一种负温度系数陶瓷介质材料及其制备方法与流程

文档序号:17446620发布日期:2019-04-17 05:44阅读:708来源:国知局
一种负温度系数陶瓷介质材料及其制备方法与流程

本发明属于陶瓷介质材料技术领域,具体涉及一种负温度系数陶瓷介质材料及其制备方法。



背景技术:

片式多层陶瓷电容器(mlcc)是三大无源电子元器件之一,它与片式电感器、片式电阻器构成了电子信息产业中不可或缺的基础被动元件。mlcc具有结构紧凑、比容高、体积小、损耗低、价格低廉等优点,除大量应用在移动通信、广播电视、家用电器、家用计算机、医疗设备、测量仪器等民用电子设备中外,在航空航天、军用移动通讯、坦克电子、军事信号监控和武器弹头控制等军用电子设备以及石油勘探等行业中都具有广泛应用。

mlcc陶瓷介质材料的介电性能是实现小型化的关键因素,在介质层厚度一定的情况下,材料的介电常数越高,单位体积的电容量也就越大;同时,介电常数随温度的变化率是mlcc在应用中的重要性能参数,低介电温度系数的mlcc器件在一些特殊领域和极端环境下有着广泛的发展前景。电容介电常数高、有很大的电容容量,通常是由介电陶瓷系统钨青铜矿结构陶瓷系统,铅基弛豫铁电陶瓷系统及batio3基铁电陶瓷系统组成。最普通最常用的电容电介质是x7r,在温度范围-55℃到125℃之间,x7r能提供仅有±15%变化的中等容量的电容容量。它最适合应用在温度范围宽,电容量要求稳定的场合。

由于电容器在使用过程中在电压的作用下,产生功率损耗并引起发热使电容器温度升高,此种温升决定于外加交流电压,频率的高低电容量及损耗的大小,同时也受散热系数和散热面积的影响。此种温升导致实际电容量降低或升高。研制负温度系数陶瓷介质材料是为了防止电容器在使用过程中由于温升或其他因素造成的电容量升高,从而提高可靠性。



技术实现要素:

本发明为了防止电容器在使用过程中由于升温或其他因素造成电容量升高,为了提高可靠性,提供了一种负温度系数陶瓷介质材料及其制备方法,所获得的负温度系数陶瓷介质材料的介电常数高、介电损耗低、同时具有负电容温度系数。

本发明由如下技术方案实现的:一种负温度系数陶瓷介质材料,由重量百分比10-30%的catio3和重量百分比70-90%的k2sr4(nb8mg2)o27组成。

制备所述的一种负温度系数陶瓷介质材料的方法,步骤如下:

(1)将原料k2co3、mgo、srco3和nb2o5按通式k2sr4(nb8mg2)o27,进行配料球磨,过120—250孔/cm2分样筛,升温至1050℃—1100℃,保温2—4小时,制得熔块a;

(2)按照质量百分比将10—30%的catio3和70—90%的熔块a进行二次配料,获得配料b;

(3)将配料b加去离子水100ml球磨,于120℃干燥4小时,过120—250孔/cm2分样筛,加入质量百分比为配料b的5-8%的黏合剂造粒,压制成生坯压强为8mpa,先按照2℃/min的升温速率升温至400-500℃,然后再按8℃/min的升温速率升温至1200—1250℃保温1小时,冷却后制得陶瓷介质。

步骤(1)中球磨时球磨机的转速为400r/min;球磨时间为4—6小时,步骤(1)中升温速率为5-10℃/min。优选升温速率为7℃/min。

步骤(2)中获得的配料b在转速为400r/min的球磨机上球磨8h。步骤(3)中升温速率为按2℃/min的升温速率加热至450℃,再按8℃/min的升温速率加热至1200℃—1250℃。步骤(3)中的黏合剂为聚乙烯醇或者石蜡。

k2sr4(nb8mg2)o27介质陶瓷具有适中的烧结温度,一般在1200℃左右、具有高的介电常数、可调的容量温度系数和较低的损耗,是一种性能优异的介质陶瓷材料。本发明选择k2sr4(nb8mg2)o27介质陶瓷,采取添加catio3改性的方法,使其符合x7r标准的同时,具备介电常数高、介电损耗低、负温度系数的特征。其主要机理:k2sr4(nb8mg2)o27材料具有类四方钨青铜结构,具有较高的介电常数,它在-55℃~125℃范围内没有居里峰,catio3本身具有负的电容温度系数,添加catio3能够有效的改变体系的电容温度系数,使其在-55℃~125℃范围内拥有负电容温度系数,同时促进致密烧结,获得总体性能良好的介质陶瓷。它可以作为温度补偿材料和功能器件材料使用,它的发明有助于丰富此类产品的需求。

本发明所制备的负温度系数陶瓷介质材料:符合eiax7r标准,在-55℃~125℃温度范围内的电容变化率不超过±15%。具有良好的介电性能,25℃下介电常数可达到4700左右,损耗为0.0065。具有负的电容温度系数,可以补偿温升或其他因素造成的电容量升高,提高可靠性。烧结温度范围较宽,性能可调,稳定性和再现性良好,可靠性高。不含重金属等有害物质,绿色环保。

附图说明

图1为实施例1、2和3所制备的负温度系数陶瓷介质材料的介电性能的测试结果图。

具体实施方式

下面结合具体实施例进一步说明本发明的技术方案。

实施例1:一种负温度系数陶瓷介质材料,其特征在于:由重量百分比10%的catio3和重量百分比90%的k2sr4(nb8mg2)o27组成。

具体制备方法为:将原料k2co3、mgo、srco3和nb2o5按通式k2sr4(nb8mg2)o27,进行配料,在转速为400r/min的球磨机上球磨6小时,在3.3kw的普通烘箱中于100℃干燥4小时,过250孔/cm2分样筛,以5℃/min升温至1050℃,并在1050℃下保温3小时,得到熔块a。

进行二次配料,按照90%熔块a和10%catio3的质量关系均匀混合,加去离子水100ml在转速为400r/min球磨机上球磨8小时,于120℃干燥4小时,过250孔/cm2分样筛,加入8wt%石蜡造粒,压制成生坯,先按2℃/min的升温速率加热至450℃,再按8℃/min的升温速率加热至1200℃烧成,保温1小时,冷却后制得陶瓷介质。

所制备的陶瓷介质的介电性能的测试结果(测试频率为1khz)详见表1和图1。对于实施例1,由图中可以看出,在-55℃~125℃温度范围内,随着温度的升高,介电常数逐渐下降,试样具有负温度系数特征。由表可知,在-55℃~125℃范围内,电容变化率在13.36%~-13.5%范围内,符合x7r标准。

实施例2:一种负温度系数陶瓷介质材料,其特征在于:由重量百分比20%的catio3和重量百分比80%的k2sr4(nb8mg2)o27组成。

具体制备方法为:将原料k2co3、mgo、srco3和nb2o5按通式k2sr4(nb8mg2)o27,进行配料,在转速为400r/min的球磨机上球磨5小时,在3.3kw的普通烘箱中于100℃干燥4小时,过200孔/cm2分样筛,以7℃/min升温至1070℃,并在1070℃下保温2小时,得到熔块a。

进行二次配料,按照80%熔块a和20%catio3的质量关系均匀混合,加去离子水100ml在转速为400r/min球磨机上球磨8小时,于120℃干燥4小时,过200孔/cm2分样筛,加入6.5wt%石蜡造粒,压制成生坯,先按2℃/min的升温速率加热至400℃,再按8℃/min的升温速率加热至1220℃烧成,保温1小时,冷却后制得陶瓷介质。

所制备的陶瓷介质的介电性能的测试结果(测试频率为1khz)详见表1和图1。对于实施例2,由图中可以看出,在-55℃~125℃温度范围内,随着温度的升高,介电常数逐渐下降,试样具有负温度系数特征。由表可知,在-55℃~125℃范围内,电容变化率在11.2%~-12.4%范围内,符合x7r标准。

实施例3:一种负温度系数陶瓷介质材料,其特征在于:由重量百分比30%的catio3和重量百分比70%的k2sr4(nb8mg2)o27组成。

具体制备方法为:将原料k2co3、mgo、srco3和nb2o5按通式k2sr4(nb8mg2)o27,进行配料,在转速为400r/min的球磨机上球磨4小时,在3.3kw的普通烘箱中于100℃干燥4小时,过120孔/cm2分样筛,以10℃/min升温至1100℃,并在1100℃下保温4小时,得到熔块a。

进行二次配料,按照70%熔块a和30%catio3的质量关系均匀混合,加去离子水100ml在转速为400r/min球磨机上球磨8小时,于120℃干燥4小时,过120孔/cm2分样筛,加入5wt%聚乙烯醇造粒,压制成生坯,先按2℃/min的升温速率加热至500℃,再按8℃/min的升温速率加热至1250℃烧成,保温1小时,冷却后制得陶瓷介质。

所制备的陶瓷介质的介电性能的测试结果(测试频率为1khz)详见表1和图1。对于实施例3,由图中可以看出,在-55℃~125℃温度范围内,随着温度的升高,介电常数逐渐下降,试样具有负温度系数特征。由表可知,在-55℃~125℃范围内,电容变化率在11.6%~-14.5%范围内,符合x7r标准。

表1:实施例所制备的陶瓷材料的介电性能的测试结果(测试频率为1khz)

综合三个实施例,由表1和图1看出,在-55℃~125℃温度范围内,试样的介电常数都随温度的升高而减小,具有负温度系数特征,主要是由于catio3具有负电容温度系数,掺杂catio3不仅使k2sr4(nb8mg2)o27系统的居里峰拓宽,使其电容温度系数为负,并且使电容变化率都在15%~-15%范围内,符合x7r标准。介电常数较高,介电损耗小。

本发明中使用的测试方法和检测设备如下:

1.介电常数ε和损耗tanδ的测试:采用hewlettpackard4278a电容测试仪,测试电容器的电容量c和介电损耗tanδ(测试频率为1khz),并通过下面的公式计算介电常数ε:

,其中:c:样片的电容量,单位pf;d:样片的厚度,单位cm;d:样片烧结后的直径,单位cm。

2.电容变化率δc/c0的测试(-55℃~125℃):利用6425型waykerr电桥、gz-especmc―710f高低温箱及hm27002型电容器c-t/v特性专用测试仪测量样品的电容量随温度的变化情况,从而求出电容器的电容变化率(测试频率为1khz),计算公式如下:,其中:基准温度选取25℃,c0为温度25℃的容量,为温度的容量。

3.电容温度系数计算公式:,其中:基准温度t0选取25℃,的单位为10-6/℃。

以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1