一种多孔耐火材料及其制备方法与流程

文档序号:11123457来源:国知局

本发明涉及耐火材料制造技术领域,尤其是涉及一种多孔耐火材料及其制备方法。



背景技术:

在传统意义上,耐火材料是指耐火度不低于1580℃的无机非金属材料,它是为高温技术服务的基础材料,是用作高温窑炉等热工设备的结构材料,以及工业高温容器和部件的材料,并且能够承受相应的物理化学变化及机械作用。

大部分耐火材料是以天然矿石(如耐火粘土、硅石、菱镁矿、白云石)为原料制造的,采用某些工业原料和人工合成原料(如工业氧化铝、碳化硅、合成莫来石、合成尖晶石等)也日益增多,因此,耐火材料的种类很多。耐火材料按照矿物组成可以分为氧化硅质、硅酸铝质、镁质、白云石质、橄榄石质、尖晶石质、含碳质、含锆质耐火材料及特殊耐火材料;按照制造方法可以分为天然矿石和人造制品;按其方式可分为块状制品和不定形耐火材料;按照热处理方式可分为不烧制品、烧成制品和熔铸制品;按照耐火度可分为普通、高级和特级耐火制品;按照化学性质可分为酸性、中性及碱性耐火材料;按照其密度可分为轻质及重质耐火材料;按照其制品的形状和尺寸可分为标准砖、异形砖、特异形砖、管和耐火器皿;还可以按其应用分为高炉用、水泥窑用、玻璃窑用、陶瓷窑用耐火材料等。

多孔耐火材料在工业窑炉和其他热工设备上用作隔热材料,其具有气孔率高、体积密度小、热导率低的耐火材料;工业窑炉砌体蓄热损失和炉体表面散热损失约占燃料消耗的24~45%,能量损失巨大,使得能源利用率低,使用热导率低、热容量小的多孔耐火材料作炉体结构材料,可节省燃料消耗;同时,由于窑炉可以快速升温和冷却,能提高设备生产效率;还能减轻炉体重量,简化窑炉构造,提高产品质量,降低环境温度,改善劳动条件。但是轻质耐火材料也存在力学强度低,不能用于承重,而且其耐磨性能也较差。



技术实现要素:

为解决上述问题,本发明提供一种气孔率高、体积密度小、热导率低,并且机械强度和耐磨性能较优的多孔耐火材料;

本发明还提供了一种步骤简洁且能够制得高气孔率、低体积密度、低热导率、较高力学强度和较高耐磨性能多孔耐火材料的制备方法。

为实现上述目的,本发明采用的技术方案如下:

一种多孔耐火材料,由以下重量份的原料制得:氧化铝660~700份,氧化硅180~220份,碳酸钙80~120份,碳酸镁55~75份,碳酸钠15~20份,氧化钛30~40份,氧化锆20~25份,氧化锌10~12份,致孔剂300~500份。

氧化铝与氧化硅体系的无机氧化物会形成莫来石相,莫来石是一种具有较高熔点的无机化合物,其熔点在1850℃以上,硅铝氧化物体系是一个常见且优良的耐火材料体系,同时碳酸镁和碳酸钙在高温时会分解产生氧化镁、氧化钙和二氧化碳,生成的二氧化碳具有制孔的作用,氧化镁、氧化钙也是具有较高熔点的无机氧化物,与硅铝系氧化物反应形成固溶体可以增进耐火材料的耐火度,但是由于硅铝系氧化物和氧化镁、氧化钙等原料的反应温度较高,使得耐火材料的合成温度较高,能耗也很大,为了在不影响耐火度或较小影响耐火度的前提下适当降低合成温度,因此在原料中再添加具有降低合成温度的烧结助剂,氧化钛是一些具有良好性能的烧结助剂,在少量添加的情况下即可以显著的降低耐火材料的合成温度,同时这几种烧结助剂的加入也不会像钾钠系烧结助剂一样对耐火度造成一个较大的影响。

作为优选,氧化铝的纯度为95~99wt%,氧化硅的纯度为90%~96wt%。

作为优选,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉30~50份,聚乙烯微球40~60份,白云石40~60份,明矾40~50份。

多孔耐火材料是由于其中具有较多的气孔具有轻质隔热的效果,现有技术中制备多孔耐火材料多使用单一的致孔剂,一般为木屑等较原始的致孔剂;单一的致孔剂,孔道形成的温度单一,而且由于几乎是在同一温度区间形成孔道,也即为了在耐火材料中间形成气孔,在同一温度区间会排放大量的气体,短时间内大量气体的冲击会造成耐火材料结构变得特别松散,制得的耐火材料的机械强度很差;同时,现有技术中,有些致孔剂是在较低温时就使耐火材料内部形成孔道,但是温度升高后,在高温反应下这些孔道又会被封闭或者被填补,造成气孔率下降,甚至耐火材料发生坍缩。因此本发明中采用复合的致孔剂,使得从100~800℃区间范围内不同阶段都会有致孔剂产生气体在耐火材料中形成气孔,致孔剂分解气体释放更加的缓和,持续时间也更长,这样就不会造成气体在短时间内释放,避免了气体冲击导致的耐火材料结构特别松散的不利情形,也可以避免继续高温反应后气孔被重新填补的情况。

这些致孔剂在整个高温反应的不同时期发生分解放出不同种类的气体,在100~150℃温度时明矾失去结晶水,在300~450℃温度时葡萄糖炭化释放水汽,在600~800℃温度时聚乙烯微球发生热分解放出气体,葡萄糖炭化后形成的炭和炭粉也在这个温度区间发生反应放出气体,失结晶水后的明矾也在这个温度区间分解生成含硫气体和氧化铝、氧化钾,白云石也在这个温度区间开始分解,最后在1300~1400℃温度区间内,致孔剂中所有的高温可分解物质完全分解产生气体并完成烧结,所有物质变得稳定。致孔剂中的多种物质在不同温度发生程度不同的分解产生不同种类的气体,使得制得的耐火材料中的气孔更加丰富,孔径的分布也更加多样和均匀,而且在整个过程中产生气体,发生致孔反应使得不会因反应温度升高部分先生成的气孔被重新填补的情况。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2~2.5倍的无水乙醇,在转速为2000~2500rpm下球磨2~4小时,然后再向其中加入致孔剂,在转速为1000~1200rpm下球磨1~2小时,最后烘干;

b)将经步骤a处理后的原料模压成型;

c)将模压成型后的原料进行烧结,由室温开始升温,在100~150℃保温20~40分钟,在300~450℃保温20~40分钟,在600~800℃保温60~80分钟,在1300~1400℃烧结7~11小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为8~10℃/min;

d)将制得的多孔耐火材料初品,在盐酸溶液中浸泡20~60分钟,接着清洗烘干后制得多孔耐火材料。

两步球磨法使除致孔剂外的原料更加的均匀细腻,改善烧结性能,也可以使得烧结而成的耐火材料在非孔区域更加的致密,增强强度;多温度区间的烧结方法是配合致孔剂的种类,让不同的致孔剂在各自的温度范围内起到致孔的作用;最后的盐酸溶液浸泡时为了除去显气孔内残存的、未烧结的氧化钙等一些影响耐火度等的未反应物。

作为优选,步骤b中模压成型的压力为8~10MPa。

作为优选,步骤b中,原料经10~12MPa模压成型后再在14~16MPa下进行冷等静压成型,保压时间为30~60秒。

作为优选,步骤d中盐酸溶液的PH值为5.8~6.2。

因此,本发明具有以下有益效果:

(1)本发明中的耐火材料具有较低的体积密度,较大的气孔率;

(2)本发明中的耐火材料还具有较高的可使用温度和较高的耐压强度;

(3)本发明中的耐火材料还具有较低的热导率,具有良好的隔热作用。

具体实施方式

下面结合具体实施方式对本发明的技术方案作进一步的说明。

实施例1

一种多孔耐火材料,由以下重量份的原料制得:氧化铝660份,氧化硅180份,碳酸钙80份,碳酸镁55份,碳酸钠15份,氧化钛30份,氧化锆20份,氧化锌10份,致孔剂300份;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉30份,聚乙烯微球40份,白云石40份,明矾40份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2倍的无水乙醇,在转速为2000rpm下球磨2小时,然后再向其中加入致孔剂,在转速为1000rpm下球磨1小时,最后烘干;

b)将经步骤a处理后的原料模压成型;

c)将模压成型后的原料进行烧结,由室温开始升温,在100℃保温20分钟,在300℃保温20分钟,在600℃保温60分钟,在1300℃烧结7小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为8℃/min;

d)将制得的多孔耐火材料初品,在盐酸溶液中浸泡20分钟,接着清洗烘干后制得多孔耐火材料。

实施例2

一种多孔耐火材料,由以下重量份的原料制得:氧化铝680份,氧化硅200份,碳酸钙100份,碳酸镁65份,碳酸钠17份,氧化钛35份,氧化锆22份,氧化锌11份,致孔剂400份;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉40份,聚乙烯微球50份,白云石50份,明矾45份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2.2倍的无水乙醇,在转速为2200rpm下球磨3小时,然后再向其中加入致孔剂,在转速为1100rpm下球磨1.5小时,最后烘干;

b)将经步骤a处理后的原料模压成型;

c)将模压成型后的原料进行烧结,由室温开始升温,在120℃保温30分钟,在380℃保温30分钟,在700℃保温70分钟,在1350℃烧结9小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为9℃/min;

d)将制得的多孔耐火材料初品,在盐酸溶液中浸泡40分钟,接着清洗烘干后制得多孔耐火材料。

实施例3

一种多孔耐火材料,由以下重量份的原料制得:氧化铝700份,氧化硅220份,碳酸钙120份,碳酸镁75份,碳酸钠20份,氧化钛40份,氧化锆25份,氧化锌12份,致孔剂500份;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉50份,聚乙烯微球60份,白云石60份,明矾50份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2.5倍的无水乙醇,在转速为2500rpm下球磨4小时,然后再向其中加入致孔剂,在转速为1200rpm下球磨2小时,最后烘干;

b)将经步骤a处理后的原料模压成型;

c)将模压成型后的原料进行烧结,由室温开始升温,在150℃保温40分钟,在450℃保温40分钟,在800℃保温80分钟,在1400℃烧结11小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为10℃/min;

d)将制得的多孔耐火材料初品,在盐酸溶液中浸泡60分钟,接着清洗烘干后制得多孔耐火材料。

实施例4

一种多孔耐火材料,由以下重量份的原料制得:氧化铝660份,氧化硅220份,碳酸钙80份,碳酸镁55份,碳酸钠15份,氧化钛30份,氧化锆20份,氧化锌10份,致孔剂300份;氧化铝的纯度为95wt%,氧化硅的纯度为90%wt%;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉30份,聚乙烯微球40份,白云石40份,明矾40份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2倍的无水乙醇,在转速为2000rpm下球磨2小时,然后再向其中加入致孔剂,在转速为1000rpm下球磨1小时,最后烘干;

b)将经步骤a处理后的原料经10MPa模压成型后再在14MPa下进行冷等静压成型,保压时间为30秒;

c)将模压成型后的原料进行烧结,由室温开始升温,在100℃保温20分钟,在300℃保温20分钟,在600℃保温60分钟,在1300℃烧结7小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为8℃/min;

d)将制得的多孔耐火材料初品,在PH值为5.8的盐酸溶液中浸泡20分钟,接着清洗烘干后制得多孔耐火材料。

实施例5

一种多孔耐火材料,由以下重量份的原料制得:氧化铝680份,氧化硅200份,碳酸钙100份,碳酸镁65份,碳酸钠18份,氧化钛35份,氧化锆23份,氧化锌11份,致孔剂400份;氧化铝的纯度为97wt%,氧化硅的纯度为93wt%;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉40份,聚乙烯微球50份,白云石50份,明矾45份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2.3倍的无水乙醇,在转速为2300rpm下球磨3小时,然后再向其中加入致孔剂,在转速为1100rpm下球磨1.5小时,最后烘干;

b)将经步骤a处理后的原料经11MPa模压成型后再在15MPa下进行冷等静压成型,保压时间为45秒;

c)将模压成型后的原料进行烧结,由室温开始升温,在125℃保温30分钟,在380℃保温30分钟,在700℃保温70分钟,在1350℃烧结9小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为9℃/min;

d)将制得的多孔耐火材料初品,在PH值为6的盐酸溶液中浸泡40分钟,接着清洗烘干后制得多孔耐火材料。

实施例6

一种多孔耐火材料,由以下重量份的原料制得:氧化铝700份,氧化硅180份,碳酸钙120份,碳酸镁75份,碳酸钠20份,氧化钛40份,氧化锆25份,氧化锌12份,致孔剂500份;氧化铝的纯度为99wt%,氧化硅的纯度为96wt%;

其中,致孔剂由以下重量份的原料组成:葡萄糖20份,炭粉50份,聚乙烯微球60份,白云石60份,明矾50份。

一种多孔耐火材料的制备方法,包括以下步骤:

a)向除致孔剂外的原料中加入除致孔剂外原料重量2.5倍的无水乙醇,在转速为2500rpm下球磨4小时,然后再向其中加入致孔剂,在转速为1200rpm下球磨2小时,最后烘干;

b)将经步骤a处理后的原料经12MPa模压成型后再在16MPa下进行冷等静压成型,保压时间为60秒;

c)将模压成型后的原料进行烧结,由室温开始升温,在150℃保温40分钟,在450℃保温40分钟,在800℃保温80分钟,在1400℃烧结11小时,然后自然冷却至室温,制得多孔耐火材料初品;其中,各阶段升温速率都为10℃/min;

d)将制得的多孔耐火材料初品,在PH值为6.2的盐酸溶液中浸泡60分钟,接着清洗烘干后制得多孔耐火材料。

技术指标:

1.气孔率42~48%;

2.体积密度1.3g/cm3及以下;

3.最高可使用温度1300℃;

4.热导率(1000℃环境下):0.76W/(m·℃)

5.常温耐压强度:≥200MPa。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1