用于生产复合导电材料的方法和以此方法获得的复合材料与流程

文档序号:14644674发布日期:2018-06-08 20:48阅读:155来源:国知局

本发明涉及用于制造导电复合材料的方法,还涉及能够通过该方法获得的复合材料。



背景技术:

由于聚合物的轻量性(lightness),聚合物材料在许多应用中具有一定优点。它们的机械性能还可以通过在其中掺入多种填料和特别是增强纤维比如碳纤维来调节。由此获得的复合材料在许多应用中有利地代替了金属。因此,据估计,目前复合材料占空客A380结构重量的25%以上,其中在空客A380中复合材料替代铝合金。

然而,这些基于碳纤维的复合材料的导电性远低于金属的导电性。具体而言,这些纤维的缺点是在材料中形成基于它们的取向的导电通路。这种缺点在航空领域中通常使用的分层结构的背景下特别显著,所述分层结构具有不足以以沿垂直于纤维层平面的方向消散电流的能力,在该方向上的导电性典型地接近于非导电性聚合物的导电性。因此,这些结构不足以承受闪电(lightening)。事实上,被闪电击中的飞机必须能够流出(drain off)并因此传导约105安培的电流,而不会出现过大的电位差,过大的电位差能够导致上述复合结构的分层,并且导致机上电子仪器严重的损坏。因此有必要改进这些结构的导电性以使得导电性在层的堆叠方向上接近铜或铝。

为了克服上述缺点,已有人建议将导电颗粒分散在旨在浸渍碳纤维的聚合物基体中(EP2371529和EP2687557)。这些导电颗粒旨在获得的复合材料的任一侧形成电桥(electrical bridges)。它们可由涂覆有导电金属的玻璃或PMMA颗粒,或碳基材料,比如炭黑形成。除了使用纳米填料比如炭黑固有的处理问题,这些导电颗粒由于它们与熔融聚合物密度不同难以在聚合物基体中均匀地分散。因此,将这些颗粒包含在聚合物基体内可能会使后者的配制复杂化。此外,达到渗透阈值(超过渗透阈值,复合材料是导电的)所需的填料的量可负面地影响材料的某些机械性质。

掺入核-壳类型的复合导电颗粒的其他聚合物基体描述在文件US-5,965,064和US2012/279781中。Brodoceanu等在Nanotechnology,vol.24,no.8(February 5,2013)中公开的文献进一步描述了在配制导电金属阵列中使用核-壳类型的导电复合颗粒。

开发基于聚合物的导电复合材料在航空之外的工业范畴中还具有优点,且特别是在制造在保护电子设备免受静电荷的外壳中。

在寻求旨在使聚合物基体导电的解决方案中,已有人建议向其中掺入碳纳米管。由于这些填料的缠绕结构,与上面讨论的导电填料相比,这些填料具有更显着的分散问题。此外,尽管达到渗透阈值所需的纳米管浓度低于其它填料的浓度,但纳米管在该浓度下具有增加影响其对其处理(加工)所需的流动性质的基体粘度的倾向,并且在此处也限制它的配制。

可通过如下方式克服前述分散问题且提高复合材料的导电性,围绕聚合物颗粒施加碳纳米管或炭黑,以便形成随后聚集成导电复合材料的导电复合颗粒,而不将这些填料分散在聚合物基体中。因此Hao等在Materials Chemistry and Physics,vol.109,15-19(2008)中提出了特别的方法用于以碳纳米管(CNTs)或炭黑涂覆聚乙烯颗粒,该方法在导致聚合物颗粒软化并且导致填料附着在它们的表面的条件下进行。获得的复合颗粒随后被压缩成型以形成板材。

虽然它具有一定的优点,但该方法不能消除处理纳米填料的问题及其对环境的可能影响。因此,仍然需要提供上述描述方法的替代方法。



技术实现要素:

在本发明中,发明人已经开发了使用涂覆有金属的聚合物颗粒制造复合材料的方法,所述方法不需要在聚合物基体中分散这些颗粒。虽然该方法和所使用的颗粒与Hao等描述的那些具有一些类似性,但是它们之间的区别在于这样的事实:Hao等的复合颗粒表面由缠绕的CNT的聚集体或聚集的炭黑颗粒组成,而不是由连续的膜组成。申请人进行的研究使得可调节复合颗粒的性质和根据本发明的方法的步骤,以便使得可协调对于金属型复合颗粒的两个先前冲突的要求,也就是使用足够量的金属以达到渗透阈值,然而不阻止在熔点之上聚结(coalescence)聚合物颗粒。此外,根据本发明的方法的优点在于在形成复合材料期间,基本上不改变聚合物的机械性质。最后,其使得可消除现有技术的添加剂辅助的聚合物基体的配制限制。

本发明的目标因此为提供由聚合物基体获得的导电复合材料,当其为板材的形式时,其提供良好的横向导电性,和良好的机械性质,同时易于制造。

本发明的一个主题因此是由复合聚合物基体制造导电复合材料的方法,其中复合聚合物基体通过聚集由聚合物基体的颗粒组成的导电复合颗粒形成,所述聚合物基体的颗粒具有1-4000μm的d50直径,涂覆有导电材料的层,所述颗粒未分散在聚合物基体中,其特征在于所述导电材料由至少一种金属组成且特征在于所述层的厚度对按照根据标准ISO9276测量的聚合物基体颗粒的d50直径的比在0.0025:100和1.5:100之间,所述厚度小于300nm。

本发明另一主题是能够根据以上方法获得的复合材料,其有利地包含含有形成连续的导电通路的三维金属性网络的复合聚合物基体。

具体实施方式

制造根据本发明的复合材料的方法的特征在于其包括在于(consists in)聚集导电复合颗粒的步骤。

这些颗粒可具有球形的、类似球形的或非球形的形状。这些颗粒的直径可为1-4000μm之间、优选5-1000μm之间、更优选10-500μm之间、例如30-300μm之间。

在本发明的上下文中,术语“直径”用来描述颗粒的外接圆的直径。D50对应于将被检查的颗粒群体准确地分为两份的颗粒尺寸(particle size)的值。换句话说,50%的颗粒具有小于该D50的尺寸。根据标准ISO9276–部分1至6:“颗粒尺寸分析的结果的表述(Representation of results of particle size analysis)”测量D50。在本发明中,使用激光颗粒尺寸分析仪(例如Malvern型)获得粉末的颗粒尺寸分布且由此推断D50。

此外,在本发明说明书中,表述“之间”表示包括提及的端点的区间。

根据本发明使用的导电复合颗粒由涂覆有至少一种导电金属的壳的聚合物基体形成的核组成。它们不含有任何其他的层,特别是壳外的层,比如聚合物层。

聚合物基体包含至少一种热塑性或热固性聚合物,其可以任选地具有弹性体特性,优选一种或多种热塑性,有利地为非弹性体的聚合物。

热塑性聚合物的实例包括烯烃的均聚物和共聚物,比如丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯、聚丙烯、聚丁二烯和聚丁烯;乙烯基聚合物,比如聚(二乙烯基苯)和乙烯/乙酸乙烯酯共聚物;丙烯酸类均聚物和共聚物和聚(甲基)丙烯酸烷基酯,比如聚(甲基丙烯酸甲酯);均聚酰胺和共聚酰胺;聚碳酸酯;聚酯,包括聚(对苯二甲酸乙二醇酯)和聚(对苯二甲酸丁二醇酯);聚醚,比如聚(苯醚)和聚(甲醛);聚苯乙烯和苯乙烯/丙烯腈共聚物;苯乙烯/马来酸酐共聚物;聚(氯乙烯);氟代聚合物,比如聚偏二氟乙烯、聚四氟乙烯和聚氯三氟乙烯;热塑性聚氨酯;聚醚醚酮(PEEK)和聚醚酮酮(PEKK);聚醚酰亚胺;聚砜;聚(苯硫醚);纤维素醋酸酯;和它们的混合物。

根据实施本发明的一个优选的方式,聚合物选自聚酰胺和聚酮。

聚酰胺包括均聚酰胺和共聚酰胺。

在均聚酰胺中(PA),可特别提及通过聚合氨基酸或内酰胺获得的PA-6、PA-11和PA-12,通过缩聚二元酸和二胺获得的PA-6.6、PA-4.6、PA-6.10、PA-6.12、PA-6.14、PA6-18、PA-10.10和PA-10.12,以及还有芳族聚酰胺,比如聚芳基酰胺,特别地由1,3-苯二甲胺和/或1,4-苯二甲胺获得,和聚邻苯二甲酰胺,由对苯二甲酸和/或间苯二甲酸获得。一些前述聚合物可特别地从ARKEMA以RILSAN的商品名得到。

共聚酰胺可从各种起始原料获得:(i)内酰胺,(ii)氨基羧酸或(iii)等摩尔量的二胺和二元羧酸。共聚酰胺的形成需要从上述那些中选择至少两种不同的起始产物。共聚酰胺于是包括至少这两个部分。因此其可涉及具有不同数目碳原子的氨基羧酸和内酰胺,或两种具有不同分子量的内酰胺,或者与等摩尔量的二胺和二羧酸组合的内酰胺。内酰胺(i)可特别地选自月桂基内酰胺和/或己内酰胺。氨基羧酸(ii)有利地选自α,ω-氨基羧酸,比如11-氨基十一烷酸或12-氨基十二烷酸。对于前体(iii),这可特别地为至少一种C6-C36,脂族、脂环族或芳族二元羧酸与至少一种C4-C22,脂族、脂环族、芳基脂族或芳族二胺的组合,所述二元羧酸比如为己二酸、壬二酸、癸二酸、巴西基酸、正十二烷二酸、对苯二甲酸、间苯二甲酸或2,6-萘二甲酸,所述二胺比如为六亚甲基二胺、哌嗪、2-甲基-1,5-二氨基戊烷、间苯二甲胺或对苯二甲胺,应理解,所述11种二羧酸和二胺当存在时以等摩尔量使用。这样的共聚酰胺特别地以商品名由ARKEMA出售。

根据本发明的一个实施方式,作为聚酰胺,可选择半芳族的(基于芳族结构)和/或半脂环族的(基于脂环族结构)聚酰胺,优选半芳族的,更特别地对应于下式:

-包含x.T单元的聚酰胺,其中x是C9至C18、优选C9、C10、C11、C12直链脂肪族二胺,并且其中T是对苯二甲酸,选自:8.T、9.T、10.T、11.T、12.T、6.T/9.T、9.T/10.T、9.T/11.T、9.T/12.T、9/6.T、10/6.T、11/6.T、12/6.T、10/9.T、10/10.T、10/11.T、10/12.T、11/9.T、11/10.T、11/11.T、11/12.T、12/9.T、12/10.T、12/11.T、12/12.T、6.10/6.T、6.12/6.T、9.10/6.T、9.12/6.T、10.10/6.T、10.12/6.T、6.10/9.T、6.12/9.T、9.10/9.T、9.12/9.T、10.10/9.T、10.12/9.T、6.10/10.T、6.12/10.T、9.10/10.T、9.12/10.T、10.10/10.T、10.12/10.T、6.10/12.T、6.12/12.T、9.10/12.T、9.12/12.T、10.10/12.T、11/6.T/9.T、11/6.T/10.T、11/6.T/11.T、11/6.T/12.T、11/9.T/10.T、11/9.T/11.T、11/9.T/12.T、11/10.T/11.T、11/10.T/12.T、11/11.T/12.T、6.T/10.T、6.T/11.T、6.T/12.T、10.T/11.T、10.T/12.T、11.T/12.T、12/6.T/10.T、12/6.T/11.T、12/6.T/12.T、12/9.T/10.T、12/9.T/11.T、12/9.T/12.T、12/10.T/11.T、12/10.T/12.T、12/11.T/12.T,

-之前的三元共聚物聚酰胺,其中12/被9/、10/、6.10/、6.12/、10.10/、10.12/、9.10/和9.12/替代,

-所有上述聚酰胺,其中对苯二甲酸(T)部分或全部地被间苯二甲酸(I)替代、被萘-2,6-二甲酸和/或被1,3-或1,4-CHDA(环己烷二甲酸)替代、其中脂族二胺中的全部或一些可被脂环族二胺替代,

-所有上述聚酰胺,其中C6-C12脂肪族二胺被来自BMACM、BACM和/或IPDA脂环族二胺替代并且部分或全部地芳族二元酸T被直连或支化的C6-C18脂族二元酸替代。

在本发明一个有利的实施方式中,作为热塑性聚合物,使用具有至少100℃,优选至少120℃的玻璃化转变温度,和低于280℃的熔点的半结晶聚酰胺,这些温度通过DSC根据标准ISO11357测量。该聚酰胺优选具有通式10.T/A.T,其中T表示对苯二甲酸且A表示例如间二甲苯二胺(MXDA)或2-甲基五亚甲基二胺(MPMDA)。该聚酰胺可以由至少一种预聚物的反应性组合物获得,所述预聚物是所述聚酰胺的前体,带有两个通过缩合彼此共反应的末端官能团(通常为NH2和COOH)或两个相同的末端官能团(典型地为NH2或COOH),其能够与由与其混合的另一种预聚物(通常为COOH或NH2)承载的末端官能团反应。作为变体,所述聚酰胺可以通过在带有两个唑啉、环氧树脂或异氰酸酯类型的末端官能团的单体扩链剂的存在下混合所述前体而获得。

作为热固性聚合物,只要它们在环境温度(25℃)下为固体形式,可特别地使用环氧树脂,不饱和聚酯,酚醛树脂,三聚氰胺-甲醛树脂和聚酰亚胺。环氧树脂优选用于本发明。

除了以上聚合物,根据本发明使用的聚合物基体可进一步任选地含有一种或多种选自以下的添加剂:导电填料、固化剂、增塑剂、润滑剂、颜料、染料、UV稳定剂、抗氧化剂和/或热稳定剂、冲击改性剂、增强填料、抗静电剂、杀真菌剂、阻燃剂和其混合物。根据实施本发明的一个优选的方法,其含有旨在改进其导热性的膨胀石墨。增强填料是内含物(inclusion)或纤维形式的颗粒材料,其旨在改进的基体性质。陶瓷、有机、无机和金属纤维以及碳纳米管构成这种材料的例子。根据本发明优选对于聚合物基体,含有一种或多种导电填料,比如石墨。

如上所述,根据本发明使用的颗粒涂覆有金属型导电材料的层。

可在本发明中使用的金属地实例包括银、金、镍、铜、铂、锡、钛、钴、锌、铁、铬、铝及其合金,优选金、银、镍、铜、铂、锡和钛以及更优选银。

向聚合物颗粒施加金属涂层可以通过多种方法来进行,比如物理气相沉积(PVD),化学气相沉积(CVD)和自动催化沉积(无电电镀)。在本发明中,导电复合颗粒优选通过在聚合物基体颗粒的表面上气相沉积至少一种金属而获得。在CVD工艺中,可加热有机金属化合物以便进入蒸气状态,然后在含有聚合物颗粒的的流化床反应器中夹带,从而分解有机金属前体并且将金属沉积在聚合物颗粒上。处理温度和时间,以及前体的量使得可控制沉积物的厚度。在PVD工艺中,待沉积的金属的金属前体可以通过电子轰击、焦耳效应、感应、电弧或离子束而被蒸发。作为变体,该金属可以通过真空溅射或通过离子沉积来沉积。本领域技术人员将知道如何调整这些工艺的参数以获得具有期望厚度的金属层。在本发明中优选使用CVD工艺。

沉积在聚合物基体颗粒上的金属的量可占1重量%-25重量%、优选5重量%-20重量%,相对所述于颗粒的总重量,只要金属层厚度小于300nm,根据本领域技术人员熟知的技术,例如在离子抛光之后借助电子显微镜测量,且只要所述层的厚度对根据标准ISO9276测量的聚合物基体颗粒的d50直径的比在0.0025:100和1.5:100之间、优选在0.005:100和1:100之间、以及更好在0.1:100和0.5:100之间。

在根据本发明的方法中,使上述复合颗粒聚集,优选通过使所述颗粒在低剪切条件下,在聚合物基体至少部分熔融的温度下接触,以便使得所述颗粒聚结(coalesce)。因此获得含有形成连续导电通路的三维金属网络的复合聚合物基体。

因此,优选不使用复合颗粒的配混、注塑或挤出的工艺,其产生过高的粉末剪切。

另一方面,该聚集步骤可通过如下方式进行,任何从粉末增材制造(additive manufacturing)部件的工艺,和特别是激光烧结(SLS)或掩模烧结(SMS)或对颗粒进行压缩模塑,以形成复合材料。该复合材料可直接以所需的形状获得,或者在聚合物基体包含热塑性聚合物的条件下,其可随后被熔化和重新成形。

替代地,根据本发明的方法可包括用上述复合颗粒涂覆基底的步骤,所述步骤在聚集步骤之前进行或与聚集步骤同时进行。基底有利地为纤维基底,其可由天然或合成纤维如玻璃纤维、碳纤维、金属化聚合物纤维及其混合物形成。这些纤维可是无纺的或纺织的,以任何方式编织的或针织的,并且可例如是粗纱、灯芯绒(cord)、片或带的形式。在本发明中,优选基底由碳纤维的片材构成。根据一种实施方式,涂覆和聚集步骤可以通过流化床浸涂同时进行。在这种情况下,在将颗粒施加到基底表面之前,使基底达到高于形成颗粒的核的聚合物的熔点的温度。根据另一种实施方式,涂覆步骤可以是干浸渍基底的步骤,特别是通过静电喷涂,并且聚集步骤可于是包括热处理经浸渍的基底,例如通过红外加热或对流炉。

在以上变体中,获得的复合材料构成预浸渍的基底,所述基底可根据多种技术成形。特别地,当其是板材的形式时,它可例如通过压延加固(consolidate)。作为变体,当其为复合纤维形式时,这些纤维可通过丝缠绕转变为旋转部件或通过拉挤成型转变为成型元件。可以进行的另一种成形工艺是在纤维或带铺放(placement)过程。能够实现这些工艺的设备可以包括涂覆和加热(聚集)装置,其使得可进行执行根据本发明的方法的所有步骤。

预浸渍的基底优选由这样的层(ply)构成,所述层由通常在其两个面上用根据本发明的复合材料覆盖的纤维基底构成。这些层中的几层可以叠加在成型器(模具)上,以形成随后被炉烤的层合体(laminate)。在导电复合颗粒含有热固性树脂的情况下,通常随后将该层合体加热并压缩以固化树脂。

在任选涂布,聚集和通常成形的这些步骤结束时,获得根据本发明的复合材料。

其特别地可以用于需要高导电性的任何应用中,特别是改进电子部件的电磁屏蔽和/或静电保护,并且还可为航空部件、风力涡轮机、建筑物、机动车辆、火车或船只赋予闪电保护。在航空领域中,根据本发明的复合材料可以特别地用于制造机身、机翼、副翼、襟翼、整流罩、腹梁、进气口、雷达天线罩或整流罩。

实施例

根据以下实施例将更好地理解本发明,所述实施例纯粹通过说明给出并且不具有限制由所附权利要求限定的本发明范围的目的。

实施例1:制造复合膜

通过CVD获得涂覆有占8重量%-10重量%(相对于颗粒的总重量)的银的层的聚酰胺11(由ARKEMA提供PA11)的颗粒。这些复合颗粒D50直径为100μm,如通过激光粒度分析所测量的。金属涂层的厚度为约150nm。

通过流化床浸涂将这些颗粒施加至达到330°的硅化钢板。获得的膜的厚度为300μm。使其与板分离,然后用扫描电子显微镜分析。观察到良好的颗粒聚结和材料中连续的金属网络的存在。

然后通过所谓的4点法测量该膜的电阻,其中包括对于四个不同的强度值,绘制作为施加于样品的强度的函数测量的电压的曲线。获得的直线的斜率对应于该膜的表面电阻,在该实施例中其为4欧姆。其体积电阻率为200欧姆-厘米。

实施例2(对比):制造复合膜

按照实施例1制备复合膜,除了银的重量分数为15-20%而非8-10%。获得的颗粒涂覆有具有300-400nm厚度的银的层。

这些薄膜是脆性的,并具有粗糙和多孔的外观。用扫描电子显微镜观察显示中等的晶粒(grains)聚结,所述晶粒进一步出现与金属碎屑混合。

实施例3:制造复合板材

通过将如实施例1所述的PA11颗粒的粉末撒在具有195mm宽度和295mm长度的四个碳纤维增强物(200g/m2的Hexcel plain 3K HS)的两个面上均而将其浸渍。在将由此获得的四个层堆叠并且向堆叠物的四个面施加粘合剂后,对堆叠物进行热压。为达到这个目的,将其放置在200mm宽和300mm长的模具中,在每个面上用特氟龙涂覆的织物片覆盖,然后将模具引入卡弗(Carver)压机中,将其压板预热至290℃,施加于所述层的压力为1.7巴。接着,将压板的温度降低至250℃,然后在30秒后使压力达到10巴。15分钟后,将压板冷却至约100℃的温度。从模具中取出后,获得复合板材。

这些板材的体积的体积电阻率约为3000欧姆-厘米,通过所谓的四点法测量。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1