一种定向排列的石墨烯膜及其制备方法及复合散热膜与流程

文档序号:16434592发布日期:2018-12-28 20:23阅读:531来源:国知局
一种定向排列的石墨烯膜及其制备方法及复合散热膜与流程

本发明涉及散热膜领域,具体涉及一种石墨烯膜及复合散热膜。

背景技术

近年来,随着工业及消费类电子产品性能的不断提升,各电子器件的发热问题越来越严重,散热显得尤为重要。石墨烯的理论热导率为3000~5000w/(m·k),可应用于电子产品的散热领域。然而,在实际运用中,石墨烯片层组装成膜后会产生较大的层间空隙,空隙不仅形成热阻,而且影响石墨烯薄膜的密度,从而降低石墨烯导热膜的整体传热效率。因此,要获得高热导率的石墨烯薄膜,需要解决石墨烯片层的间隙问题,制备高定向排列的石墨烯膜。

现有技术公开了一些定向排列的石墨烯膜的制备方法,但存在一定的问题。如中国专利201410146002.1公开了一种液相法定向制备高导电高导热的石墨烯膜的方法,即将氧化石墨烯真空控温、真空抽滤制备定向沉积的氧化石墨烯膜,再通过化学气相沉积还原,得到定向沉积的石墨烯膜,该方法步骤复杂,对设备要求较高,且制得的石墨烯膜沉积在铜箔或其他基材上,难以转移,而且转移时易损坏石墨烯膜,同时该方法采用hummer法制备的氧化石墨烯作为前驱体,经过还原处理获得石墨烯膜,很难实现彻底的还原,致使石墨烯存在部分缺陷,导致石墨烯本征的高导热特性难以充分体现,得到的石墨烯膜导热系数最高仅达到800w/(m·k),与其理论热导率仍有很大差距。中国专利201410331358.2公开了一种氮掺杂定向石墨烯的制备方法,即将氨水加入到氧化石墨烯溶液中,进行水热反应,将氧化石墨烯还原成石墨烯,然后进行定向抽真空处理,该方法得到的的石墨烯膜只是单纯粉体搭接成膜,易掉粉,机械性能比较差,易弯曲断裂,难以加工,并且从滤纸上直接转移比较困难,为了降低转移过程对膜层的破坏,会将石墨烯膜的厚度增加至毫米级别,无法满足电子设备领域轻薄化的要求。



技术实现要素:

如无特殊说明,本发明中的“份”均指“质量份”。

针对现有技术存在的问题,本发明提供一种石墨烯膜,该石墨烯膜定向排列,散热面积较大,具有较高的热导率和热辐射率,该石墨烯膜同时具有良好的柔韧性、耐弯折性和耐冲击性,不易掉粉,可加工性好:本发明还提供一种复合散热膜,该复合散热膜具有良好的导热性能和机械性能。

一种石墨烯膜,所述石墨烯膜包含以下质量份数的组份:100份改性石墨烯、250~450份溶剂、15~50份成膜剂、0.5~1.5份固化剂,0.25~15份改性剂、3~10份助剂,所述成膜剂的固化温度为40℃~120℃,所述石墨烯膜的厚度为10μm~80μm。

所述石墨烯膜为定向排列的石墨烯膜。

所述改性剂的结构式如式(1)所示,

式(1)中,r1为c1~c3的烷基或氢原子,r2为氢原子或甲基,r3为直链烷基,r4、r5、r6、r7、r8中至少有3个为极性基团,其余为氢原子,所述极性基团为磺酸基和/或羧基,n为1~3的整数。

所述式(1)中,r1为氢原子,r2为氢原子或甲基,r3为c1~c3的烷基,r4,r5,r6,r7,r8均为磺酸基,n为1~3的整数。

所述式(1)中,r1为氢原子,r2为氢原子或甲基,r3为c1~c3的烷基,r4,r5,r6,r7,r8均为羧基,n为1~3的整数。

所述式(1)中,r1为氢原子,r2为甲基,r3为甲基,r4,r5,r6,r7,r8均为羧基,n=1。

所述式(1)中,r1为氢原子,r2为氢原子,r3为丙基,r4,r5,r6,r7,r8均为羧基,n=3。

所述改性石墨烯包括石墨烯和碳纳米管,所述碳纳米管的质量占改性石墨烯总质量的5%~50%,所述石墨烯的层数在10层以内;所述改性石墨烯未经氧化还原途径处理,所述改性石墨烯由机械力剥离法、化学气相沉积法、高温裂解法、插层剥离法或液相剥离法制备,优选所述改性石墨烯由机械力剥离法制备,所述机械剥离法包括介质研磨剥离法、超声剥离法、水射流剥离法、均质机剥离法及气流粉碎机剥离法中的一种或多种。

优选所述碳纳米管包括单壁碳纳米管、双壁碳纳米管、多壁碳纳米管中的一种或多种,所述碳纳米管的管径为5~50nm,长度为5~35μm,优选所述碳纳米管为羟基化或羧基化的碳纳米管。

所述改性石墨烯经表面活性剂改性,所述表面活性剂含有极性亲水基团,所述极性亲水基团包括羧酸、磺酸、硫酸、氨基或胺基及其盐、羟基、酰胺基、醚键中的一种或多种。优选所述表面活性剂包括聚乙烯吡咯烷酮、聚乙烯醇、聚苯乙烯磺酸钠中的一种或多种。

所述溶剂为去离子水、无水乙醇、n-甲基吡咯烷酮、n,n-二甲基甲酰胺中的一种或多种。

所述成膜剂为聚乙烯醇乳液、丙烯酸树脂和聚氨酯乳液中的一种或两种;优选成膜剂为丙烯酸改性的水性聚氨酯乳液,固含量为25%~40%,粘度为100cps~500cps;进一步优选所述成膜剂包含自交联水性丙烯酸改性聚氨酯树脂、水性丙烯酸改性脂肪族聚氨酯树脂中的一种或两种。

所述的固化剂为自乳化聚异氰酸酯,-nco含量为16%-48%,粘度为500~6500cps。

所述助剂包括消泡剂、流平剂、成膜助剂、聚乙烯蜡中的一种或多种;所述的流平剂为聚醚型聚氨酯流平剂,优选流平剂rm-2020;所述消泡剂为水性体系消泡剂,优选tegofoamex810或byk-019;所述的成膜助剂包括丙二醇甲醚、二丙二醇单甲醚、二丙二醇单丁醚、异丙醇等中一种或多种;所述的聚乙烯蜡为水性高密度聚乙烯蜡乳液,粘度为50~200cps,固含量为34~36%,酸碱值为7.5~9.5。

上述的定向排列的石墨烯膜的制备方法,包含以下步骤:

(1)制备改性石墨烯:将石墨粉、碳纳米管、表面活性剂、溶剂与磨珠按照质量比为(10~30)∶5∶(0.15~0.3)∶250∶100置于球磨设备中,以1000r/min~4000r/min的速率球磨1~6h,出料,将所得浆料在1500~2500rpm的转速下离心10~30min,收集上层液,将上层液进行冷冻干燥,得到改性石墨烯;

(2)配料、混料:按100∶(250~450)∶(15~50)∶(0.5~1.5)∶(0.25~15)∶(3~10)的质量比依次称取改性石墨烯、溶剂、成膜剂、固化剂、改性剂以及助剂,在高速搅拌机中以1500~4000rpm的转速搅拌5~120min后,取出浆料,然后以1000~10000rpm的旋转速度对浆料离心处理10~30min,收集上层均匀浆料;

(3)真空抽滤:对步骤(2)所述的浆料进行真空抽滤,在抽滤的同时间断性加入热溶液辅助抽滤,得到定向排列的石墨烯膜。

所述步骤(1)中石墨粉包括鳞片石墨粉、膨胀石墨粉、球型石墨、微粉石墨、人造石墨中的一种,所述石墨粉的粒径为400~8000目;所述球磨设备包括研磨机、振动磨、高速搅拌机、砂磨机、均质机中的一种;

所述步骤(3)中热溶液包括去离子水、无水乙醇、甲苯、n-甲基吡咯烷酮、n,n-二甲基甲酰胺中的一种或多种;所述热溶液的温度为40~100℃;

所述复合散热膜由下而上分别为超薄导热硅胶垫、定向排列的石墨烯膜,所述超薄导热硅胶垫的厚度为5~50μm,导热系数为5~17w/(m·k),所述定向排列的石墨烯膜的厚度为10~80μm,导热系数为1500~1780w/(m·k)。

所述复合散热膜的结构如图1所示:

所述复合散热膜还可贴合pet保护膜,由下而上依次为pet保护膜、超薄导热硅胶垫、定向排列的石墨烯膜、pet保护膜。所述pet保护膜的厚度为0.012mm~0.25mm、超薄导热硅胶垫的厚度为5~50μm、定向排列的石墨烯膜的厚度为10~80μm、pet保护膜的厚度为0.012mm~0.125mm。

所述复合散热膜的结构如图2所示:

上述复合散热膜的制备方法,包括以下步骤:

(1)制备超薄导热硅胶垫的膏状料:按质量份称取10~28份乙烯基硅油、0.5~3份含氢硅油、0.10~0.25份铂金催化剂、0.02~0.05份抑制剂、1~3份钛酸酯硅烷偶联剂和50~80份纳米碳球以及100份球形氧化铝置于行星式搅拌机中进行搅拌均匀后,再与5~15份生胶一同在开炼机中进行开炼,得到膏状料。

(2)压延成型:将超薄导热硅胶垫的膏状料涂布于石墨烯膜的一面,然后在石墨烯膜的两面附上pet保护膜,经压延机压延贴合后,转至硫化机中,在120℃和150℃两个温区进行硫化,每段温区的硫化时间分别为10min~20min,使导热硅胶垫的膏状料完全热固化成型,形成超薄导热硅胶垫,最终得到可直接使用的复合散热膜。

所述步骤(1)中超薄导热硅胶垫膏状料的导热系数为5~17(w/m·k);

所述步骤(1)中球形氧化铝的粒径为10~35nm,所述纳米碳球的粒径为15~30nm,所述乙烯基硅油的粘度为1500~3000cps,其中乙烯基的质量分数为0.14%,所述的含氢硅油的含氢量为0.16%~0.36%,所述的抑制剂为乙炔基环己醇,所述生胶为东爵110-2s生胶。

本发明的有益效果:

(1)本发明改性石墨烯包括石墨烯和碳纳米管,碳纳米管在石墨烯的片层之间起到搭桥作用,克服了机械法制备的石墨烯片径大小不均一、相互搭接存在间隙的问题,实现了线面接触和面面接触,形成导热网络,有利于充分发挥石墨烯的高导热特性。此外,本发明在制备石墨烯膜的过程中添加了改性剂,石墨烯膜具有良好的耐弯折性、柔韧性、耐冲击性以及较高的热导率和热辐射率,不易掉粉,可加工性强。另外,石墨烯膜呈定向排列,热导率高达1780(w/m·k),散热性能优异,能够将100℃的热源温度降低至48.8℃左右。

(2)本发明的复合散热膜包括超薄导热硅胶垫、定向排列的石墨烯膜,超薄导热硅胶垫具有良好的导热性、绝缘性、压缩性以及粘弹性,可取代传统双面胶,与石墨烯膜、热源直接接触,大大降低了散热膜与热源之间的接触热阻,实现热量的快速传递,该复合散热膜结构简单,具备良好的导热性、柔韧性、绝缘性。

附图说明

图1复合散热膜(1)表示定向排列石墨烯膜;(2)表示超薄导热硅胶垫

图2复合散热膜(1)表示pet保护膜;(2)表示定向排列石墨烯膜;(3)表示超薄导热硅胶垫;(4)表示pet保护膜

图3定向排列的石墨烯膜的sem图片

具体实施方式

下面结合实施例对本发明作进一步说明,但下述实施例,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

定向排列的石墨烯膜和复合散热膜的测试方法:

(1)耐弯折性测试:将样品两端以0.98n的力固定在hm-8666抗弯折试验机上,在弯曲半径为5mm,弯曲角度为180°的条件下,开始弯曲试验,测试样品能否弯折10000次以上。

(2)耐冲击性测试:

耐冲击性指漆膜在经受高速重力作用下发生快速变形而不开裂与脱落的能力。以一定质量的重锤从不同的高度落于涂膜试板上,使漆膜经受伸长变形而不开裂与脱落的最大高度,该最大高度表示该漆膜的耐冲击性,通常以厘米(cm)表示,重锤的质量为1kg。

(3)柔韧性测试:

采用柔性测定器依照gb1731《漆膜柔韧性测定法》的标准进行测试,即以1mm的刚辊为轴心,将样品对折1次,观察样品是否开裂或剥落。

(4)厚度测试:采用膜厚仪测试厚度,单位:μm

(5)热辐射系数测试:

在环境温度为23±2℃,湿度为50±5%r.h的条件下,使用sr-5000红外傅里叶测试仪(以色列sr-5000),根据检测标准gjb5023.2-2003《材料和涂层反射率和发射率测试方法第2部分:发射率》进行检测。

(6)热导率测试:

在环境温度为23±2℃,湿度为50±5%r.h的条件下,使用激光导热系数测试仪(耐驰lfa467),差示扫描量热仪(耐驰dsc214),根据检测标准astme1461-13用闪光法测定热扩散率的标准试验方法进行检测。

将试样制备成夹具要求的形状尺寸(横向测试为直径25.4mm的圆片,纵向测试为直径12.7mm的圆片)。使用测厚仪测试并记录试样厚度。调试仪器,将样品平稳地放在对应的样品托盘中,使试样垂直稳定,并置于激光导热仪炉体内。设置检测参数及定温程序,开始检测,测得其热扩散系数α。利用天平,排水法测得样品密度ρ,使用差示扫描量热仪测得样品比热容cp。

根据热导率的计算公式k=α*cp*ρ,计算得出样品的热导率k。

(7)散热性能测试:

采用热学管理模拟测试仪tt-sim进行散热测试,热学管理模拟测试仪由平台热源、可编程恒功率控制系统、数据处理系统、数据管理系统等组成,通过模拟不同电子器件在实际工作中的状态,精确测量在不同运行功率下、不同热管理方案中电子器件的实际温度,来评估散热材料或散热方案在实际应用中的性能。即根据恒功率条件下的发热源的温度测量,获得散热材料对器件本身温度带来的影响的数据,对材料的散热性能给出定量的评估。测试步骤如下:

a.首先将复合散热膜贴合在热源上,然后开启电源并通过可编程恒功率控制系统,进行参数设置,输入所需的功率大小以及测试时间等;

b.点击测试按钮,开始按设定的功率及时间进行测试,数据处理系统将会实时监控和记录下环境温度t0以及热源温度t,待热源温度稳定,测试结束,关闭电源。

c.计算温升δt=t-t0,温升值越小,表示复合散热膜的散热效果越好。

本发明实施例与对比实施例所使用的材料如下:

a表示石墨粉,a-1为鳞片石墨粉,粒径为8000目;a-2为膨胀石墨粉,粒径为4000目;a-3为人造石墨,粒径为400目。

b表示碳纳米管,b-1为管径为5nm、长度为5μm的羟基化碳纳米管,b-2为管径为50nm、长度为35μm的羧基化碳纳米管。

c表示表面活性剂,c-1为聚乙烯吡咯烷酮,c-2为聚乙烯醇,c-3为聚苯乙烯磺酸钠。

d表示溶剂,d-1为去离子水,d-2为无水乙醇。

f表示磨珠。

g表示改性石墨烯,g-1,g-2,g-3,g’-1分别表示不同条件制备的改性石墨烯。

h表示溶剂,h-1为去离子水,h-2为n’n-二甲基甲酰胺。

i表示成膜剂,i-1为固含量为25%,粘度为100cps,乳液粒子的粒径为50nm的丙烯酸改性的水性聚氨酯;i-2为固含量为40%,粘度为500cps,乳液粒子的粒径为10nm的丙烯酸改性的水性聚氨酯;i-3为丙烯酸乳液。

j表示固化剂,j-1为-nco含量为16%、粘度为500cps的自乳化聚异氰酸酯;j-2为-nco含量为48%、粘度为6500cps的自乳化聚异氰酸酯。

k表示改性剂,结构式如式(1)所示,

式(1)中,r1为c1~c3的烷基或氢原子,r2为氢原子或甲基,r3为直链烷基,r4、r5、r6、r7、r8中至少有3个为极性基团,其余为氢原子,所述极性基团为磺酸基和/或羧基,n为1~3的整数。

k-1的结构式如式(1)所示,其中,r1为氢原子,r2、r3均为甲基,r4,r5,r6,r7,r8均为羧基,n=1。

k-2的结构式如式(1)所示,其中,r1为氢原子,r2为氢原子,r3为丙基,r4,r5,r6,r7,r8均为羧基,n=3。

k-3的结构式如式(1)所示,其中,r1为氢原子,r2、r3均为甲基,r4,r5,r6,r7,r8均为磺酸基,n=1。

l表示助剂,l-1包括流平剂rm-2020、非硅类水性体系消泡剂byk-019、二丙二醇单甲醚、粘度为100cps、ph=8的水性高密度聚乙烯蜡,四者质量比为1.5∶1∶7∶0.5;l-2包括消泡剂tegofoamex810、二丙二醇单丁醚和粘度为50cps,ph=7.5的水性高密度聚乙烯蜡,三者质量比为1.5∶0.5∶1。

m表示热溶液,m-1为温度为40℃的去离子水,m-2为温度为80℃的去离子水;m-3为温度为100℃的n-甲基吡咯烷酮。

表1制备改性石墨烯的配方和工艺参数(单位:kg)

表2制备定向排列的石墨烯膜的配方和工艺参数(单位:kg)

制备定向排列的石墨烯膜

(1)制备改性石墨烯:按照表1的配方和用量称取石墨粉、碳纳米管、表面活性剂、溶剂与磨珠,置于球磨设备中,以1000r/min~4000rpm的速率球磨1~6h,出料,将所得浆料在1500~2500rpm的转速下离心10~30min,收集上层液,将上层液进行冷冻干燥,分别得到改性石墨烯g-1,g-2,g-3,g’-1。

(2)配料、混料:按表2的配方和用量称取改性石墨烯、溶剂、成膜剂、固化剂、改性剂以及助剂,在高速搅拌机中以转速为1500~4000rpm条件下,搅拌5~120min后,取出浆料,然后在1000~10000rpm的转速下对浆料进行离心处理10~30min,收集上层均匀浆料。

(3)真空抽滤:对步骤(2)所述的浆料进行真空抽滤,在抽滤的同时间断性加入热溶液辅助抽滤,得到定向排列的石墨烯膜。

复合散热膜的制备方法:

(1)制备超薄导热硅胶垫的膏状料:按质量份称取粘度为3000cps的乙烯基硅油28份、含氢量为0.16%的含氢硅油1.2份、铂金催化剂0.10份、乙炔基环己醇抑制剂0.025份、钛酸酯硅烷偶联剂3份和粒径为15nm的纳米碳球80份以及粒径为30nm的球形氧化铝100份,置于行星式搅拌机中进行搅拌均匀后,再与10份东爵110-2s生胶一同在开炼机中进行开炼,最后收集得到膏状料。

(2)将超薄导热硅胶垫贴合在石墨散热片中:将上述步骤制得的膏状料分别涂布于实施例1~5及对比实施例1-1,1-2,1-3,1-4和1-5制备的定向排列的石墨烯膜的一面,两面附上pet保护膜,经压延机压延贴合后,随即转至120℃和150℃两温区硫化机中进行硫化,每段温区分别进行20min硫化处理,使导热硅胶垫实现完全热固化成型,即得pet保护膜/定向排列的石墨烯膜/超薄导热硅胶垫片/pet保护膜组成的复合散热膜。此时,超薄导热硅胶垫厚度为10μm,压缩率为40%,热导率为7w/m·k

表3定向排列的石墨烯膜的性能

表4复合散热膜的散热效果测试

从图3可知,石墨烯膜呈片状,平行定向紧密排列,膜层具有较大的比表面积。从表3可以看出,本发明定向排列的石墨烯膜的厚度在10~80μm之间,具有优异的耐弯折性、耐冲击性和柔韧性以及较高的热辐射率和热导率;从表4中可以看出,将定向排列的石墨烯膜与超薄导热硅胶垫贴合,制备出复合散热膜,复合散热膜具有优异的散热性能。从实施例1~3及对比实施例1-1,2-1和3-1的对比中不难看出,在石墨烯膜的制备过程中添加了如式(1)所示的改性剂后,石墨烯膜的的耐弯折性、耐冲击性、柔韧性、热辐射率和热导率等各项性能均有明显的提升;在不添加改性剂的条件下,所得到的石墨烯膜的机械性能较差,热导率和热辐射率较低,散热性能较差。

式(1)中,r1为c1~c3的烷基或氢原子,r2为氢原子或甲基,r3为直链烷基,r4、r5、r6、r7、r8中至少有3个为极性基团,其余为氢原子,所述极性基团为磺酸基和/或羧基,n为1~3的整数。

特别说明:超薄导热硅胶垫厚度为5μm~50μm,压缩率为30%~80%,热导率为5~17w/m·k,也能实现本发明的目的;本发明超薄导热硅胶垫可从市场上购买,如fujipoly富士sarconxr-e,xr-he等型号均符合使用要求。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1