非水电解质二次电池的制作方法

文档序号:3432192阅读:122来源:国知局
专利名称:非水电解质二次电池的制作方法
技术领域
本发明涉及一种非水电解质二次电池,并且特别涉及其正极活性材料和非水电解质的组合。
背景技术
当前,在非水电解质二次电池领域,在具有高电压和高能量密度的锂离子二次电池方面已经积极地进行了研究。锂离子二次电池的正极活性材料典型地为含锂的过渡金属氧化物,例如LiCoO2,并且负极活性材料典型地为碳材料。这类二次电池包括由非水溶剂和溶解于其中的溶质组成的电解质。非水溶解的实例包括环碳酸酯、链碳酸酯、以及环羧酸酯。溶质的实例是锂盐,例如六氟磷酸锂(LiPF6)和四氟磷酸锂(LiPF4)。
为了改进非水电解质二次电池的特性,已经尝试了向正极、负极和/或电解质中加入各种添加剂。例如,为了改进充电/放电循环特性或改进在低温下的充电/放电特性,已经提出了向电解质中加入碳酸亚乙烯酯或碳酸乙烯基亚乙酯(参见特开2003-151621、特开2003-31259和特开2003-249262)。碳酸亚乙烯酯或碳酸乙烯基亚乙酯在负极上分解形成保护膜,从而抑制在电解质和负极活性材料间的副反应。

发明内容
本发明所要解决的问题即使在电解质中含有碳酸亚乙烯酯或碳酸乙烯基亚乙酯,在电解质和正极活性材料间的副反应可特别在高温环境下剧烈地发生,导致环特性的极大降低。特别地,当使用特开2003-249262提出的高反应性正极活性材料时,高温环境下的环特性趋向于变得不充分。因此,本发明的目的是提供一种非水电解质二次电池,其尤其在高温环境下具有良好的充电/放电循环特性。
解决问题的方案本发明的非水电解质二次电池包括能够吸收和解吸锂的正极;能吸收和解吸锂的负极;置于正极和负极之间的隔离膜;以及非水电解质。所述正极包括由式(1)LiNixM1-x-yLyO2表示的复合氧化物作为活性材料,并且式(1)满足0.3≤x≤0.9和0≤y≤0.1。元素M为选自Co和Mn中的至少一种,并且元素L是选自以下组中的至少一种Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe。所述非水电解质包括主溶剂、溶质和碳酸乙烯基亚乙酯。
在具有含碳酸乙烯基亚乙酯的非水电解质的非水电解质二次电池中,当碳酸乙烯基亚乙酯在负极上分解时,生成1,3-丁二烯。此1,3-丁二烯有效地作用于由式(1)表示的特定复合氧化物,从而抑制在电解质和正极活性材料之间的副反应。原因可能如下。
那就是,当足够量的Ni(占Ni、元素M和元素L的总量的30mol%或以上)结合在用作正极活性材料的复合氧化物的晶体结构中时,在复合氧化物的表面上产生金属氧化物NiO。由于此金属氧化物NiO作为引发剂的作用,在负极上碳酸乙烯基亚乙酯的分解生成的1,3-丁二烯引起在正极活性材料的表面上的聚合反应,从而在正极上形成聚合物类保护膜。此膜用于抑制在电解质和正极活性材料间的副反应,从而即使在高温下也提供好的充电/放电循环特性。
在式(1)中,元素L优选为选自以下组中的至少一种Mg、Al、Ti和Sr。据认为,由这些元素生成的碱性氧化物,例如MgO和Al2O3,具有增强金属氧化物NiO用作聚合引发剂的作用,从而能够在正极上形成好的聚合物类保护膜。
所述非水电解质优选每100重量份主溶剂含有0.5-10重量份碳酸乙烯基亚乙酯。优选该非水电解质还含有碳酸亚乙烯酯。具有碳碳不饱和键的碳酸亚乙烯酯在充电时于正极活性材料的表面上形成薄聚合物类膜。另一方面,由碳酸乙烯基亚乙酯生成的1,3-丁二烯通过聚合在含有金属氧化物NiO的正极活性材料的表面上形成膜。这两个膜结合形成特别高耐热性的混合膜,并且此混合膜被认为非常能够抑制在电解质和正极活性材料间的副反应。
本发明的效果本发明可抑制非水电解质和正极活性材料间的副反应,从而提供即使在高温下也具有良好充电/放电循环特性的非水电解质二次电池。


图1是根据本发明实施例的圆柱形非水电解质的纵向截面图。
具体实施例方式
如上所述,本发明是基于以下发现含有由下式(1)LiNixM1-x-yLyO2表示的复合氧化物作为正极活性材料的正极与含有碳酸乙烯基亚乙酯的非水电解质的组合抑制了非水电解质和正极活性材料之间的副反应,从而即使在高温下也提供了良好的充电/放电循环特性。
在式(1)中,如果x小于0.3,当充电/放电循环在高温下重复时,容量保持比变得不充足。这可能是因为复合氧化物中的小的Ni含量导致生成小量的金属氧化物NiO,使得由碳酸乙烯基亚乙酯生成的1,3-丁二烯不太可能引起聚合反应,并且因此在正极上不形成充足的保护膜。
另一方面,如果x超过9,在高温下的循环特性劣化。这可能是因为复合氧化物中的过量的Ni含量导致过量生成金属氧化物NiO,使得由碳酸乙烯基亚乙酯生成的1,3-丁二烯的聚合反应剧烈地进行,在正极上形成过量的保护膜,从而妨碍充电/放电反应。当x在0.3≤x≤0.9的范围内时,高温循环性能是令人满意的。0.5≤x≤0.9是更优选的,0.7≤x≤0.9的范围是特别优选的。
元素M是选自以下组中的至少一种Co和Mn,并且元素L是选自以下组中的至少一种Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe。
元素L具有降低正极活性材料的晶体结构中的变化的作用,并且改进了容量和热稳定性。如果元素L的量、即y超过0.1,容量可降低或作为聚合引发剂的金属氧化物NiO的作用可变得过量。如果作为聚合引发剂的作用变得过量,高温循环特性则降低。在元素L中,Mg、Al、Ti和Sr是特别优选的。因为他们在活化作为聚合引发剂的金属氧化物NiO的作用方面产生了巨大作用,所以y的值可降低,使得高容量可有效地维持。
这些正极活性材料可单独或以两种或多重组合的形式使用。也可使用式(1)的复合氧化物和其他化合物(例如,LiCoO2、LiNiO2、LiMnO2、LiMn2O4等)的组合。然而,为了充分保证本发明的效果,优选除式(1)的复合化合物外的其他化合物不高过全部正极活性材料的70重量%。
在式(1)的复合氧化物中,特别优选由诸如以下式子表示的复合氧化物LiNixCo1-xO2(0.3≤x≤0.9)、LiNixMn1-xO2(0.3≤x≤0.9)、LiNix(Mn1-zCoz)1-xO2(0.3≤x≤0.9,0.3≤z≤0.995)、LiNixCo1-x-yLyO2(0.3≤x≤0.9,0≤y≤0.1)、LiNixMn1-x-yLyO2(0.3≤x≤0.9,0≤y≤0.1)、LiNix(Mn1-zCoz)1-xLyO2(0.3≤x≤0.9,0≤y≤0.1,0.3≤z≤0.995),因为他们高度可能地得到本发明的效果。
除了正极活性材料外,正极可包括导电剂、由树脂制得的粘合剂等。例如,通过在由金属箔制得的正极集电器上放置含有正极活性材料、粘合剂和导电剂的正极混合物,可得到正极。
能够吸收和解吸锂的负极优选包括碳材料作为负极活性材料。作为碳材料,优选使用各种人造石墨、天然石墨等。再者,可以使用公知作为非水电解质二次电池的负极活性材料的材料,而没有任何特别限制。例如,可以使用各种复合氧化物、可与锂合金化的简单金属、合金和碱金属如锂和钠。
作为本发明的非水电解质的主溶剂,优选使用环碳酸酯、链碳酸酯、环羧酸酯等。优选以他们两种或多种组合的形式使用他们。然而,如果主溶剂含有环羧酸酯,那么环羧酸酯可通过开环聚合在正极上形成膜,从而妨碍由碳酸乙烯基亚乙酯产生的1,3-丁二烯的聚合反应。因此,特别优选主溶剂是环碳酸酯和链碳酸酯的混合物。
环碳酸酯的实例包括碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸氟亚乙酯和碳酸三氟亚丙酯、链碳酸酯的实例包括碳酸二乙酯、碳酸乙基甲基酯、碳酸二甲酯、碳酸乙基-2,2,2-三氟乙酯和碳酸二-2,2,2-三氟乙酯。环羧酸酯的实例包括γ-丁内酯、γ-戊内酯、α-甲基-γ-丁内酯及β-甲基-γ-丁内酯。应注意到虽然碳酸乙烯基亚乙酯和碳酸亚乙酯被归类为环碳酸酯的类别中,但是他们不属于本发明的主溶剂。
溶质的实例包括六氟磷酸锂(下文称作LiPF6)、四氟硼酸锂(下文称作LiBF4)和双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)。他们可单独使用或者以两种或多种组合的形式使用。
非水电解质中所含由的碳酸乙烯基亚乙酯的量为每100重量份的主溶剂,优选0.5-10重量份、更优选1-5重量份。再者,当非水电解质还含有碳酸亚乙烯酯时,碳酸乙烯基亚乙酯和碳酸亚乙烯酯的总量为每100重量份的主溶剂,优选0.5-10重量份、更优选2-5重量份。碳酸乙烯基亚乙酯(VEC)和碳酸亚乙烯酯(VC)的重量比优选为VEC∶VC=1∶9至10∶0。
对于本发明的电池的形状等,没有特别限制。本发明适用于任何形状的电池,例如圆柱形或矩形。再者,本发明也适用于通过使正极和负极用配置于期间的隔离膜分层而得到的具有分层的电极板组、和通过使正极和负极与配置于他们之间的隔离膜缠绕而得到的圆柱形电极板组的电池。
本发明下面将通过实施例来具体描述。然而,这些实施例不应被理解为以任何形式限制本发明。虽然能够吸收和解吸锂的碳材料被用于实施例的非水电解质二次电池的负极中,但是使用可与锂合金化的简单金属、合金或复合氧化物、或者使用碱金属如锂或钠也可得到实质上相同的效果。
实施例1(i)非水电解质的制备LiPF6以1.0mol/L的浓度溶解在碳酸亚乙酯(下文称为EC)和碳酸乙基甲基酯(下文称为EMC)的溶剂混合物(体积比1∶3)中。将每100重量份溶剂混合物的2重量份的碳酸乙烯基亚乙酯(下文称作VEC)加入到所得溶液中,以制备非水电解质。
(ii)正极板的制备85重量份正极活性材料(LiNi0.75Co0.25O2)粉末、10重量份用作导电剂的乙炔黑、以及5重量份用作粘合剂的聚偏二氟乙烯树脂混合在一起,然后将混合物分散在脱水的N-甲基-2-吡咯烷酮中,以制备正极活性材料浆液。将此正极混合物涂覆至由铝箔制得的正极集电器上,干燥并滚压,得到正极板。
(iii)负极板的制备75重量份人造石墨粉末、20重量份用作导电剂的乙炔黑、以及5重量份用作粘合剂的聚偏二氟乙烯树脂混合在一起,然后将混合物分散在脱水的N-甲基-2-吡咯烷酮中,以制备负极混合物浆液。将此负极混合物涂覆至由铜箔制得的负极集电器上,干燥并滚压,得到负极板。
(iv)圆柱形电池的制备使用上述的正极板和负极板制备圆柱形电池。图1显示其纵向截面图。
正极板11和负极板12与放置在其间的隔离膜13缠绕,以制备电极板组。将该电池板组盛放在镀镍的铁电池壳18中。将连在正极板11上的铝正极引线14与正极端子20连接。正极端子20连接一个固定在树脂密封板19中心处的导电元件上,并且正极引线14与导电元件的后部连接。再者,连接负极板12的镍负极引线15与电池壳18的底部连接。绝缘板16和绝缘板17分别安装在电极板组的顶部和下面。然后,将预制的非水电解质注入到电池壳18中,该电池壳18的开口用密封板19密封。
(v)电池评估如上所述制备的电池在45℃进行重复的充电/放电循环。假设在第3次循环的放电容量为100%,那么500次循环之后的容量被计做循环保持比。表1显示此结果。
在充电/放电循环中,在最大电流1050mA和上限电压4.2V下进行恒定电流—恒定电压充电2.5小时,充电后的非操作时间为10分钟。再者,在放电电流1500mA和放电终电压3.0V下进行恒定电流放电,放电后的非操作时间为10分钟。
表1

比较例1以与实施例1中相同的方式制备电池,区别是使用通过以1.0mol/L的浓度溶解LiPF6在EC和EMC的溶剂混合物(体积比1∶3)中制备的溶液作为非水电解质。此电池在45℃下进行充电/放电循环。
比较例2以与实施例1中相同的方式制备电池,区别是使用钴酸锂(LiCoO2)作为正极活性材料。此电池在45℃下进行充电/放电循环。
比较例3使用通过以1.0mol/L的浓度溶解LiPF6在EC和EMC的溶剂混合物(体积比1∶3)中制备的溶液作为非水电解质,并且使用钴酸锂(LiCoO2)作为正极活性材料。除这些以外,以与实施例1中相同的方式制备电池,此电池在45℃下进行充电/放电循环。
比较例1、2和3的电池的循环特性也显示于表1中。表1说明循环特性仅在LiNi0.75Co0.25O2用作正极活性材料、且非水电解质中包括VEC时,循环特性才得到改进。这可能是因为由VEC得到的1,3-丁二烯在含有足够量的金属氧化物NiO的正极活性材料的表面上引起聚合反应,从而在正极上形成聚合物类保护膜。
实施例2单独或组合使用表2中所列的各种复合氧化物作为正极活性材料。在使用多种正极活性材料的混合物的情况下,混合比(重量%)示于表2中。除了正极活性材料改变外,以与实施例1中相同的方式制备电池,然后将他们在45℃下进行充电/放电循环。表2显示结果。
表2

比较例4以与实施例2中相同的方式制备电池,区别是使用LiNi0.75Co0.25O2作为正极活性材料,然后此电池在45℃下进行充电/放电循环。
比较例5以与实施例2中相同的方式制备电池,区别是使用LiNiO2作为正极活性材料,然后此电池在45℃下进行充电/放电循环。
比较例4和5的电池的循环特性也示于表2中。在比较例4中,循环特性降低。这可能是因为在正极活性材料中的Ni含量不充足导致生成的金属氧化物NiO的量小,使得由碳酸乙烯基亚乙酯产生的1,3-丁二烯不引起足够的聚合反应,并且因此在正极上未发现足够的保护膜。
在比较例5中,循环特性也降低。这可能是因为在正极活性材料中的Ni含量过量,导致生成的金属氧化物NiO过量,使得由碳酸乙烯基亚乙酯产生的1,3-丁二烯的聚合反应剧烈地进行,以在正极上形成过量的保护膜,从而妨碍充电/放电反应。
另一方面,表2表明由LiNixM1-x-yLyO2(M=Co,L=Mg、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe,0.3≤x≤0.9和0≤y≤0.1)表示的正极活性材料和含有VEC的非水电解质的组合可使电池具有优良的高温循环特性。这也表明使用由LiNixM1-x-yLyO2表示的复合氧化物、或使用由LiNixM1-x-yLyO2表示的复合氧化物和其他复合氧化物(例如,LiCoO2)的混合物也可提供实质上相同好的结果。另外,当M=Mn时,得到与M=Co时的相同的结果。这些结果解释了当正极活性材料中的Ni含量在0.3≤x≤0.9的范围时,高温循环性能是令人满意的,并且0.7≤x≤0.9的范围是特别优选的。
再者,表2表明当加入到正极活性材料中的元素N是选自Mg、Al、Ti和Sr的至少一种时,可得到具有特别好的高温循环特性的电池。
实施例3使用LiNi0.75Co0.25O2作为正极活性材料。再者,所用非水电解质是通过以1.0mol/L的浓度溶解LiPF6在以下组成的液体混合物中来制备的100重量份的EC和EMC的溶剂混合物(体积比1∶3);以及表3所示量的VEC。以与实施例1中相同的方式制备电池,区别是使用此非水电解质,然后电池在45℃下进行充电/放电循环。表3中显示结果。
表3

表3表明高温循环特性随着其中混合的VEC量的增加而改进。再者,优选的VEC的混合范围是每100重量份溶剂混合物,0.5-10重量份。
实施例4使用LiNi0.75Co0.25O2作为正极活性材料。再者,所用非水电解质是通过以1.0mol/L的浓度溶解LiPF6在以下组成的液体混合物中来制备的100重量份的EC、EMC和碳酸二乙酯(DEC)的溶剂混合物(体积比3∶5∶2);碳酸亚乙烯酯(下文称作VC)(表4所示的混合量);以及2重量份的VEC。以与实施例1中相同的方式制备电池,区别是使用此非水电解质,然后电池在45℃下进行充电/放电循环。表4中显示结果。
表4

比较例6以与实施例4中相同的方式制备电池,区别是使用通过不向其中加入VEC并混合VC于其中(混合量示于表4中)而制备的非水电解质,然后电池在45℃下进行充电/放电循环。表4中显示结果。
比较例6的电池的循环特性也示于表4中。表4表明具有含VEC的电解质或具有含VEC和VC的电解质的本发明电池具有优良的高温循环特性。也表明使用VEC和VC的组合可提供特别优良的高温循环特性。
工业应用性本发明的非水电解质电池在高温环境下具有优良的循环特性。此非水电解质二次电池可用作各种电子装置、包括蜂窝式电话的驱动电源。
权利要求
1.一种非水电解质二次电池,其包括能够吸收和解吸锂的正极;能够吸收和解吸锂的负极;置于所述正极和所述负极之间的隔离膜;以及非水电解质,其中,所述正极包括由式(1)LiNixM1-x-yLyO2表示的复合氧化物作为活性材料,并且所述式(1)满足0.3≤x≤0.9和0≤y≤0.1,元素M是选自Co和Mn中的至少一种,并且元素L是选自以下组中的至少一种Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe,并且所述非水电解质包括主溶剂、溶质和碳酸乙烯基亚乙酯。
2.权利要求1的非水电解质二次电池,其中在所述式(1)中,所述元素L是选自以下组中的至少一种Mg、Al、Ti和Sr。
3.权利要求1的非水电解质二次电池,其中所述非水电解质每100重量份所述主溶剂含有0.5-10重量份所述碳酸乙烯基亚乙酯。
4.权利要求1的非水电解质二次电池,其中所述非水电解质还含有碳酸亚乙烯酯。
全文摘要
一种非水电解质二次电池,其包括能够吸收和解吸锂的正极;能吸收和解吸锂的负极;置于所述正极和所述负极之间的隔离膜;以及非水电解质。所述正极包括由式(1)LiNi
文档编号C01G53/00GK1806362SQ20058000050
公开日2006年7月19日 申请日期2005年3月16日 优先权日2004年4月7日
发明者出口正树, 松井徹, 芳泽浩司 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1