用于净化水的层状双氢氧化物的制作方法

文档序号:12283982阅读:192来源:国知局

本发明涉及层状双氢氧化物,其合成方法和用于净化水的用途。

发明背景

层状双氢氧化物(缩写为 LDH)表示一类矿物,其中之一是具有化学式 Mg6Al2(CO3)(OH)16 4H2O的水滑石。

水滑石通常用于净化被砷污染的水。例如在Ind. Eng Chem. Res. 2005, 44, 第6804-6815页中发现对此类用途的提及。一些关于无机化学和水净化的参考书、百科全书和文章指明含有其它二价和三价阳离子的改性水滑石与天然形式相比在净化水方面更佳。

天然水滑石针对砷的有限的功用,导致开发改性形式的LDH。

WO2009010376 A1 (Unilever)公开了用于净化水的组合物,其具有为式(M12+.M22+)x(M33+.M43+)y(OH)2x+2y(Az-)y/z·nH2O的层状双氢氧化物的第一组分,其中M12+和M22+是镁、锌或铜的二价阳离子,其中二价阳离子中的至少一种为Zn或Cu,且M33+和M43+是选自铝或铁的三价阳离子,A是选自OH-、CO32-、Cl-、NO3-、SO4-、PO43-、Fe(CN)64-的阴离子且x是0.1 至10.0,y是0.1至5.0,n是0至10.0,z是1.0至4.0,且M12+: M22+的摩尔比为0至1,且M33+:M43+的摩尔比为0至1;和选自絮凝剂或凝结剂的第二组分。尽管在该申请中所公开的材料可用于净化含砷的水,其吸附/吸收砷的能力有限。这使得必需使用更多的该材料以用于有效的净化水。

发明概述

已经确定的是,改性LDH材料的粒化不仅可显著提高其使用寿命,还保持经净化水的低残余金属含量。发现这样的经粒化的材料与其它过滤材料(如活性炭)组合同样有效,由此使其成为有效且高效的净化水的介质。

在第一方面,公开了通式[(M2+)1-x(M3+)x(OH)2]x+(An-)x/n·mH2O的层状双氢氧化物,其中M2+是Zn2+、Cu2+、Fe2+或Ca2+;M3+是Al3+或Fe3+且An-是CO32-、OH-、Cl-、NO3-、SO42-或PO43-,“x”为0.05至0.5,“n”为1至10,且“m”为0至10;其中所述层状双氢氧化物是粒度为 50 µm 至2000 µm的颗粒,且其中M2+: M3+的摩尔比为2:1至4:1。

在第二方面,公开了用于净化水的过滤媒介组合物,所述组合物包含第一方面的第一过滤介质和第二过滤介质,所述第二过滤介质为活性炭、砂、硅藻土、碳酸钙、活性氧化铝、氧化铁或氧化钛。

在第三方面,公开了用于制造第一方面的层状双氢氧化物的方法,其包括以下步骤:

(i)以任何顺序混合包含Zn2+、Cu2+、Fe2+或Ca2+中至少一种的化合物的酸性溶液与包含Al3+或Fe3+中至少一种的化合物的酸性溶液和包含CO32-、OH-、Cl-、NO3-SO42-或PO43-中至少一种的碱性溶液,以形成沉淀物;

(ii)过滤所述沉淀物;

(iii)用水洗涤所述沉淀物以得到如在第一方面中的通式中所示的层状双氢氧化物;

(iv)粒化所述层状双氢氧化物;和,

(v)将50 µm至2000 µm的粒度的颗粒与较细粒子分离。

在第四方面,公开了第一方面的层状双氢氧化物将不纯水的砷含量从300 ppb降低至≤10 ppb的用途。

现将说明本发明的各个方面的细节。

发明详述

改性LDH材料

公开的层状双氢氧化物具有通式[(M2+)1-x(M3+)x(OH)2]x+(An-)x/n·mH2O,其中M2+是Zn2+、Cu2+、Fe2+或Ca2+;M3+是Al3+或Fe3+且An-是CO32-、OH-、Cl-、NO3-、SO42-或PO43-,“x”为0.05至0.5,“n”为1至10,且“m”为0至10;其中所述层状双氢氧化物是粒度为 50 µm 至2000 µm的颗粒,且其中M2+: M3+的摩尔比为2:1至4:1。

作为M3+,在Fe3+和Al3+之间不存在特别优选。只要涉及M2+,则Zn2+、Cu2+和Fe2+更为优选。

在优选的实施方案中,“x”为0.1至0.4,“n”为1至4且“m”为0至6。术语“m”表示结晶水,因此在改性LDH材料中可能存在或可能不存在这样的结晶水。

因此,改性LDH材料具有一个二价阳离子和一个三价阳离子。优选的改性LDH化合物具有以下的阳离子组合:Cu-Al、Zn-Al、Zn-Fe和Cu-Fe。

更优选的阴离子A是OH-、Cl-、NO3-和CO32-。改性LDH材料也可为其经煅烧的形式。这样的形式不具有结晶水。

粒度

本文公开的改性LDH材料的粒度为50 µm至2000 µm,且更优选为200 µm至1500 µm。

正如前文指明的,一些LDH材料,特别是天然LDH材料,尽管其能吸收/吸附砷,但较不适合用于净化,这是因为该材料浸出离子(如钙和铝),由此在经净化的水中留下显著量的此类金属。我们发现该问题通过具有50 µm至2000 µm的改性材料的密度而得以解决。

制造改性LDH的方法

通常如下制备LDH材料:

将为所需摩尔比的二价和三价金属离子的盐溶解在水中。将盐溶液加热至85至105℃,优选90至95℃。在单独的容器中,制备碱溶液。合适的碱包括碱金属碳酸盐、碳酸氢盐或氢氧化物,或化合物如氨或脲。也优选在80至105℃的范围内,更优选在90至95℃的范围内加热碱溶液。在该高温下,在剧烈搅拌下将盐溶液和碱溶液同时添加到第三容器。在添加过程中,将溶液的温度保持在优选约90至95℃。在该反应过程中LDH材料形成并从溶液中沉淀出来。在完全沉淀后,通常将溶液的温度保持最少15分钟。然后洗涤沉淀至其不含溶解的盐,将其过滤(优选在真空下)并干燥。优选通过将LDH材料加热至400℃或更高来制备煅烧形式。

根据第二方面,公开了用于制造第一方面的层状双氢氧化物的方法,其包括以下步骤:

(i)以任何顺序混合包含二价阳离子Zn2+、Cu2+、Fe2+或Ca2+中至少一种的化合物的酸性溶液与包含三价阳离子Al3+或Fe3+中至少一种的化合物的酸性溶液与包含CO32-、OH-、Cl-、NO3-SO42-或PO43-中至少一种阴离子物类的碱性溶液,

(ii)过滤所得到的沉淀物;和

(iii)用水洗涤所述沉淀物。

尽管优选通过按照如所公开的标准瞬时共沉淀法来制备改性LDH材料,但也可使用其它方法,例如共沉淀法、离子交换法、煅烧-再水合过程或水热法来制备改性LDH材料。

粒化

公开的层状双氢氧化物为50 µm至2000 µm粒度的颗粒形式。天然和合成的LDH材料是粉状的,发现其浸出超出饮用水的最大污染物水平(MCL)的一些部分的二价和/或三价阳离子。US-EPA规定了以下值:锌:5 ppm,铜:1 ppm,铁(II):0.3 ppm (300 ppb),钙:不适用(因为其被认为是主要的水的组分之一);浓度受当地岩石类型影响,铝:0.2 ppm (200 ppb),铁(III):0.3 ppm (300 ppb)。

可通过任何标准粒化技术来粒化改性LDH,范围包括但不限于干法压实和湿法粒化工艺。干法压实途径包括以下非详尽的名单:使用任何压实机,如压片机、辊压机、Chilsonator、它们的组合,而湿法粒化技术包括以下非详尽的名单:使用任何湿法剪切机,例如快速混合制粒机、犁刀式剪切混合器(plough shear mixer)、行星式混合器或它们的组合。

对于湿法粒化,可使用水或任何溶剂作为粘合剂(binder),其可在粒化时并入并然后在实际使用材料之前蒸发。可在一些调节颗粒/粉末尺寸和形状的工艺步骤之后将改性LDH材料粒化。可将具有Zn-Al的改性LDH单独地或与成粒剂(如粘合剂、添加剂、惰性材料、填料、塑化剂、崩解剂或此类材料的组合)结合地粒化或压实以制备适合于应用的颗粒。此外,成粒剂可在非标准材料,例如矿物、盐、聚合物或任何有机化合物或它们的组合之中。所讨论的粒化材料的其它方法可为通过流化床粒化、熔融粒化、喷雾粒化、滚圆或造粒(pelletization)技术或它们的组合,其可通过使用标准粒化机器和设备,连同(但不必需)使用粒化助剂来实现。上述是全部可能的用于粒化改性LDH材料的途径/技术,但优选的技术是使用无任何粘合剂的干法压实。

改性LDH材料的用途

砷是环境中存在的最为毒性的污染物之一。砷存在于土壤、岩石、天然水和有机体中。砷是地壳中第二十位最丰富的元素。砷的最为常见的氧化态是+3和+5。在环境中存在的全部的砷化合物之中,最令人关注的是亚砷酸盐(其为As (III)形式的砷),亚砷酸盐的毒性是砷酸盐(其为As (V)形式的砷)的25至50倍,且是甲基化物类—二甲基次胂酸盐(DMA)和单甲基胂酸盐(MMA)的70倍。这些事实表明了为何首要关注开发用于从饮用水中去除As (III)的技术。

无机砷被确认为是对于人类的I类致癌物。全世界多于1亿人由于被砷污染的饮用水而受到影响。在许多这些地区的饮用水的砷含量高至十亿分之300(ppb)。WHO和USEPA建议的饮用水中砷的MCL(最大污染物水平)是10 ppb。可用的砷去除技术为膜分离、离子交换和吸附。这些技术或者需要在世界许多地区负担不起的昂贵的设备,或者未能成功将砷,尤其是As (III)去除至WHO建议的规格。此外,许多人为净化水所采取的使水沸腾不去除砷。因此,在该领域中的主要挑战之一是对砷(III)的差的去除。

优选的是所述层状双氢氧化物具有至少5 mg/g的砷(V)吸附能力。

因此在另一方面中公开了第一方面的层状双氢氧化物将不纯水的砷含量从300 ppb降低至≤10 ppb的用途。

过滤媒介组合物

根据第三方面,公开了用于净化含砷水的过滤媒介组合物,所述组合物具有第一方面的第一过滤介质和第二过滤介质,所述第二过滤介质是活性炭、砂、硅藻土、活性氧化铝、氧化铁或氧化钛。优选所述过滤媒介组合物具有 5至100%,更优选20至100%的第一过滤介质,且甚至更优选20至50%的该过滤介质,余量为所述第二过滤介质。在一个优选的实施方案中,所述组合物还包含粘合剂,且所述粘合剂的含量可根据其性质以及第一和第二过滤媒介的比例而变化。

可以松散或粘合形式使用过滤媒介组合物。粘合形式的过滤物形状可具有任何有关几何形式(板、球体、局部球体、圆柱体等),或甚至为扭曲形式。

因此,根据另一方面,公开了过滤媒介组合物将不纯水的砷含量从300 ppb降低至≤10 ppb的用途。

实施例

现将通过非限制性的实施例来进一步详细说明本发明。

实施例1:改性LDH的优选实施方案的合成

通过如下文描述的共沉淀途径来制备改性LDH材料。

将氯化锌水溶液与氯化铝水溶液混合使得 Zn:Al摩尔比为3:1。将其与1.5M的碳酸钠溶液混合以沉淀改性LDH。将沉淀物过滤并用水洗涤。其式为Zn6Al2(OH)16(CO3)·4H2O,且其砷去除能力为至少9 mg/g。

将100 kg改性LDH材料的细粉末在辊压机中在250 kg/cm2下压实,并在30 Hz下使得到的片经1.2 mm的筛通过摇摆式制粒机(oscillating granulator)。经 200 µm筛对输出产品进行筛分以获得200 至1200 µm尺寸范围内的颗粒。将颗粒材料用于如下文描述的进一步的实验。

实施例2:过滤物用于净化水的用途

使用混合有不同水平的活性炭的实施例1的改性LDH制备各种粘合过滤物块(半球形)。通过标准方法来制备所述块,所述方法涉及将成分与粘合剂混合,将其放在适当尺寸的模具中,压缩并热处理,随后脱模。

各过滤物经受使用寿命研究(lifetime study),其中砷去除作为所测试的参数。制备含300 ppb砷 (V)的模拟试验水,并且该水的总的溶解固体为750 ppm且pH为7.0至7.5。也用松散床(即未粘合的材料)来进行一些实验。为对比分析,用含有天然形成(即未改性的)LDH的粘合块进行一些另外的实验,所述粘合块含有160 g的镁和铝和80 g的活性炭以及50 g的聚乙烯粘合剂。在实验过程中,将输入水的流量保持在80至200 ml/min。 各种所测试的过滤物块的组成的细节示于表1中且数据示于表2中。

*其为天然LDH,并非改性LDH

^其为改性粉末状LDH(未粒化),但化学式按照实施例1

#其填充在药筒中。其不是粘合块。

注:(1)锌的MCL为5 ppm

(2)铝的MCL为0.2 ppm。

在表2中的数据连同表1中描述的全部组合物的配方一起阅读表明天然(未改性)LDH [对比例1]仅对于100升的输入水而言是足够好的。通过天然LDH的水的砷含量不可接受地高(在40 ppb)。类似地,未经粒化但经改性的LDH[对比例2]的数据表明尽管该材料针对砷是有效的,其关于保持锌和铝的水平低于MCL限值的性能是不可接受的。

另一方面,本身为未粘合形式的实施例1的改性材料(过滤物5)对于高至400升的输入水而言是足够有效的。以粘合形式不含第二过滤介质的该材料(过滤物2)同样有效。

以含有不同水平的活性炭第二过滤介质和粘合剂的过滤媒介组合物形式的改性LDH材料甚至更为有效。

值得注意的是,呈全部其各种形式的改性LDH材料提供不仅含有最低量的砷还含有最低量的残余锌和铝的纯净水。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1