产生富含氢的气体的方法

文档序号:3436288阅读:155来源:国知局
专利名称:产生富含氢的气体的方法
发明的领域本发明涉及一种使用带有层状催化剂构件的自热反应器(在文献中又被称为自热转化器),在催化作用下,产生富含氢的气体(常被称为“合成气”)的方法。
发明的背景在催化作用下通过部分氧化和/或蒸汽转化烃原料而制备富含氢的气体的方法,在文献中是为人所熟知的。典型的此类方法使用一个反应器在催化作用下部分氧化烃原料以制备富含氢的气体,或在催化作用下蒸汽转化烃原料以制备富含氢的气体。除此以外,文献还披露了在一个自热反应器中进行催化部分氧化反应和催化蒸汽转化反应两个反应的方法。其他的文献也披露了在单一自热反应器中进行两个反应的方法,反应器装有几个催化剂区,在每一个区内各自进行每一类反应。披露了此类方法的文献的例子包括以下专利和已公开的专利申请US 3,418,722、US 3,976,507、US 4,501,823、US 4,522,894、US 4,844,837、US4,927,857、US 5,112,527、EP 0 112 613 A2、EP 0 495 534 A2、EP 0 673 074 B1、WO 96/00186、WO 99/48804和WO 99/48805。
本发明中的方法可以在一个自热反应器中进行,而不需要在反应器中提供多个有次序的催化剂区,与此相比,以上引用的文献中的方法较为复杂。催化部分氧化反应本质上是放热的,由此产生的热被用于进行本质上吸热的蒸汽转化反应。通过使催化部分氧化层与蒸汽转化催化层紧密接触,可以更有效地控制绝热的反应器(即自热反应器)中的工艺热。与使用多个自热反应器或一个带有多个催化剂区的自热反应器时产生的热损失相比,通过使两个催化剂层相互接触,可以显著地将热损失减少到最小。
本发明中的方法还在反应器容积和整块载体的成本方面节约了成本,以及导致在催化部分氧化和蒸汽转化反应中更少的压力下降。由此,本发明的方法使放热的催化部分氧化反应中产生的热得到了更有效的利用和更均匀的使用,由于热损失更少,与之相伴随的反应速度较快,且处在绝热条件下,吸热的蒸汽转化反应可以在略高的温度下进行。其结果是,催化部分氧化反应的温度可以被稍降低,其幅度估计约为50度,以此相伴随地,蒸汽转化反应的温度可以被升高约50度,这样,催化剂的寿命可以得到改善,且蒸汽转化反应的速度可以得到加快。此外,将催化部分氧化和蒸汽转化的催化剂作为相互接触的层来使用,可以避免不利的反应,例如氧和铑的反应以及氧和铂的反应。
发明的概述本发明的目的之一是提供一种能够比文献中的方法更有效地产生富含氢的气体的方法。
本发明的另一个目的是提供一种能够比文献中的方法更经济地产生富含氢的气体的方法。
本发明涉及通过以下步骤产生富含氢的气体a)将预加热后的包含烃原料、水和空气的进气气流注入带有层状催化剂构件的自热反应器,气流与构件接触时的温度应足够高,以引发和维持催化部分氢化和蒸汽转化两个反应(在本发明中,“水”应被理解为包括“蒸汽”);b)将至少部分烃原料催化部分氧化,从而产生包含氢和碳氧化物的排出物;且c)将原料中剩余的烃蒸汽转化,从而产生富含氢的排出物。
层状催化剂构件包含一个整块载体,在其表面上包含至少一层蒸汽转化催化剂和一层催化部分氧化催化剂,两个层相互接触。蒸汽转化催化剂层和催化部分氧化催化剂层包含下文所述的成分。
附图的简要描述

图1是本发明使用的层状催化剂构件的第一个实施方案的优选取向的透视图。
图2是本发明使用的层状催化剂构件的第二个实施方案的优选取向的透视图。
图3是本发明使用的层状催化剂构件的第三个实施方案的优选取向的透视图。
优选的实施方案在本发明方法的第一个步骤中,包含了用于产生富含氢的气体的烃原料、空气(或含有氧的气体)和水的进气气流被预加热到约200至约900℃,并被送入一个适当的、温度被典型地维持在约250至约1100℃的自热反应器中。进气气流典型地以每整块载体体积约2,000至约500,000体积的体积小时速率被输入到自热反应器中。自热反应器装有以下将更完整地描述的层状催化剂构件。气流与催化剂构件接触时的温度足以引发和维持催化部分氧化和蒸汽转化两个反应。
烃原料可以由C5和更重的烃构成,但更优选的是通常为气体或容易蒸发的烃,诸如C1-C4烷烃,例如甲烷、丙烷和丁烷等。典型地,送入自热反应器中的烃原料、水和空气在进气气流中的量被控制以维持水与碳的比至少为约0.3∶1和氧与碳的比为约0.2至0.7∶1。
一般地,在自热反应器中绝热条件更普遍,原因在于部分氧化反应本质上是放热的,而在此反应过程中所产生的热通常足以引发和维持本质上吸热的蒸汽转化反应。因此,通过合理地选择预加热的温度、反应器的设计、体积小时速率等,两个反应都可以在温度为约250至约1000℃在反应器中进行而不需要提供来自外部的对反应的加热和冷却。尽管如此,如果为了将两个反应都连续地维持在高速率下而对反应器提供加热或冷却,也在本发明的范围中。
在该方法的第二个步骤中,烃原料通过与部分氧化催化剂层接触而被催化部分氧化。产生的排出物包含氢和碳氧化物。
在该方法的第三个步骤中,原料中剩余的、未被催化部分氧化的烃通过与蒸汽转化催化剂层接触而被蒸汽转化,从而产生富含氢的排出物。
从该方法的第三个步骤得到的富含氢的排出物优选被用于进一步的水-气转移反应。在蒸汽转化反应的过程中,烃与水反应产生主要含有氢气和一氧化碳以及任何未反应的烃的产物气体。为了降低一氧化碳的含量和增加氢气的含量,排出物可以被送入一个转换器,其中排出物与催化剂(例如Fe/Cr氧化物或Cu/Zn氧化物)相接触,从而使一氧化碳与水反应以产生二氧化碳和更大量的氢。
在本发明的方法中所使用的层状催化剂构件包含一个整块载体,至少一层催化部分氧化催化剂和至少一层蒸汽转化催化剂,其中催化部分氧化催化剂与蒸汽转化催化剂相接触。在催化部分氧化催化剂层与蒸汽转化催化剂层相接触的前提下,催化部分氧化催化剂层或蒸汽转化催化剂层之一或二者可以被放置在整块载体的表面上。可以理解的是,层状催化剂构件还可以包含多个蒸汽转化催化剂层和/或多个催化部分氧化催化剂层,每一个催化剂层包含不同的蒸汽转化催化剂组分和/或不同的部分氧化催化剂组分。预加热后的进气气流首先与催化部分氧化催化剂层相接触是特别优选的。
更优选的催化部分氧化催化剂层和蒸汽转化催化剂层的放置方式是使得一层在另一层上面并且与之相接触。特别优选的是蒸汽转化催化剂层处于整块载体的表面上,而催化部分氧化催化剂层在蒸汽转化催化剂层的上面,并且与之相接触。另一种放置方式是,蒸汽转化催化剂层和催化部分氧化催化剂层被“分区”和“渐变”地放置在整块载体的同一平面上,并使得它们互相重叠和接触。在本发明中,所谓“分区”和“渐变”是可以互换使用的,并表明各层的厚度(从而亦指各层中催化剂组分的浓度)是逐渐变化的。在一个特别优选的实施方案中,催化部分氧化催化剂层的厚度在与预加热后的进气气流刚刚开始接触的点处值最大,且该厚度沿着整块载体的长度逐渐减小。同时,蒸汽转化催化剂层的厚度在与预加热后的进气气流刚刚开始接触的点处值最小,且该厚度沿着整块载体的长度逐渐增加。这些排列方式将在以下更详细地描述。
整块载体催化部分氧化催化剂层和/或蒸汽转化催化剂层是被放置在一块整块载体的表面上的,其中,整块载体包括一个或多个整块体,整块体带有大量被细密地分隔的贯穿的气体流动通道。这种整块载体经常被称为“蜂窝”型载体,在文献中是为人所熟知的。更优选的载体是由相当惰性的和刚性的耐火材料制成的,在约1450℃的高温下可以维持其形状不变和机械状态足够好。典型的被用作载体的材料具有热膨胀系数低、抗热冲击性能好的性质,以热传导性低的为更好。
已知的用于制造整块载体的材料有两大类。一类是类似陶瓷的多孔材料,由一种或多种金属氧化物组成,例如氧化铝、氧化铝-二氧化硅、氧化铝-二氧化硅-氧化钛、高铝红柱石、堇青石、氧化锆、氧化锆-二氧化铈、氧化锆-尖晶石、氧化锆-高铝红柱石和碳化硅等。一种特别优选的、商业上可以得到的、可以用作载体而在约1093℃以下的操作中使用的材料是堇青石(一种氧化铝-氧化镁-氧化硅材料)。对于用到约1093℃以上的操作的应用,氧化铝-二氧化硅-氧化钛材料更优选。
商业上可以得到的整块载体有各种尺寸和形状。典型的整块载体包含例如一个通常为筒状(横截面为圆形或椭圆形)的堇青石构件,并带有大量平行的横截面为多边形的贯穿的气体流动通道。典型的气流通道的尺寸使得在每英寸表面积上的气流通道数为约50至约1,200个,更优选的是200至600个。
另一类优选的用于制造整块载体的材料是耐热和耐氧化的金属,例如不锈钢或铁-铬合金。典型的用此类材料制造整块载体的方法是将扁平的、波纹状的金属片层叠放置后将叠起的金属片卷成一个轴平行构件外形的管状,从而得到有大量带有细小的、平行的气流通道的筒状体,其典型的每平方英寸表面积上的气流通道的数量可以为约200至约1,200。
整块载体的形式也可以是陶瓷或金属的泡沫。泡沫形式的整块载体在文献中是为人们所熟知的,例如,参看美国专利3,111,396和题为“一种用于汽车催化转化器的新催化剂载体结构”的汽车工程师学会技术文件971032(1997年2月)。整块载体也可以采取热交换器的形式,例如管壳式热交换器或汽车散热器经常使用的鳍状热交换器。
蒸汽转化催化剂层和/或催化部分氧化催化剂层可以直接置于整块载体的表面上。但是,更优选的方法是将一层粘合剂涂层沉积在金属整块载体的表面上,即在整块载体的表面和蒸汽转化催化剂层和/或催化部分氧化催化剂层之间。该粘合剂层的典型的量最高至每立方英寸整块载体1.0g,典型的粘合剂层包含高表面积氧化铝。
催化部分氧化催化剂层催化部分氧化催化剂层中使用的催化剂应满足几个条件。该催化剂的适用条件应是可以变化的,即可以从反应器进气口处的氧化条件变化为反应器出口处的还原条件。该催化剂应能够在约400至1050℃之间有效使用而不会产生显著的温度退化。该催化剂应能在一氧化碳、烯烃、芳烃和硫化物的存在下有效地使用。该催化剂应产生低水平的结焦,例如应优先催化碳与水的反应以生成一氧化碳和氢,从而在催化剂表面生成仅为少量的碳。该催化剂必须能够抵抗常见毒剂(例如硫和卤素的化合物)的毒化。此外,所有上述条件必须被同时满足。
催化部分氧化催化剂层优选包含一种或多种“铂族”金属化合物,已经发现,这些化合物可以满足上述要求。在此,名词“铂族”金属指铂、钯、铑、铱、锇、钌及其混合物。优选的铂族金属组分是钯和铂以及铑,其中铑是非必需的。按金属元素计算,优选的催化部分氧化催化剂层包含约10至约90%重量的钯组分和约10%至90%重量的铂组分。典型的催化部分氧化催化剂层的存在的量为约0.1至约3.0g/in3载体。
铂族金属组分可以非必需地补充加入一种或多种基础金属,特别是元素周期表上第VII、IB、VB、和VIB族的基础金属。优选的基础金属是铁、钴、镍、铜、钒和铬中之一种或多种。
蒸汽转化催化剂层蒸汽转化催化剂层所使用的具有催化活性的金属包括任何一种可以用于此目的的催化金属组分,例如镍、钴及其混合物。更优选的蒸汽转化催化剂包含一种铂族金属组分,例如铂、钯、铑、铱、锇、钌及其混合物。特别优选的用于蒸汽转化催化剂层中的蒸汽转化催化剂包括铂、钯、和铑金属组分,特别是按金属元素计算,含有约10至约100%重量的铑组分和约90至约0%重量的铂组分的混合物。典型的蒸汽转化催化剂的存在的量为约0.1至约5.0g/in3载体。
蒸汽转化催化剂层和催化部分氧化催化剂层应以“涂”在整块载体的表面上的薄涂层的形式存在。典型的此类薄涂层包含以蒸汽转化催化剂和催化部分氧化催化剂浸渍的氧化铝。更优选地,每一层包含一种与一种或多种稀土金属氧化物和/或一种或多种碱土金属氧化物,例如镧、铈、锆、镨、钇、钙、钡、锶、镁及其混合物的一种或多种氧化物相混合的催化剂。典型的稀土金属氧化物和碱土金属氧化物存在的量,按重量约为氧化物加γ-氧化铝的重量的2至约10%,每一薄涂层存在的量为约0.02至约5.0g/in3整块载体。
第一层催化剂被沉积在整块载体的表面上。这一步骤将在本发明方法的层状催化剂构件第一实施方案的优选方式,即蒸汽转化催化剂层的沉积中进行说明。蒸汽转化催化剂,例如一种或多种铂族金属组分,如铂和铑组分(以含有一种或多种稀土和/或碱土金属氧化物为宜)的典型施加方法是通过将整块载体浸入含铂-铑(以含有一种或多种稀土和/或碱土金属氧化物为宜)的含水的浆中而实现的。典型的铂-铑溶液的制备方法是将42g形式为H2Pt(OH)6的铂溶解在单乙醇胺和18g形式为Rh(NO3)·2H2O的Rh中,并将上述材料在水中合并而得到1,186ml溶液,用硝酸调整pH后pH为0.7。整块载体被浸泡在Pt-Rh溶液中,干燥(例如在120℃下干燥30分钟)从而减少水分含量,然后在温度为约400至约650℃下在空气流中烘烤约0.5至约4小时,从而得到带有一层包含沉积在整块载体表面上的Pt和Rh组分的蒸汽转化催化剂的整块载体。
重复以上过程以将第二个催化剂层(即催化部分氧化催化剂层)沉积在第一个催化剂层(即蒸汽转化催化剂层)的表面上。包含例如Pd和Pt组分的催化部分氧化催化剂可以通过将金属的盐(例如氯化钯和氯铂酸)溶解在水中制备。带有蒸汽转化催化剂层的整块载体随后被浸入Pd-Pt的混合水溶液中,干燥(例如在约120℃下干燥约30分钟)从而减少水分含量,然后在温度为约300至约650℃下在氢气流或空气流中烘烤约0.5至约4小时,从而得到完成的、含有整块载体的层状催化剂构件,其中在整块载体的表面上带有蒸汽转化催化剂层和在蒸汽转化催化剂层上带有催化部分氧化催化剂层。
带有多个含有不同蒸汽转化催化剂配方的层和/或多个含有不同催化部分氧化催化剂配方的层的层状催化剂构件,可以按与上述方法相同的方式制备。每一层蒸汽转化催化剂配方通过相同的方法加载,并再加载下一层前干燥和在空气流中烘烤。
图3中所示的“分区”的层状催化剂构件可以按以下方法制备催化部分氧化催化剂和蒸汽转化催化剂的浆按上述方法制备。在第一步中,载体以被控制的长度浸入得到的浆中。在第二步中,用空气刀除去多余的浆。在第三步中,已涂上涂层的载体在120℃下干燥1小时。此后,重复第一至三步直到达到催化剂的浓度和在载体上的位置的目标值。最后,涂上涂层的载体按上述方法烘烤。
附图的详细描述图1所示的是第一个实施方案的层状催化剂构件10。层状催化剂构件10包括含有通道13的整块载体12,进气气流(包含烃原料、水和空气)在通道13中流动。蒸汽转化催化剂层14沉积在整块载体12的表面上,催化部分氧化催化剂层15沉积在蒸汽转化催化剂14的表面上,其优选与层14在整个长度上相接触。催化剂构件10的优选的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层15相接触。
图2所示的是第二个实施方案的层状催化剂构件20。层状催化剂构件20包括含有通道23的整块载体22,进气气流(包含烃原料、水和空气)在通道23中流动。蒸汽转化催化剂层24a沉积在整块载体22的表面上,蒸汽转化催化剂层24b沉积在蒸汽转化催化剂层24a的表面上(蒸汽转化催化剂层24a和24b含有不同的蒸汽转化催化剂配方)。催化部分氧化催化剂层25a沉积在蒸汽转化催化剂24b的表面上,催化部分氧化催化剂层25b沉积在催化部分氧化催化剂层25a的表面上(催化部分氧化催化剂层25a和25b含有不同的催化部分氧化催化剂配方)。层24a、24b、25a、25b优选在其整个长度上互相接触。如图2所示,优选的催化剂构件20的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层25a相接触。
图3所示的是第三个实施方案的层状催化剂构件30。层状催化剂构件30包括含有通道33的整块载体32,进气气流(包含烃原料、水和空气)在通道33中流动。然而,与图1所示的第一个实施方案不同,催化部分氧化催化剂层35和蒸汽转化催化剂34是“分区”的或“分级”的。催化部分氧化催化剂层35在构件30的最左端具有最大的厚度,而蒸汽转化催化剂34在构件30的最右端具有最大的厚度。催化部分氧化催化剂层35的厚度沿着构件30的长度从其在构件30的最左端的最大值逐渐减小,在构件30的最右端实际变为零,而蒸汽转化催化剂层34的厚度从其在构件30的最右端的最大值沿着构件30的长度逐渐减小,在构件30的最左端实际变为零。层35和34优选在整个长度上互相接触。优选的层状催化剂构件30的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层35相接触。
本发明将在以下的非限制性的实施例中更详细地描述,其中所有的份数和百分数都是基于重量的,除非另有说明。
实施例A-催化部分氧化催化剂层的制备两种γ-氧化铝粉(表面积为150m2/g的“SBA 150”和表面积为225m2/g的“VGL 15”)按2/1的比例在一混合器内混合5分钟。混合后的γ-氧化铝粉用H2Pt(OH)6在单乙醇胺里的的稀溶液浸渍,随后用硝酸钯的稀溶液浸渍,从而γ-氧化铝粉上的载量为0.5%Pt和4.8%Pd。该粉随即与铈和锆的氧化物的复合物混合,然后在一2加仑球磨罐内与乙酸铈、乙酸锶、乙酸镧、乙酸锆、乙酸和氢氧化钡的混合溶液进一步混合。在球磨罐内再加水使浆的固体含量为45%。
以上得到的浆被球磨至颗粒尺寸为90%<10微米。在浆内加水调整固体含量,从而得到固体含量为38%、粘度在20℃时为245厘泊和pH4.53的催化部分氧化催化剂浆。
将整块载体浸入催化部分氧化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到催化部分氧化催化剂层。得到的载体随即在120℃下干燥一小时,在550℃下在空气中煅烧两小时。得到的薄涂层含有0.928g/in3Al2O3,0.04g/in3CeO2,0.30g/in3二氧化铈/氧化锆复合物,0.04g/in3SrO,0.033g/in3LaO,0.04g/in3ZrO和0.04g/in3BaO。
实施例B-蒸汽转化催化剂层的制备两种γ-氧化铝粉(表面积为150m2/g的“SBA 150”和表面积为225m2/g的“VGL 15”)按2/1的比例在一混合器内混合5分钟。混合后的γ-氧化铝粉用H2Pt(OH)6在单乙醇胺里的的稀溶液浸渍,随后用硝酸铑的稀溶液浸渍,从而使γ-氧化铝粉上的载量为0.96% Pt和0.48% Rh。该粉随即与铈和锆的氧化物的复合物混合,然后在一2加仑球磨罐内与乙酸铈、乙酸锶、乙酸锆、乙酸和氢氧化钡的混合溶液进一步混合。在球磨罐内再加水使浆的固体含量为45%。
以上得到的浆被球磨至颗粒尺寸为90%<10微米。在浆内加水调整固体含量,从而得到固体含量为38%、粘度在20℃时为410厘泊和pH 6.49的蒸汽转化催化剂浆。
将整块载体浸入蒸汽转化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到蒸汽转化催化剂层。得到的载体随即在120℃下干燥一小时,在550℃下在空气中煅烧两小时。得到的薄涂层含有1.70g/in3Al2O3,0.052g/in3CeO2,0.50g/in3二氧化铈/氧化锆复合物,0.040g/in3SrO,0.052g/in3ZrO和0.096g/in3BaO。
实施例C-双层催化剂的制备使用实施例A和B制备的浆制备带有双层催化剂的载体。将整块载体浸入蒸汽转化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到蒸汽转化催化剂层。得到的载体随即在120℃下干燥一小时,然后在550℃下在空气中煅烧两小时。
带有蒸汽转化催化剂的载体随即被浸入催化部分氧化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值。得到的载体随即在120℃下干燥一小时,然后在550℃下在空气中煅烧两小时。
将两种催化剂构件(即实施例C的双层催化剂构件和实施例A和B的两个单层催化剂构件)进行比较。双层催化剂构件和两个单层催化剂构件都使用了可从Corning Glass Works获得的由高表面积氧化铝构成的整块载体;每种构件的形状都是直径1.91cm,长7.62的筒形,每in2有400个蜂窝。所有构件都使用了相同的催化部分氧化催化剂和蒸汽转化催化剂配方。催化部分氧化和蒸汽转化层的组成在以下阐明。每一构件的处理方式尽可能地使本发明中的双层催化剂构件中催化部分氧化和蒸汽转化层的量,与两个单层催化剂构件中的催化部分氧化催化剂层和蒸汽转化催化剂层的总量相同。
在本发明的双层催化剂构件中,底层含有2.40g/in3蒸汽转化催化剂配方,顶层含有1.42g/in3催化部分氧化催化剂层。而对于两个单层催化剂构件,一个构件在一个整块载体上含有1.42g/in3的催化部分氧化催化剂层,另一个构件在另一整块载体上含有2.40g/in3的蒸汽转化催化剂层。催化剂构件的制备过程在实施例A、B和C中描述。配方如下
成分催化部分氧化催化剂,g/in3蒸汽转化催化剂,g/in3Al2O3粉 0.928 1.700Pd(NO3)20.0568H2Pt2(OH)60.0059 0.0119Rh(NO3)3- 0.00594Ba氧化物 0.0400 0.096Ce氧化物 0.0400 0.052La氧化物 0.0330Sr氧化物 0.0400 0.040Zr氧化物 0.0400 0.052XZO 738*0.3000 0.500*XZO 738是铈和锆的氧化物的复合物得到的催化剂构件随后被置于实验室用自热反应器中,进气气流被催化部分氧化和蒸汽转化。进气气流(即甲烷、乙烷、氮、氧和水)的组成和使用双层催化剂构件和两个单层催化剂构件在不同的氧∶碳和水∶碳的比例下的结果显示在下面表I和表II中。试验在一个自热反应器中进行。进气气流被加热到200℃后以44,000体积/小时的空速进入反应器。进气稳定后,反应器温度被从200℃升高到550℃。甲烷的转化率和产物气体的组成由Agilent微气相色谱测定。结果显示在下面表I和表II中。
表I本发明中的双层催化剂构件产物 产物 产物O2∶CH2O∶CN2,%O2,%CH4,%C2H6,%H2,%CO,%CO2,%0.36 1.60 38.73 0.54 13.43 0.05 31.6414.47 2.170.43 1.42 42.88 0.47 12.18 0.05 36.3912.58 5.230.52 1.83 41.16 0.51 5.13 0.02 35.4010.85 6.150.63 2.13 42.92 0.51 0.00 0.02 36.029.95 7.20
表II两个单层催化剂构件产物 产物 产物O2∶CH2O∶CN2,%O2,%CH4,%C2H6,%H2,%CO,%CO2,%0.34 2.13 37.12 0.29 17.21 0.06 29.67 9.98 4.860.36 1.28 36.94 0.27 14.33 0.03 32.51 9.90 5.820.41 1.42 37.83 0.24 11.37 0.03 33.10 9.51 6.430.45 1.60 38.48 0.32 7.26 0.02 36.16 7.91 8.520.52 1.83 39.65 0.27 6.30 0.01 35.22 8.43 7.94从以上的表I和表II的结果可以看出,与两个单层催化剂相比,本发明的双层催化剂构件产生了更多的氢和更多的一氧化碳而产生较少的二氧化碳。值得注意的是,在水的存在下,通过将产品排出物与转移催化剂接触,一氧化碳可以容易地转化出更多的氢。这样的结果清楚地表明,本发明中的双层催化剂构件比含有同样组成的两个单层催化剂构件更为有效。
权利要求
1.一种从烃原料产生富含氢的排出物的方法,其步骤是a)将预加热后的、含有烃原料、水和空气的进气气流送入带有层状催化剂构件的自热反应器,并使气流与构件在足以引发和维持催化部分氧化和蒸汽转化二者的温度下相接触;b)催化部分氧化至少一部分烃原料,以产生含有氢和碳氧化物的排出物;和c)蒸汽转化原料中剩余的的烃,以产生富含氢的排出物,所述催化剂构件包含一整块载体,在其表面上含有至少一层蒸汽转化催化剂和与之接触的至少一层催化部分氧化催化剂。
2.根据权利要求1的方法,其中整块载体在其表面上含有至少一层蒸汽转化催化剂和至少一层催化部分氧化催化剂,上述催化部分氧化催化剂覆盖蒸汽转化催化剂并与之接触。
3.根据权利要求1的方法,其中蒸汽转化催化剂层以多层蒸汽转化催化剂的形式存在,其中多层催化剂含有不同的蒸汽转化催化剂组分。
4.根据权利要求1的方法,其中催化部分氧化催化剂层以层多催化部分氧化催化剂的形式存在,其中多层催化剂含有不同的催化部分氧化催化剂组分。
5.根据权利要求1的方法,其中整块载体在其表面上含有渐变的蒸汽转化催化剂层和渐变的催化部分氧化催化剂层,且二者相互接触。
6.根据权利要求1的方法,其中催化剂构件相对于进气气流的取向使进气气流首先与催化部分氧化催化剂层相接触。
7.根据权利要求1的方法,其中还包括将步骤(c)产生的富含氢气的排出物取出,用于水-气转移反应,在此反应中,上述排出物与一催化剂接触,从而使该排出物中的一氧化碳与水反应,产生二氧化碳和额外量的氢。
8.根据权利要求1的方法,其中进气气流在进入自热反应器前被加热到约200至约900℃。
9.根据权利要求1的方法,其中自热反应器的温度被维持在约250至约1100℃。
10.根据权利要求1的方法,其中注入反应器的气流的体积小时速率为每体积整块载体约2,000至500,000体积。
11.根据权利要求1的方法,其中整块载体包含多孔陶瓷。
12.根据权利要求11的方法,其中多孔陶瓷选自氧化铝、氧化铝-二氧化硅、氧化铝-二氧化硅-氧化钛、高铝红柱石、堇青石、氧化锆、氧化锆-二氧化铈、氧化锆-尖晶石、氧化锆-高铝红柱石和碳化硅。
13.根据权利要求12的方法,其中多孔陶瓷以泡沫的形式存在。
14.根据权利要求1的方法,其中整块载体包含耐热和耐氧化的金属。
15.根据权利要求14的方法,其中金属选自不锈钢和铁/铬合金。
16.根据权利要求14的方法,其中金属以泡沫的形式存在。
17.根据权利要求1的方法,其中整块载体以热交换器的形式存在。
18.根据权利要求14的方法,其中整块载体的表面含有一种在该表面和蒸汽转化催化剂层或催化部分氧化催化剂层之间的粘合剂涂层。
19.根据权利要求18的方法,其中粘合剂包含高表面积氧化铝。
20.根据权利要求1的方法,其中蒸汽转化催化剂层和催化部分氧化催化剂层以薄涂层的形式存在,薄涂层含有用蒸汽转化催化剂浸渍的氧化铝和用催化部分氧化催化剂浸渍的氧化铝。
21.根据权利要求20的方法,其中氧化铝含有与一种或多种稀土金属氧化物和/或一种或多种碱土金属氧化物混合的γ-氧化铝。
22.根据权利要求21的方法,其中γ-氧化铝与一种或多种镧、铈、锆、镨、钇、钙、钡、锶和镁的氧化物或其混合物相混合。
23.根据权利要求21的方法,其中稀土金属氧化物和/或碱土金属氧化物的存在量为氧化物和γ-氧化铝的重量的约2至10重量%。
24.根据权利要求20的方法,其中每一薄涂层存在的量为约0.02至约5.0g/in3整块载体。
25.根据权利要求1的方法,其中催化部分氧化催化剂层包括一种或多种铂族金属组分。
26.根据权利要求25的方法,其中铂族金属选自铂、钯、铑、铱、锇、钌及其混合物。
27.根据权利要求25的方法,其中铂族金属组分包含钯和铂组分的混合物。
28.根据权利要求27的方法,其中催化部分氧化催化剂层,按金属元素计算,包含约10至约90%重量钯组分和约10至约90%重量铂组分。
29.根据权利要求1的方法,其中催化部分氧化催化剂层的存在量为约0.1至约3.0g/in3整块载体。
30.根据权利要求1的方法,其中蒸汽转化催化剂层包含一种镍组分、一种钴组分或镍和钴组分的混合物。
31.根据权利要求1的方法,其中蒸汽转化催化剂层包含一种或多种铂族金属组分。
32.根据权利要求31的方法,其中铂族金属组分选自铂、钯、铑、铱、锇、钌及其混合物。
33.根据权利要求32的方法,其中铂族金属组分包含,按金属元素计算,约10至约100%重量铑组分和约90至约0%重量铂组分。
34.根据权利要求1的方法,其中蒸汽转化催化剂层的存在量为约0.1至约5.0g/in3整块载体。
全文摘要
一种在催化作用下从烃原料产生富含氢的气体的方法。含有烃原料、水和空气的气流被预加热到可以引发烃原料的催化部分氧化的足够高的温度。预加热后的气流随即被注入含有层状催化剂构件的、温度足以引发和维持催化部分氧化和催化蒸汽转化的自热反应器中。至少部分烃原料被部分氧化,原料中剩余的烃被蒸汽转化而产生更多的富含氢的气体。层状催化剂构件包含一个整块载体,该载体含有至少一层蒸汽转化催化剂和至少一层催化部分氧化催化剂,且两者相互接触。蒸汽转化催化剂包含一种或多种铂族金属组分,而催化部分氧化催化剂含有钯组分。
文档编号C01B3/00GK1449361SQ01814933
公开日2003年10月15日 申请日期2001年8月27日 优先权日2000年8月31日
发明者H·S·黄, R·J·法劳托 申请人:恩格哈德公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1