层之一(26)具有第一厚度约10-约200μm;至少两层中的另一层(18)具有第二厚度约0.2-约5mm。
23.权利要求19的方法,其中至少两层之一(26)具有第一厚度约10-约200μm;至少两层中的另一层(18)具有第二厚度约0.2-约5mm。
全文摘要
一种冷均匀压制方法,其中在一个均匀压制模具(1)内形成两层或更多层材料(10,18)。其中的一层由带式铸型薄膜(10)组成。这些层在均匀压制模具(1)内均匀压制,从而层压这些层(10,18)并压紧带式铸型薄膜(10)。均匀压制模具(1)是圆筒形构造的,所以同时层(10,18)是共轴圆筒形层。用于形成层(10,18)的材料可含有生陶瓷材料和所得的结构物可以在需要时,按已知的方法进行烧制和烧结,以产生成品复合陶瓷结构。此外,这种生陶瓷材料可以是在高温下能够传导氢或氧离子的,以与利用成品复合陶瓷结构作为陶瓷膜元件的目的一致。
文档编号C01B3/50GK1462235SQ01816128
公开日2003年12月17日 申请日期2001年9月14日 优先权日2000年9月22日
发明者J·C·陈, V·M·斯塔维苏克, R·普拉萨德 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1