一种具有高发电特性的无铅压电能量收集材料及其制备方法与流程

文档序号:12053826阅读:349来源:国知局
一种具有高发电特性的无铅压电能量收集材料及其制备方法与流程

本发明属于电子陶瓷材料领域,具体涉及一种应用于振动能量收集的具有高发电功率的无铅压电陶瓷材料。



背景技术:

随着物联网和可穿戴电子技术的发展,以化学电池为主的供电方式由于体积大、寿命短,已不能满足微型机电设备对持久能量供应的需求。近年来,基于振动能量收集的各种能量收集技术受到广泛关注并快速发展。其中,压电能量转换不仅具有高的能量密度,还具有结构简单、无电磁干扰、加工制作容易等优点,是目前最有应用前景的振动能量收集技术。

压电能量收集器基于压电材料的正压电效应,即有力作用于压电材料时,在材料表面产生电荷。通过该效应可以将环境中无处不在的机械振动转化为电能,实现机械能回收再利用的目的。为了获得优异的发电特性,对于压电能量收集材料最重要的性能要求是具有高的能量转化效率η:

其中,k为机电耦合系数,Qm:为机械品质因数。此外,能量收集用压电材料还要具有高的能量密度u:

其中,d为压电应变常数,g为压电电场常数,F为作用力,A为面积。对于压电材料而言,高的能量密度主要由高的机电转换系数d×g值来决定。

无量纲品质因数(DFOM)是评价能量收集材料性能的一个综合指标,其可以如下公式表示:

其中,tanδ为介电损耗,sE为材料的弹性模量。

综上所述,获得具有高发电特性无铅压电能量收集器的关键在于制备同时具有高能量转化效率(η)、机电转换系数(d×g)和无量纲品质因数(DFOM)的无铅压电陶瓷材料。目前,广泛研究的无铅压电材料体系主要包括铌酸盐系、钛酸铋钠基以及钛酸钡基压电陶瓷。其中,铌酸盐系压电陶瓷室温下位于多晶相界处,压电性能优异,但当温度偏离室温后,其性能迅速劣化。而限制钛酸铋钠基压电陶瓷应用的原因,主要是其低的退极化温度。近年来,钛酸钡基压电陶瓷成为无铅压电材料领域新的研究热点。当前研究中主要通过各种改性手段提高其压电常数d33,面向压电制动器应用。与压电能量收集器件的性能要求存在极大差异。因此,亟待开发满足能量收集性能要求的钛酸钡基压电陶瓷。本发明中,通过成分驱动的相结构演化,并结合硬性掺杂机制,在室温下获得了具有三方-正交-四方(R-O-T)三相共存的硬性钛酸钡基压电陶瓷。三相共存和硬性掺杂机制的协同作用,使该钛酸钡基压电陶瓷材料的能量收集性能得到极大提升,为实现压电能量收集器件无铅化,奠定坚实的基础。



技术实现要素:

本发明的目的在于提供一种可应用于压电能量收集器的无铅压电陶瓷材料及其制备方法,制备的无铅压电陶瓷同时具备高的能量转化效率(η)、机电转换系数(d×g)和无量纲品质因数(DFOM)。并通过悬臂梁型能量收集器表征了其发电特性。为了获得高的能量收集性能,本发明中通过成分驱动的相结构演化,使组成在室温下处于R-O-T三相共存点,并通过二价Cu2+替代部分四价Zr4+,产生硬性掺杂效果。通过三相共存和硬性掺杂协同作用,实现能量收集性能的大幅度提升。

为实现上述目的,本发明采取以下技术方案。

本发明的具有高发电特性的无铅压电材料。其特征在于基体化学组成为:(1-x)Ba(Zr0.185Cu0.015Ti0.8)O2.985-x(Ba0.7Ca0.3)TiO3,x的数值为0.50~0.70,进一步优选其中x数值为0.55的材料体系。

本发明上述具有高发电特性的无铅压电陶瓷材料通过普通固相工艺制备,具体包括以下步骤:

(1)按照化学式(1-x)Ba(Zr0.185Cu0.015Ti0.8)O2.985-x(Ba0.7Ca0.3)TiO3中各元素的摩尔配比,称取原料BaCO3、CaCO3、BaZrO3、TiO2及CuO,其中,x的数值为0.50~0.70;

(2)将称量好的原料放入球磨罐中,以无水乙醇为介质置于球磨机中球磨,然后烘干,将干燥后的粉体在1100~1200℃下煅烧2小时,随炉冷却;

如:卧式球磨机中球磨12小时,然后在100℃条件下烘干;将干燥后的粉体在1100~1200℃下煅烧2小时,随炉冷却。

(3)将步骤(2)冷却后的粉料经过二次球磨并烘干,烘干后的粉末研磨并进行造粒;优选采用PVA造粒;

(4)将步骤(3)造粒得到的粉料静置后,压制成型(如在100MPa的压力下成型),得到素坯体,然后进行排胶处理(优选将坯体在560℃排胶处理),最终在1300~1400℃烧结,保温4小时,随炉冷却至室温,得到目标材料。

制备得到的无铅压电材料,首先经过表面的抛光处理,进行微结构测试,然后涂覆银电极并进行人工极化,对样品进行压电性能的测试。最后,通过悬臂梁结构能量收集器进行发电性能测试。

其中,经过优选发现最佳样品组成为:0.45Ba(Zr0.185Cu0.015Ti0.8)O2.985-0.55(Ba0.7Ca0.3)TiO3,由于在室温下处于R-O-T三相共存,其材料性能可达到:能量转化效率η=0.95、机电转换系数d×g=4257×10-15m2/N和无量纲品质因数DFOM=995;发电性能:电压U=7V,功率P=50μW,性能很稳定的典型正弦电压电流信号,满足无线传感器节点和可穿戴电子设备对于能源的需求。

与现有技术相比,本发明具有如下有益效果:

(1)本发明的具备高压电性能的无铅压电陶瓷材料,具有高的能量转化效率(η)、机电转换系数(d×g)和无量纲品质因数(DFOM),可有效提高能量收集器件的发电性能,是潜在的一种应用于能量收集器件的无铅压电陶瓷材料。

(2)本发明的无铅的压电陶瓷材料,其相结构室温下处于R-O-T三相共存区,为高压电活性无铅压电材料的获得提供了保证。

(3)本发明引入Cu2+进入到Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3(BCZT)陶瓷中,由于硬掺杂效应,使无铅陶瓷的介电损耗降低,机械品质因数显著提高;此外,Cu2+的引入显著降低了体系的烧结温度,可以在低于1400℃的温度下烧结致密。

(4)本发明的无铅压电陶瓷材料结构稳定、制备方法简单、成本低、易于操作。本发明应用于压电能量收集器件,可以有效地回收再利用废弃的能量,且节能、环保、安全,具有显著的经济和社会价值。

附图说明

图1为不同组成陶瓷样品的X射线衍射图谱,所有样品均表现为纯的钙钛矿结构。

图2为成分组成为x=0.50,x=0.52,x=0.55和x=0.60的无铅压电能量收集器发电性能对比图。

具体实施方式

下面通过实施例进一步阐明本发明的实质性特点和显著优点,但本发明决不仅局限于以下实施例。

实施例1

按照化学式0.50Ba(Zr0.185Cu0.015Ti0.8)O2.985-0.50(Ba0.7Ca0.3)TiO3的计量比,称取原料BaCO3,CaCO3,BaZrO3,TiO2及CuO,并在乙醇中球磨12小时。混合物经烘干后在1100~1200℃下煅烧2小时;二次球磨并造粒后,在100MPa下压制成型,得到素坯体,然后将坯体在560℃进行排胶处理。最终在1300~1400℃烧结,保温4小时,得到目标材料。

实施例2

按照化学式0.48Ba(Zr0.185Cu0.015Ti0.8)O2.985-0.52(Ba0.7Ca0.3)TiO3的计量比,称取原料BaCO3,CaCO3,BaZrO3,TiO2及CuO,其它同实施例1。

实施例3

按照化学式0.45Ba(Zr0.185Cu0.015Ti0.8)O2.985-0.55(Ba0.7Ca0.3)TiO3的计量比,称取原料BaCO3,CaCO3,BaZrO3,TiO2及CuO,其它同实施例1。

实施例4

按照化学式0.40Ba(Zr0.185Cu0.015Ti0.8)O2.985-0.60(Ba0.7Ca0.3)TiO3的计量比,称取原料BaCO3,CaCO3,BaZrO3,TiO2及CuO,其它同实施例1。

表1上述实施例性能对比表

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1