一种Sialon/Ti-22Al-25Nb陶瓷基复合材料的制备方法与流程

文档序号:16888723发布日期:2019-02-15 22:52阅读:169来源:国知局

本发明涉及陶瓷材料的技术领域,特别涉及一种sialon/ti-22al-25nb陶瓷基复合材料的制备方法。



背景技术:

sialon陶瓷材料是一种人工合成的固溶体材料,具有高硬度、耐磨损、耐高温、抗氧化以及较好的韧性等优良的综合性能,在耐高温工程领域和结构陶瓷领域应用广泛。陶瓷基复合材料是在材料成型与烧结过程中,以陶瓷为基体,通过调整增强体(或增韧体)的类型、粉末配比以及混合程度,来控制增强体(或增韧体)的分布而形成的一类陶瓷基复合材料。由于陶瓷的致命弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效,故在复合材料中,增韧体的加入是提高陶瓷韧性的有效途径。陶瓷基复合材料通常具有不同材料相互取长补短的良好综合性能,一般兼有两种或两种以上材料的特点,能够改善单一陶瓷的性能,可充分发挥sialon陶瓷的优异性能,已成为国内外研究热点。目前,陶瓷基复合材料的制备技术已经取得了迅猛的发展,通过不同的制备技术以及多样的增韧体材料,可实现具有不同功能的陶瓷基复合材料的研发。通过更改增韧体的种类或加入比例,可以制备出具有不同力学性质的陶瓷基复合材料。

目前,陶瓷基复合材料的制备技术主要包括热压烧结法、浸渍法、溶胶-凝胶法等。通常利用上述方法得到的陶瓷基复合材料的断裂韧性由所加增韧体的类型而确定。



技术实现要素:

为了克服现有技术的缺陷,本发明提供一种sialon/ti-22al-25nb陶瓷基复合材料及其制备方法,本发明提供的制备方法制备的sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性较好。

具体地,本发明提供一种sialon/ti-22al-25nb陶瓷基复合材料的制备方法,其包括以下步骤:

s1、将非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂经球磨混合,得到混合粉末。

s2、在步骤s1中得到的混合粉末进行放电等离子烧结,得到sialon/ti-22al-25nb陶瓷基复合材料,所述烧结助剂包括氧化铝和氧化钇。

优选的,所述非晶氮化硅的质量百分含量为70%~75%,纳米氮化铝的质量百分含量为12%~15%,氧化钇的质量百分含量为3%~5%,氧化铝的质量百分含量为1%~8%,ti-22al-25nb预合金粉末的质量百分含量为3%~10%。

优选的,所述非晶氮化硅粉的颗粒直径为20~25nm,所述纳米氮化铝粉的颗粒直径为38~42nm,所述烧结助剂的平均颗粒直径为18~22nm,所述ti-22al-25nb预合金粉末的颗粒直径为90~110μm。

优选的,步骤s1中混合方法为球磨,球磨的转速为200rpm,球磨时间为2h。

优选的,步骤s2中所述放电等离子烧结在氩气保护下进行。

优选的,所述烧结温度接近ti-22al-25nb预合金粉末熔点温度以及陶瓷材料的烧结温度,所述烧结温度具体为1500~1600℃,升温到所述烧结温度的速率不超过100℃/min。

优选的,所述烧结的压力为25~35mpa,烧结的时间为30~50min。

优选的,所述sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性不低于6.5mpa·m1/2

与现有技术相比,本发明具有以下有益效果:

本发明利用非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉为原料,烧结后所得烧结料中存在以β-sialon相为主的sialon基陶瓷组织以及在陶瓷基体上分布的椭圆形ti-22al-25nb合金组织,由于烧结温度在ti-22al-25nb预合金粉末熔点温度附近,而这一温度也与陶瓷材料的烧结温度接近,当烧结材料冷却下来时,ti-22al-25nb相收缩,与基体相分离,从而形成了一种性能类似于多孔陶瓷的陶瓷基复合材料。其中,分布于sialon基陶瓷的椭圆形ti-22al-25nb组织(类似于孔洞)有阻碍裂纹扩展的作用,从而有助于提高sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性。本发明提供的制备方法制备了sialon/ti-22al-25nb陶瓷基复合材料,由于ti-22al-25nb组织在材料烧结过程中在轴向压力的作用下,发生塑性变形,沿径向拉长,故所得烧结料中,在sialon基体上分布的椭圆形ti-22al-25nb组织(类似于孔洞)沿径向择优取向,即烧结材料性能产生了各向异性,其轴向断裂韧性优于径向断裂韧性。烧结完成后椭圆形ti-22al-25nb组织平均长径比在3.5~6.0,轴向断裂韧性在7.5~9.7mpa·m1/2,径向断裂韧性在6.5~8.8mpa·m1/2

具体实施方式

以下将详细说明本发明的示例性实施例、特征和方面。本发明提供了一种sialon/ti-22al-25nb陶瓷基复合材料的制备方法,包括以下步骤:

将非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂混合后进行sps烧结,得到烧结料;所述烧结助剂包括氧化铝和氧化钇;得到的烧结料即为sialon/ti-22al-25nb陶瓷基复合材料。

本发明将非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂混合后进行sps烧结,得到烧结料。在本发明中,所述非晶氮化硅粉优选为非晶纳米氮化硅粉,其平均颗粒直径优选为20~25nm,更优选为23nm;所述纳米氮化铝粉的平均颗粒直径优选为38~42nm,更优选为40nm;所述ti-22al-25nb预合金粉末的平均颗粒直径优选为90~110μm,更优选为100μm。

在本发明中,所述烧结助剂包括氧化钇和氧化铝;所述烧结助剂优选为粉体材料,所述烧结助剂的平均晶粒直径优选为18~22nm,更优选为20nm。本发明以氧化铝和氧化钇的复合物为烧结助剂,可进一步提高陶瓷基复合材料的力学性能。

在本发明中,以非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂的总质量为100%计,所述非晶氮化硅的质量百分含量优选为70%~75%,更优选为72%~73%;所述纳米氮化铝的质量百分含量优选为12%~15%,更优选为13%;所述氧化钇的质量百分含量优选为3%~5%,更优选为4%;所述氧化铝的质量百分含量优选为1%~8%,更优选为4%~6%;所述ti-22al-25nb预合金粉末的质量百分含量优选为3%~10%,更优选为5%~8%。

本发明对所述非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂混合方法没有特殊要求,使用本领域技术人员熟知的方法,能够将非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂混合即可,具体的如球磨混合,转速为200rpm,球磨时间为2h。

本发明优选将所述非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉末和烧结助剂的混合物放入模具中进行烧结。本发明对所述模具没有特殊要求,使用本领域技术人员熟知的烧结用模具即可,如石墨模具。

在本发明中,所述烧结优选为放电等离子烧结;所述放电等离子烧结优选在氩气保护下进行,所述氩气保护时的氩气压力优选为0.05~0.1mpa,更优选为0.06~0.08mpa;所述烧结的温度优选为1500~1600℃,更优选为1550℃;所述烧结的压力优选为25~35mpa,更优选为30mpa;所述烧结的时间优选为30~50min,更优选为40min;升温到所述烧结温度的速率不超过100℃/min,优选为35~65℃/min;本发明所述的烧结时间为升温至烧结温度后的保温时间。本发明优选在放电等离子烧结炉中进行所述放电等离子烧结。

烧结完成后,本发明优选将烧结产物随炉降温,得到烧结料。

在本发明的烧结过程中,所得烧结料中存在以β-sialon相为主的sialon基陶瓷组织以及在陶瓷基体上分布的椭圆形ti-22al-25nb合金组织;所得烧结料中,sialon基体的平均晶粒尺寸为300~500nm,椭圆形ti-22al-25nb组织的平均长径比在3.5~6.0。在本发明中,椭圆形ti-22al-25nb组织在sialon基体上分布,对裂纹扩展起到了阻碍作用,其中所述烧结料的轴向断裂韧性在7.5~9.7mpa·m1/2,径向断裂韧性在6.5~8.8mpa·m1/2

下面结合实施例对本发明提供的sialon/ti-22al-25nb陶瓷基复合材料及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。

实施例1

将非晶纳米si3n4粉、纳米aln粉、ti-22al-25nb预合金粉末和al2o3、y2o3烧结助剂进行混合;非晶纳米si3n4粉的平均颗粒直径为23nm左右,纳米aln粉的平均颗粒直径为40nm左右,al2o3、y2o3烧结助剂粉体的平均晶粒直径在20nm左右,ti-22al-25nb预合金粉末的平均晶粒直径在100μm左右;所占质量百分比为:72%si3n4;13%aln;5%ti-22al-25nb;4%y2o3;6%al2o3。

将混合粉体装入球磨机中进行球磨2小时,转速200rpm,保证粉体混合;之后将粉体放入石墨模具,装入放电等离子烧结炉中进行放电等离子烧结;加载到30mpa,抽真空,充氩气保护,氩气压力为0.1mpa;升温到1500℃,升温速率不超过65℃/min,保温时间40min;随炉降温,得到烧结料,即为sialon/ti-22al-25nb陶瓷基复合材料。

使用扫描电镜对放电等离子烧结所得烧结料进行检测,可以看出,所得烧结料中存在以β-sialon相为主的sialon基陶瓷组织以及在陶瓷基体上分布的椭圆形ti-22al-25nb合金组织;其中,椭圆形ti-22al-25nb组织在sialon基体上分布,其平均长径比在4.3,对裂纹扩展起到了阻碍作用,在性能上类似于多孔陶瓷,提高了陶瓷基复合材料的断裂韧性。

对所得sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性进行检测,可得轴向断裂韧性为8.0mpa·m1/2,径向断裂韧性为6.9mpa·m1/2

实施例2

将非晶纳米si3n4粉、纳米aln粉、ti-22al-25nb预合金粉末和al2o3、y2o3烧结助剂进行混合;非晶纳米si3n4粉的平均颗粒直径为23nm左右,纳米aln粉的平均颗粒直径为40nm左右,al2o3、y2o3烧结助剂粉体的平均晶粒直径在20nm左右,所占质量百分比为:72%si3n4;13%aln;5%ti-22al-25nb;4%y2o3;6%al2o3。

将混合粉体装入球磨机中进行球磨2小时,转速200rpm,保证粉体混合;之后将粉体放入石墨模具,装入放电等离子烧结炉中进行放电等离子烧结;加载到30mpa,抽真空,充氩气保护,氩气压力为0.1mpa;升温到1600℃,升温速率不超过65℃/min,保温时间40min;随炉降温,得到烧结料,即为sialon/ti-22al-25nb陶瓷基复合材料。

使用扫描电镜对放电等离子烧结所得烧结料进行检测,可以看出椭圆形ti-22al-25nb组织在sialon基体上分布,其平均长径比在4.9。

对所得sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性进行检测,可得轴向断裂韧性为8.7mpa·m1/2,径向断裂韧性为7.5mpa·m1/2

实施例3

将非晶纳米si3n4粉、纳米aln粉、ti-22al-25nb预合金粉末和al2o3、y2o3烧结助剂进行混合;非晶纳米si3n4粉的平均颗粒直径为23nm左右,纳米aln粉的平均颗粒直径为40nm左右,al2o3、y2o3烧结助剂粉体的平均晶粒直径在20nm左右,所占质量百分比为:72%si3n4;13%aln;8%ti-22al-25nb;4%y2o3;3%al2o3。

将混合粉体装入球磨机中进行球磨2小时,转速200rpm,保证粉体混合;之后将粉体放入石墨模具,装入放电等离子烧结炉中进行放电等离子烧结;加载到30mpa,抽真空,充氩气保护,氩气压力为0.1mpa;升温到1500℃,升温速率不超过65℃/min,保温时间40min;随炉降温,得到烧结料,即为sialon/ti-22al-25nb陶瓷基复合材料。

使用扫描电镜对放电等离子烧结所得烧结料进行检测,可以看出椭圆形ti-22al-25nb组织在sialon基体上分布,其平均长径比在5.5。

对所得sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性进行检测,可得轴向断裂韧性为9.1mpa·m1/2,径向断裂韧性为8.3mpa·m1/2

本发明利用非晶氮化硅粉、纳米氮化铝粉、ti-22al-25nb预合金粉为原料,烧结后所得烧结料中存在以β-sialon相为主的sialon基陶瓷组织以及在陶瓷基体上分布的椭圆形ti-22al-25nb合金组织,由于烧结温度在ti-22al-25nb预合金粉末熔点温度附近,而这一温度也与陶瓷材料的烧结温度接近,当烧结材料冷却下来时,ti-22al-25nb相收缩,与基体相分离,从而形成了一种性能类似于多孔陶瓷的陶瓷基复合材料。其中,分布于sialon基陶瓷的椭圆形ti-22al-25nb组织(类似于孔洞)有阻碍裂纹扩展的作用,从而有助于提高sialon/ti-22al-25nb陶瓷基复合材料的断裂韧性。本发明提供的制备方法制备了sialon/ti-22al-25nb陶瓷基复合材料,由于ti-22al-25nb组织在材料烧结过程中在轴向压力的作用下,发生塑性变形,沿径向拉长,故所得烧结料中,在sialon基体上分布的椭圆形ti-22al-25nb组织(类似于孔洞)沿径向择优取向,即烧结材料性能产生了各向异性,其轴向断裂韧性优于径向断裂韧性。烧结完成后椭圆形ti-22al-25nb组织平均长径比在3.5~6.0,轴向断裂韧性在7.5~9.7mpa·m1/2,径向断裂韧性在6.5~8.8mpa·m1/2

最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1