超低光泽、超耐低温ASA树脂组合物及其制备方法与流程

文档序号:12582380阅读:508来源:国知局

本发明涉及高分子材料领域,尤其是涉及一种超低光泽、超耐低温ASA树脂组合物及其制备方法。



背景技术:

丙烯腈-苯乙烯-丙烯酸酯接枝共聚物(ASA)是一种耐候性工程塑料,其与丙烯腈-丁二烯-苯乙烯接枝共聚物(ABS)的结构相似,并保留了ABS作为工程塑料的极佳的机械物理性能。常用的ASA树脂是通过引入包含双键的丙烯酸丁酯橡胶替代丁二烯橡胶,从而使得只有波长小于300nm的光才会对其起到老化的影响,因此耐候性有了本质的提升,比ABS高出10倍左右,广泛应用于建材、汽车外饰件、电子电气工程外饰件、户外用品、体育器材等领域。

然而,ASA树脂所使用的丙烯酸丁酯橡胶的玻璃化转变温度仅为-40℃左右,这就决定了其在低温时很难有较好的冲击韧性,该缺陷也大大限制了ASA树脂在低温环境下的应用。

专利CN 102161808B公开了一种具有优良外观性能的ASA树脂及其制备方法,所示树脂包括的组分及重量份数:SAN10-50;丙烯腈-丙烯酸酯-苯乙烯交联改性接枝共聚物50-90;光稳定剂0.2-0.6;抗氧剂0.2-1;润滑剂0.2-2;将原料在搅拌混合后送入双螺杆挤出机中,在螺杆的输送、剪切和混炼下,物料熔化、复合,再经过挤出、拉条、冷却、切粒得到具有优良外观性能的丙烯腈-丙烯酸酯-苯乙烯树脂。虽然其制得的ASA树脂具有较为优异的机械性能与表观性能,但是由于玻璃化温度较高,从而使得其在-30℃以下的低温条件中的韧性较差。

专利CN 102030958B则公开了一种具有高耐热、高耐候性,良好的综合力学性能及加工性的ASA树脂组合物,但是仍然存在上述低温韧性差的问题。

另外,由丙烯腈-苯乙烯-丙烯酸酯接枝共聚物(ASA)制备的产品通常具有一定的表面光泽度,然而对于某些应用这不是合乎要求的性质,对低光泽度组合物存在大量需求,特别是在例如计算机壳体、键盘、用具和汽车部件等应用中更是如此。

专利WO 2006/127223公开了一种抗冲改性的ASA树脂组合物及其制备方法,虽然通过AMSAN、MMASAN和MMA-ASA几种改性共聚物的复配,可以改善冲击性能,但是,制备的树脂组合物光泽普遍较高,不太适用于有低光泽要求的部件。

一般来讲,降低制品光泽度通常有以下几种技术手段:

1)通过表面压花,即采用皮纹化处理可以达到很好的效果。然而仅仅通过改变制品表面的纹理结构来达到降低光泽的方法,在有些情况下仍不能很好的满足光泽度的要求;另外,一旦由于树脂耐刮擦问题带来的制品表面纹理构造的丢失,就会立即出现光泽度的显著差异,引起视觉色差,导致失效。

2)添加不相容的物质,如不相容的树脂和矿物填料。例如,二氧化硅、硅酸盐或者铝酸盐等其他类似的惰性物质,能降低热塑性模塑组合物的光泽度,然而这通常伴随有某些物理性能的降低,特别是冲击强度的降低,通常还相应地导致热变形温度降低、焊接强度降低、耐候性和光稳定性不足以及其他重要性能的降低。如专利WO 2010/049320提出使用添加三聚氰胺的衍生物来降低树脂的光泽度,而专利CN 1128776A则提出在PC/ABS合金内添加丁腈橡胶来降低合金的光泽度。但是不相容的物质通常会引起树脂本身力学性能的劣化。

3)添加反应性的树脂。如添加PS-g-GMA、SAN-g-GMA等具有反应活性的树脂,在改善制品光泽度时,由于反应活性差,需要添加量高,效率低,对机械性能等有一定的影响。如专利US 4902743、US 4742104、CN 101851430、CN 101787192公开了在PC及其合金中添加含甲基丙烯酸缩水甘油酯(GMA)官能团的树脂可以降低光泽度。

4)添加交联型树脂。专利WO 2003/027181 A2公开了一种低光泽ASA的制备方法,所示树脂是通过配方中添加分子链中含有环氧官能团和胺基官能团的哑光剂制备而得,哑光剂的添加量在0.5-15%,优选3-12%,进一步优选5-10%,主要是通过环氧官能团和胺基官能团反应交联而降低ASA树脂的光泽度;虽然该法制备的树脂光泽度明显降低,但是,冲击强度、拉伸强度、弯曲强度、弯曲模量等机械性能也有不同幅度的降低。专利CN 102617973采用上述方案,通过实现交联以达到增加ABS树脂熔体强度的目的;但是其反应效率往往比较低,而且该交联反应往往会使挤出机口模处的熔体条发生明显的熔体胀大现象,进而使后续的切粒以及在树脂中的分散变得困难。

然而上述降低材料表面光泽度的方法,往往会进一步降低ASA树脂的常温和低温冲击性能,导致材料的韧性的进一步下降,直接影响到制品的正常使用。



技术实现要素:

针对现有技术中的缺陷,本发明提供了一种超低光泽、超耐低温ASA树脂组合物及其制备方法。该ASA树脂组合物的耐低温冲击性能得到明显提升;同时材料的光泽度也大大降低。

本发明的目的是通过以下技术方案实现的:

本发明提供了一种超低光泽、超耐低温ASA树脂组合物,其包括以下重量份的各组分:

优选地,所述的丙烯腈-苯乙烯-丙烯酸酯接枝共聚物是以丙烯酸酯为软核,接枝丙烯腈及苯乙烯形成核壳结构;其中,所述的丙烯腈-苯乙烯-丙烯酸酯接枝共聚物中,丙烯酸酯的重量百分比含量为30~80wt%,丙烯酸酯的数均粒径为0.1~4.0μm;所述丙烯腈-苯乙烯-丙烯酸酯接枝共聚物的重均分子量为100,000~300,000。

更优选地,所述的丙烯腈-苯乙烯-丙烯酸酯接枝共聚物中,丙烯酸酯的重量百分比含量为45~60wt%,丙烯酸酯的数均粒径为0.5~2.0μm。

当橡胶粒径在0.5μm以下时,光泽度会明显提高;而当橡胶粒径大于2.0μm时,ASA树脂的刚性会大幅降低。

更优选地,所述的丙烯腈-苯乙烯共聚物的重均分子量为200,000~400,000,丙烯腈的重量百分含量为25~35wt%。

优选地,所述的超低光泽耐低温改性剂包括如下重量百分比的各组分:

优选地,所述的载体共聚物为聚甲基丙烯酸甲酯、聚苯乙烯、聚α-烷基苯乙烯、马来酸酐改性的苯乙烯类聚合物、苯乙烯/马来酸酐共聚物、马来酰亚胺改性的苯乙烯类聚合物、苯乙烯-N芳基马来酰亚胺共聚物、苯乙烯/丙烯腈共聚物、α-烷基苯乙烯/丙烯腈共聚物、苯乙烯/α-烷基苯乙烯/丙烯腈共聚物、苯乙烯/丙烯腈/甲基丙烯酸甲酯共聚物、苯乙烯/α-烷基苯乙烯/丙烯腈/甲基丙烯酸甲酯共聚物、α-烷基苯乙烯/丙烯腈/甲基丙烯酸甲酯共聚物中的至少一种。

优选地,所述的含氟共聚物为聚含氟烯烃,选自聚四氟乙烯,聚偏氟乙烯、四氟乙烯/六氟丙烯共聚物、四氟乙烯/乙烯共聚物、四氟乙烯/全氟烷基醚共聚物、聚氟乙烯、三氟氯乙烯/乙烯共聚物、聚三氟氯乙烯中的至少一种。

优选地,所述的低温增韧剂是以硅橡胶、丙烯酸酯橡胶、硅/丙烯酸酯复合橡胶中的任一种橡胶为核心,以丙烯腈-苯乙烯接枝共聚物、烷基丙烯酸酯共聚物、环氧改性烷基丙烯酸酯共聚物中的任一种共聚物为壳层,形成的核壳结构共聚物。

优选地,所述的偶联剂为硅烷偶联剂,包括氨基官能团硅烷偶联剂、乙烯基官能团硅烷偶联剂、环氧基官能团硅烷偶联剂、甲基丙烯酰基官能团硅烷偶联剂中的一种或几种。

更优选地,所述偶联剂为乙烯基官能团硅烷偶联剂、环氧基官能团硅烷偶联剂;最优选二乙烯三胺基丙基三甲氧基硅氧烷,二甲基乙氧基硅烷。

优选地,所述的超低光泽耐低温改性剂的制备方法包括以下步骤:

按各组分的重量份数称取各组分,将其充分混合均匀后,经双螺杆挤出机挤出、造粒,即得所述超低光泽耐低温改性剂。

优选地,所述的加工助剂、助剂均包括抗氧剂、润滑剂、光稳定剂的一种或几种的混合物。

优选地,所述的抗氧剂为受阻酚类或亚磷酸酯类抗氧剂中的一种或几种的混合物。

优选地,所述的润滑剂为烷基硅油类、聚烯烃蜡类、氧化聚烯烃蜡类、季戊四醇酯类、脂肪酸酯类或酰胺蜡类润滑剂中的一种或几种的混合物。

优选地,所述的光稳定剂为水杨酸酯类、二苯甲酮类、苯并三唑类或取代三嗪类紫外吸收剂,以及受阻胺类自由基捕捉剂中的一种或几种的混合物。

本发明还提供了一种超低光泽、超耐低温ASA树脂组合物的制备方法,该方法包括以下步骤:

步骤一、按以下组分和含量备料:丙烯腈-苯乙烯-丙烯酸酯接枝共聚物20~60重量份,丙烯腈-苯乙烯共聚物40~80重量份,超低光泽耐低温改性剂1~20重量份,加工助剂0.1~5重量份;

步骤二、将步骤一中备好的材料在高速混合器中内搅拌、混合,经双螺杆挤出机挤出、造粒,即得所述超低光泽、超耐低温ASA树脂组合物。

优选地,步骤二中,所述双螺杆挤出机的螺杆长径比为36~44,所述双螺杆挤出机带有温控装置及抽真空装置。

优选地,步骤二中,所述的双螺杆挤出机的挤出温度为200~300℃,螺杆转速为200~500转/分钟。

现有技术相比,本发明具有如下的有益效果:

1、本发明组合物采用核壳结构的共聚物进行低温增韧,创新性的使用了含氟聚合物来降低材料的表面光泽度,并通过硅烷偶联剂来改善与基体的相容性,采用少量的SiO2,在缓解树脂熔体挤出膨胀的同时,进一步促进光泽度的降低,所得的组合物除了具有非常优异的低温韧性和非常低的表面光泽度外,对其他物理性能的影响也很小。

2、本发明组合物采用核壳结构共聚物、含氟聚合物和硅烷偶联剂三种组分复配来降低材料的表面光泽度和提升低温韧性;令人惊奇的是,三种组分的复配对上述两种性能的改善具有协同的效果,经三种组分复配后的体系,材料的表面光泽度大大降低,同时,材料的低温韧性也大幅的提高。

3、本发明制得的ASA树脂组合物,具有极低的光泽度,可以尝试替代皮纹、咬花等模具处理工艺,大大节约模具成本和加工生产成本,同时具有优异的耐低温性能,可以很好的应用于一些耐低温、低光泽要求的场合,例如汽车部件、户外型材、建筑材料和电器用品等。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

实施例1超低光泽耐低温改性剂的制备

超低光泽耐低温改性剂(E)的各组分和重量百分比含量如表1所示。将载体共聚物(A)、含氟共聚物(B)、低温增韧剂(C)、偶联剂(D)、气相二氧化硅、润滑剂EBS 0.7phr和抗氧剂IG-1076 0.3phr在高速混合器中内搅拌、混合,经计量装置进入双螺杆挤出机中,在螺杆的输送、剪切和混炼下,物料熔化、复合,再经挤出、拉条、冷却、切粒步骤,得到粒度均匀的超低光泽耐低温改性剂E1~E8。

其中,所述的双螺杆挤出机的螺杆长径比为40;所述的双螺杆挤出机的挤出温度为200~300℃之间,螺杆转速为200~500转/分钟。

表1超低光泽耐低温改性剂(E)的制备

表1中:

组分A-1:苯乙烯/丙烯腈共聚物,重均分子量为250,000。

组分A-2:聚甲基丙烯酸甲酯,重均分子量为250,000。

组分B-1:聚四氟乙烯,重均分子量为200,000。

组分B-2:聚偏氟乙烯,重均分子量为200,000。

组分C-1:丙烯酸酯橡胶为核心、丙烯腈-苯乙烯接枝共聚物为壳层的核壳结构共聚物。

组分C-2:硅/丙烯酸酯复合橡胶为核心、环氧改性甲基丙烯酸甲酯为壳层的核壳结构共聚物。

组分D-1:硅烷偶联剂,KH-550。

从表1的改性剂外观结果可知,通过采用核壳结构共聚物、含氟聚合物和硅烷偶联剂三种组分复配的交联反应,可以制备出外观均匀的超低光泽耐低温改性剂(E),而且哑光效果的分布均匀。从E5、E6和E7可知,偶联剂和气相二氧化硅的添加与否对哑光效果的均匀性影响很大,只有在两种组分同时存在的的情况下,才能通过偶联剂的交联反应,以及气相二氧化硅的促进分散,达到表面柔和而均匀的哑光效果。从E1、E3和E8可知,含氟聚合物可以明显的降低ASA树脂的光泽度。

实施例2~9超低光泽、超耐低温ASA树脂组合物的制备

本实施例2~9提供了一种超低光泽、超耐低温ASA树脂组合物及其制备方法,所述超低光泽、超耐低温ASA树脂组合物中的各组分和重量百分比含量如表2所示,制备方法为:将丙烯腈-苯乙烯-丙烯酸酯接枝共聚物、丙烯腈-苯乙烯共聚物和超低光泽耐低温改性剂(E)及润滑剂EBS 0.6phr和抗氧剂IG-1076 0.3phr在高速混合器中内搅拌、混合,经计量装置进入双螺杆挤出机中,在螺杆的输送、剪切和混炼下,物料熔化、复合,再经挤出、拉条、冷却、切粒步骤,得到超低光泽、超耐低温ASA树脂组合物。

其中,所述的双螺杆挤出机的螺杆长径比为40;所述的双螺杆挤出机的挤出温度为200~300℃之间,螺杆转速为200~500转/分钟。

对比例1~6

本对比例1~6提供了一种超低光泽、超耐低温ASA树脂组合物及其制备方法,所述超低光泽、超耐低温ASA树脂组合物中的各组分和重量百分比含量如表2所示,其制备方法为:将丙烯腈-苯乙烯-丙烯酸酯接枝共聚物、丙烯腈-苯乙烯共聚物和超低光泽耐低温改性剂(E)及润滑剂EBS 0.6phr和抗氧剂IG-1076 0.3phr在高速混合器中内搅拌、混合,经计量装置进入双螺杆挤出机中,在螺杆的输送、剪切和混炼下,物料熔化、复合,再经挤出、拉条、冷却、切粒步骤,得到超低光泽、超耐低温ASA树脂组合物。

其中,所述的双螺杆挤出机的螺杆长径比为40;所述的双螺杆挤出机的挤出温度为200~300℃之间,螺杆转速为200~500转/分钟。

表2实施例与对比例的材料配方

以上实施例和对比例中涉及组分及特征如下:

所述丙烯腈-苯乙烯-丙烯酸酯接枝共聚物是以丙烯酸酯为软核,接枝丙烯腈及苯乙烯形成核壳结构,其中,丙烯酸酯的重量百分比含量为45~60wt%,丙烯酸酯的数均粒径为0.5~2.0um;丙烯腈-苯乙烯-丙烯酸酯接枝共聚物的重均分子量为100,000~300,000。

所述丙烯腈-苯乙烯共聚物的重均分子量为200,000~400,000,丙烯腈的重量百分比含量为25~35wt%。

所述加工助剂是润滑剂EBS 0.6phr和抗氧剂IG-1076 0.3phr。

根据实施例2~9和对比例1~5制备得到的ASA树脂组合物,按照同样的注塑条件制备测试样条,具体的机械性能检测和光泽度评价检测项目如下:

拉伸强度:按照ISO527标准进行测试,测试速度为50mm/min,

弯曲强度:按照ISO178标准进行测试,测试速度为2mm/min;

弯曲模量:按照ISO178标准进行测试,测试速度为1mm/min;

23℃悬臂梁缺口冲击强度:按照ISO180标准进行测试,样条厚度为4mm;

-40℃悬臂梁缺口冲击强度:按照ISO180标准进行测试,样条厚度为4mm.,测试条件为-40℃/4h;

热变形温度:按照ISO75标准进行测试,测试条件为0.45MPa;

熔体流动速率:按照ISO1183标准进行测试,测试条件为220℃/10kg

光泽度:按照ASTM D523在60℃下使用Garden Gloss Meter测试3mm厚的普通色板和K31哑光皮纹色板的表面光泽,并以光泽单位(GU)为单位记录,其中标准黑色玻璃片的光泽度为100GU。

检测结果如表3所示。

表3实施例与对比例的性能比对

从表3的实施例和对比例测试结果可知,由实施例2~7可知,本发明极大的降低了ASA树脂的光泽度,同时材料的低温韧性得到很大提升,而对其他机械性能的影响并不明显。从实施例1、实施例5~9和对比例1可知,橡胶含量的增加可以提高材料的常温冲击韧性,而对低温韧性的贡献则很小,另外,对材料的强度和耐热也有较大的影响;而超低光泽耐低温改性剂(E)含量的增加,可有效提高材料的低温冲击韧性,有效降低材料的光泽度,相比之下,对其他机械性能的影响则很小。从对比例2可知,超低光泽耐低温改性剂(E)含量不是越多越好,当质量份数为30份时,其对耐热和流动性的影响较大,熔体流动速率会大幅降低,这会直接影响到ASA树脂的加工性能,因此,要控制其合适的添加量,不宜过高。从对比例5~6可知,含氟共聚物对降低光泽度的作用很大,而核壳结构共聚物则对提高低温韧性的效果显著,进一步比较实施例2~9和对比例5~6可知,含氟共聚物和核壳结构共聚物对降低材料的光泽度和提高低温韧性具有协同效果,最终制备的ASA树脂组合物具有极低的光泽度和优异的耐低温性,可很好地应用于建筑材料、运动器材、通讯设备外壳、汽车零部件等户外产品。

综上所述,本发明采用核壳结构共聚物、含氟聚合物和硅烷偶联剂三种组分复配的交联反应,制备外观均匀的超低光泽耐低温改性剂(E),进一步制备出超低光泽、超耐低温ASA树脂组合物,所得ASA树脂组合物具有极低的表面光泽度和优异的耐低温韧性,本发明解决了现有技术中存在的ASA树脂低光泽性和低温韧性很难兼顾的问题;本发明制备的ASA树脂组合物低温韧性很高,-40℃悬臂梁缺口冲击强度可达7KJ/m2以上,已经和ABS树脂的低温韧性相当,可以满足汽车零部件制品的低温存放要求,且该ASA树脂组合物的耐热性高,也可满足制品的高温存放要求;另外,本发明制备的ASA树脂具有柔和均匀的哑光效果,且表面光泽度极低,可以很好的应用于一些低光泽要求的场合,甚至可以尝试替代皮纹、咬花等模具处理工艺,大大节约模具成本和加工生产成本。

本发明具体应用途径很多,以上所述仅是本发明的优选实施方式。应当指出,以上实施例仅用于说明本发明,而并不用于限制本发明的保护范围。对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1