一种碳化硅耐火材料及其制备方法与流程

文档序号:12882021阅读:638来源:国知局

本发明涉及一种耐火材料技术领域,具体而言涉及一种碳化硅耐火材料及其制备方法。



背景技术:

在冶金过程中,熔炉内衬与钢水导流、控流器常常要经受温度激变,对这些部位所使用的耐火材料要求具有很高的耐热震性。由于石墨在环境温度激变时,可以快速传导热量,降低材料内部温度梯度,减小热应力,从而保护材料热震不开裂,所以含碳耐火材料广泛应用于冶金过程中热震强烈的部位。

目前含碳耐火材料普遍采用酚醛树脂做结合剂,高温烧成后形成玻璃碳结合耐火材料。然而这种玻璃态的结合碳存在两项缺点:一是抗氧化性差,酚醛树脂炭化后形成的玻璃碳从500℃就开始氧化烧蚀,结合碳的氧化会导致材料失去结合力,结构变得疏松,容易剥落或被熔融金属冲蚀;二是强度低、呈玻璃脆性,在一定的应力存在下,会发生开裂情况甚至会发生脆性断裂。

针对结合碳的抗氧化性差,一般采用内部掺入抗氧化剂和表面施涂抗氧化涂料来保护含碳耐火材料。所掺入的抗氧化剂一般为比结合碳更易氧化的一些金属粉末,因为其掺入量有限,所以只能在短时间内发挥抗氧化作用。熔炉内衬用含碳耐火材料和熔融金属导流、控流用含碳耐火材料浸没在熔融金属中的部位,表面的防氧化涂层受到熔融金属的溶蚀会逐渐丧失对含碳材料的防氧化保护。一些沥青浸渍含碳耐火材料,由于表面光滑和使用条件的限制难以涂敷抗氧化涂层,在烘烤时发生很容易发生碳结合氧化。

因此目前需要一种具有良好的强度、韧性和强抗热震性抗氧化性的碳化硅耐火材料。



技术实现要素:

为了解决上述问题提供一种具有良好的强度、韧性和强抗热震性、抗氧化性的碳化硅耐火材料,本发明采用以下技术方法:

一种碳化硅耐火材料,包括以下重量份的原料:

碳化硅粉体50~70份、硅粉4~12份、铝粉15~20份、二氧化钛粉2~5份、氧化铝粉4-7份、白云母粉3~5份,绢云母粉2~4份、氮化硼粉2~6份、碳酸钙粉1~3份、二氧化硅粉1~3份、木质素磺酸钠5~6份、石墨粉1~2份,四硼酸钠5~10份,聚硅烷10~15份。

首先本发明采用了白云母粉和绢白云母粉共同使用的方案,首先加入白云母可以提高材料的韧性和机械强度,而绢云母属于单斜晶体,可以增强材料的耐磨性,两者配合使用时,白云母和绢云母填充在碳化硅晶体之间的空隙中,绢云母因为晶体更加细密可以填充进白云母无法填充的缝隙,便于原料的混合,白云母和绢白云母在高温下熔化,增强了晶体之间的结合强度,进一步提高了耐火材料的韧性和内部强度。

其次本发明使用了木质素磺酸钠,由于木质素磺酸钠的组织结构上存在各种活性基,因而能与碳化硅晶体表面发生氢键作用,可以增强晶体的结构强度,从而增强耐火材料的强度。

烧结过程中聚硅烷在加热过程热转位反应,使侧链上的甲基以亚甲基的形式,导入主链的硅原子之间,形成聚碳硅烷,而且聚碳硅烷会进一步裂解为含锆碳化硅纤维。高温裂解形成的碳化硅纤维在烧结处理时,由于温度的影响,会在表面生成一层致密的二氧化硅,随着高温氧化时间的延长,这层致密二氧化硅逐渐增厚将内部包裹起来,防止进一步氧化,从而增强了耐火砖的抗氧化性,而且含锆碳化硅纤维可以将其他材料粘结起来,增强了本发明的强度和韧性及抗热震性,从而使耐火砖具有优良的抗熔渣渗透性、抗剥落性和抗渣蚀性。

聚碳硅烷所形成的碳化硅纤维具有良好的抗拉强度、传热能力和较低的热膨胀系数。由于材料的拉伸强度高,因此提高材料所能承受的内应力大,减少了材料发生开裂的可能;而材料的热导率高可以使得材料在被加热时可以快速传导热量,从而降低材料内部的温度梯度,从而降低了材料内部因为温度梯度而产生的内应力;而低的热膨胀率使得材料内部存在温度梯度时形成内应力小,减少材料在加热是发生开裂的可能。总体而言,聚碳硅烷有效减小了材料内部的内应力,增强了材料的耐热震性,防止材料发生开裂的情况,同时也增加了材料的抗氧化性。

另外本发明还使用了氮化硼、铝粉、氧化铝粉及四硼酸钠配合使用的方案,在烧结过程中会在碳化硅中生成碳化硼-铝的复合物,该复合物与碳化硅纤维共同形成网状结构,可以加强材料的韧性,耐磨性,导热性和抗冲击强度,同时与二氧化钛共同作用起到改善材料的表面润湿性的作用,可以使得碳化硅和其他原料易于熔渗,从而可以降低反应温度和烧结时间,节约成本。同时反应也会有少量的氮化硅产生,少量的氮化硅可以起到粘结碳化硅晶体从而增强材料的抗热震性的作用,此外氮化硼还可以抑制晶体的生长,使得本发明内晶体的粒度更加地细密,有助于增强本发明的强度。

而且产生的碳化硅纤维中由于有硼和铝等物质的加入,使碳化硅纤维的稳定性和耐高温性进一步提高,同时可以防止碳化硅纤维在高温中软化造成材料结构被破坏,影响材料的强度。

作为优选,所述的碳化硅粉体由以下重量份的原料制得:石英砂55~60份、焦炭40~45份。

在本发明中,石英砂的重量份较高焦炭较少,这样在制备碳化硅的过程中充分保证了石英砂包裹住焦炭反应,有助于反应的进行

作为优选,在使用前对所述的石英砂进行过筛,取用直径在1~5微米的石英砂。

作为优选,所述的二氧化硅粉经过改性处理,所述的改性处理包括以下步骤:

a.将十二烷基磺酸钠与水混合,配置浓度为0.2~0.5mol/l的改性剂;

b.将改性剂与二氧化硅粉以2:1质量比进行混合,然后在75~90℃条件下进行搅拌,搅拌转速为400~450r/min,搅拌时间为1~2h。

通过对二氧化硅粉进行改性处理,通过十二烷基磺酸钠与水混合制备成为改性剂,通过十二烷基磺酸钠和二氧化硅相互结合,形成了单分子吸附层,从而加强了二氧化硅的分散性,从而提高了二氧化硅的活度,提高了二氧化硅与碳化硅的交互作用,帮助二氧化硅更好地分散到材料内,由于二氧化硅的加入有利于可以提高材料的抗氧化性。

一种碳化硅耐火材料的制备方法,包括以下步骤:

(1)制备碳化硅粉体:将焦炭进行预处理后,将经过预处理的焦炭与石英砂混合,得到混合物,将所述的混合物放入微波烧结炉内,进行微波烧结,得到碳化硅粉体;

(2)配料准备:将木质素磺酸钠与水以1:1的比例混合,然后加入其余原料后充分混合,再经过困料3~4h后得到混合料;

(3)生坯处理:将在上述步骤(2)中的混合料进行压制成型,得到生坯,然后将所述的生坯进行烘干;

(4)烧结处理:将在步骤(3)中所述的烘干的生坯放入烧结炉中进行烧结,得到碳化硅耐火材料成品。

作为优选,在步骤(1)中所述的焦炭采用煤质焦炭,所述的预处理过程为将所述的焦炭进行球磨,干燥后过筛得到焦炭粉末,取用直径在50~100微米之间的焦炭粉末。

首先,本发明采用煤质焦炭,因为煤质焦炭较石油焦炭具有易于研磨的特性,便于进行球磨操作,因为反应是发生在石英砂和焦炭的界面上,由于石英砂包裹住焦炭发生反应,因此焦炭的粒度大小直接决定碳化硅的粒度大小,总体而言焦炭的粒度越小,生产的碳化硅粒度越小,碳化硅的粒度小,而且在这个反应温度下有碳化硅晶须产生,晶体细密和晶须都有助于碳化硅的晶须的连结,有助于提高碳化硅的强度和韧性。但是,在本发明实施过程中,发现焦炭直径在50微米以下时,碳化硅发生了团聚的现象反而导致了碳化硅的强度下降,故此本发明采用了直径在50~100微米之间的焦炭粉末。

作为优选,在步骤(1)中所述的微波烧结升温速率为40~45℃/min,烧结温度为1400~1600℃。

本发明通过微波烧结制取碳化硅,首先微波烧结是是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的介质损耗使其材料整体加热至烧结温度而实现致密化的方法,传统加热和微波加热不同,不同加热方式导致不同的反应进程。在传统加热中,反应物通过热辐射和传导加热,反应物外部温度高于内部,反应首先从外部开始,生成的co会挥发掉,不利于co分压的提高和sic晶须的合成。在微波加热中,反应物内部温度较高,反应首先从内部开始,有利于co积累,同时,微波加热升温速率快,能在较短时间内生成大量sio和co,有利于增大气体分压,促进气-气反应的进行和sic晶须生成。因此,采用微波加热可望显著提高晶须的产率,同时避免采用金属催化剂而引入杂质,同时反应速度快可以减少反应时间,提高效率降低成本。

作为优选,在步骤(4)过程中,升温至400~500℃时保持温度在此区间内1~2h,再继续升温至烧结温度,烧结温度为1500~1700℃,烧结时间为10~15h,在烧结过程中采用氮气气氛作为保护气氛。

在400~500℃的保温过程可以保证聚硅烷在加热过程热转位反应充分进行,充分生成聚碳硅烷,将氮气作为保护气氛可以防止空气对烧结的影响,防止碳化硅耐火材料在烧制过程中被氧化引起开裂的情况发生。

本发明的有益效果在于:(1)本发明生产的材料具有良好的强度、韧性和强抗热震性(2)材料具有良好的抗氧化性(3)本发明的加热烧结过程时间短,能耗低。

具体实施方式

实施例1

一种碳化硅耐火材料包括以下重量份的原料:

碳化硅粉体50~70份、硅粉4~12份、铝粉15~20份、二氧化钛粉2~5份、氧化铝粉4-7份、白云母粉3~5份,绢云母粉2~4份、氮化硼粉2~6份、碳酸钙粉1~3份、二氧化硅粉1~3份、木质素磺酸钠5~6份、石墨粉1~2份,四硼酸钠5~10份,聚碳硅烷10~15份。

而碳化硅粉体由以下重量份的原料制得:石英砂55份、焦炭40份,焦炭采用煤质焦炭。

首先在使用前对所述的石英砂进行过筛,取用直径1微米的石英砂。

然后对二氧化硅粉经过改性处理,所述的改性处理包括以下步骤:

a.将十二烷基磺酸钠与水混合,配置浓度为0.5mol/l的改性剂;

b.将改性剂与二氧化硅粉以2:1质量比进行混合,然后在90℃条件下进行搅拌,搅拌转速为450r/min,搅拌时间为2h。

然后进行本发明一种碳化硅耐火材料的制备,制备方法包括以下步骤:

(1)制备碳化硅粉体:将焦炭进行预处理后,所述的预处理过程为将所述的焦炭进行球磨,干燥后过筛得到焦炭粉末,取用直径在50微米的焦炭粉末,随后将经过预处理的焦炭与石英砂混合,得到混合物,将所述的混合物放入微波烧结炉内,进行微波烧结,所述的微波烧结升温速率为40℃/min,烧结温度为1500℃,得到碳化硅粉体;

(2)配料准备:将木质素磺酸钠与水以1:1的比例混合,然后加入其余原料后充分混合,再经过困料4h后得到混合料;

(3)生坯处理:将在上述步骤(2)中的混合料进行压制成型,得到生坯,然后将所述的生坯进行烘干;

(4)烧结处理:将在步骤(3)中所述的烘干的生坯放入烧结炉中进行烧结,升温至500℃时保持温度在此区间内2h再继续升温至烧结温度,烧结温度为1700℃,烧结时间为15h,在烧结过程中采用氮气气氛作为保护气氛。

实施例2

一种碳化硅耐火材料包括以下重量份的原料:

碳化硅粉体50~70份、硅粉4~12份、铝粉15~20份、二氧化钛粉2~5份、氧化铝粉4-7份、白云母粉3~5份,绢云母粉2~4份、氮化硼粉2~6份、碳酸钙粉1~3份、二氧化硅粉1~3份、木质素磺酸钠5~6份、石墨粉1~2份,四硼酸钠5~10份,聚碳硅烷10~15份。

而碳化硅粉体由以下重量份的原料制得:石英砂55份、焦炭40份,焦炭采用煤质焦炭。

首先在使用前对所述的石英砂进行过筛,取用直径1微米的石英砂。

然后对二氧化硅粉经过改性处理,所述的改性处理包括以下步骤:

a.将十二烷基磺酸钠与水混合,配置浓度为0.5mol/l的改性剂;

b.将改性剂与二氧化硅粉以2:1质量比进行混合,然后在90℃条件下进行搅拌,搅拌转速为450r/min,搅拌时间为2h。

然后进行本发明一种碳化硅耐火材料的制备,制备方法包括以下步骤:

(1)制备碳化硅粉体:将焦炭进行预处理后,所述的预处理过程为将所述的焦炭进行球磨,干燥后过筛得到焦炭粉末,取用直径在50微米的焦炭粉末,随后将经过预处理的焦炭与石英砂混合,得到混合物,将所述的混合物放入微波烧结炉内,进行微波烧结,所述的微波烧结升温速率为40℃/min,烧结温度为1500℃,得到碳化硅粉体;

(2)配料准备:将木质素磺酸钠与水以1:1的比例混合,然后加入其余原料后充分混合,再经过困料4h后得到混合料;

(3)生坯处理:将在上述步骤(2)中的混合料进行压制成型,得到生坯,然后将所述的生坯进行烘干;

(4)烧结处理:将在步骤(3)中所述的烘干的生坯放入烧结炉中进行烧结,升温至500℃时保持温度在此区间内2h再继续升温至烧结温度,烧结温度为1700℃,烧结时间为15h,在烧结过程中采用氮气气氛作为保护气氛。

实施例3

一种碳化硅耐火材料包括以下重量份的原料:

碳化硅粉体50~70份、硅粉4~12份、铝粉15~20份、二氧化钛粉2~5份、氧化铝粉4-7份、白云母粉3~5份,绢云母粉2~4份、氮化硼粉2~6份、碳酸钙粉1~3份、二氧化硅粉1~3份、木质素磺酸钠5~6份、石墨粉1~2份,四硼酸钠5~10份,聚碳硅烷10~15份。

而碳化硅粉体由以下重量份的原料制得:石英砂55份、焦炭40份,焦炭采用煤质焦炭。

首先在使用前对所述的石英砂进行过筛,取用直径1微米的石英砂。

然后对二氧化硅粉经过改性处理,所述的改性处理包括以下步骤:

a.将十二烷基磺酸钠与水混合,配置浓度为0.5mol/l的改性剂;

b.将改性剂与二氧化硅粉以2:1质量比进行混合,然后在90℃条件下进行搅拌,搅拌转速为450r/min,搅拌时间为2h。

然后进行本发明一种碳化硅耐火材料的制备,制备方法包括以下步骤:

(1)制备碳化硅粉体:将焦炭进行预处理后,所述的预处理过程为将所述的焦炭进行球磨,干燥后过筛得到焦炭粉末,取用直径在50微米的焦炭粉末,随后将经过预处理的焦炭与石英砂混合,得到混合物,将所述的混合物放入微波烧结炉内,进行微波烧结,所述的微波烧结升温速率为40℃/min,烧结温度为1500℃,得到碳化硅粉体;

(2)配料准备:将木质素磺酸钠与水以1:1的比例混合,然后加入其余原料后充分混合,再经过困料4h后得到混合料;

(3)生坯处理:将在上述步骤(2)中的混合料进行压制成型,得到生坯,然后将所述的生坯进行烘干;

(4)烧结处理:将在步骤(3)中所述的烘干的生坯放入烧结炉中进行烧结,升温至500℃时保持温度在此区间内2h再继续升温至烧结温度,烧结温度为1700℃,烧结时间为15h,在烧结过程中采用氮气气氛作为保护气氛。

本发明优选实施例3的导热系数为15w/m.k,材料的显气孔率10%,荷重软化温度1690℃,常温耐压强度40mpa,硬度(hra)为68.4,对于抗热震性的检测。

本发明优选实施例3的导热系数为20w/m.k,材料的显气孔率8%,荷重软化温度1790℃,常温耐压强度55mpa,硬度(hra)为84.6,对于抗热震性的检测,本发明将实施例3的材料经过1450摄氏度3小时处理测其抗折强度,抗折强度为19.8mpa然后在1100摄氏度保温20min后再20摄氏度冷水中急冷,反复进行10次,抗折强度为11.2mpa。

本发明碳化硅耐火材料具有良好的强度、韧性和强抗热震性抗氧化性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1