一种关-开型分子荧光探针CMTAH及其制备方法与应用与流程

文档序号:20263441发布日期:2020-04-03 18:05阅读:323来源:国知局
一种关-开型分子荧光探针CMTAH及其制备方法与应用与流程

本发明涉及荧光成像分子探针领域,尤其是涉及一种利用荧光成像技术检测铜离子和锌离子的探针,具体涉及一种关-开型分子荧光探针cmtah及其制备方法与应用。



背景技术:

在目前为止所设计的分析方法中,荧光成像是检测金属离子的重要方法。然而,这种方法对样品的要求和工作环境上都有一定的局限性。现阶段大多数探针的选择性和灵敏度都存在一定的限制,开发一种高选择性和灵敏性的探针是一种技术的挑战。由于环境的逐渐复杂,金属离子污染加剧。多重离子鉴别逐渐吸引研究者的注意,现阶段双重离子检测拥有广大的研究前景,正在成为一种重要研究方法。

近几年报道了一些分子探针对金属离子的选择性检测,尽管有如此多的金属离子探针被报道,但是能够双重金属离子识别的探针报道依旧不多,鉴于此,开发一种新的双功能检测铜锌离子的小分子荧光探针具有重要的意义。



技术实现要素:

针对现有技术存在的不足,本发明的目的在于提供一种高选择性和高灵敏度的针对铜离子和锌离子双重金属离子识别的荧光探针。

为实现上述目的,本发明提供一种关-开型分子荧光探针cmtah,所述分子探针分子式为c19h19n3so3,其结构式为:

本发明还提供上述分子探针cmtah的制备方法,具体包括如下步骤:

步骤一、将香豆素醛和2-噻吩酰肼溶解在乙醇溶液中;

步骤二、将上述反应物混合均匀,并在室温下反应5-24小时,反应结束后过滤,干燥得到黄色固体粉末;

步骤三、上述黄色固体粉末溶解在乙醇中,然后加热搅拌过滤,滤液缓慢挥发后得到黄色结晶性固体。

作为本发明的进一步改进,所述香豆素醛和2-噻吩酰肼的摩尔比为1:1

作为本发明的进一步改进,所述乙醇与香豆素醛和2-噻吩酰肼混合物的质量比为10:1

作为本发明的进一步改进,所述步骤三中的黄色固体粉末与乙醇的质量比为1:10。

本发明还提供上述分子探针cmtah检测、识别环境中或生物样品中铜离子和锌离子的应用。

作为本发明的一种应用范围,所述分子探针cmtah利用荧光成像检测正常细胞和癌细胞中外源性的铜离子和锌离子的应用。

作为本发明的一种应用范围,所述分子探针cmtah利用荧光成像检测斑马鱼体内外源性的铜离子和锌离子的应用。

作为本发明的一种应用方式,通过在365nm紫外光源下测定吸光度值检测、识别环境中或生物样品中铜离子应用,以及通过测定a455nm/a548nm的吸光度比值来检测、识别环境中或生物样品中锌离子应用。

作为本发明的一种应用方式,通过在517nm处测定荧光强度检测、识别环境中或生物样品中铜离子的应用;以及通过在f517nm/f564nm的荧光强度比值来测定荧光强度检测、识别环境中或生物样品中锌离子的应用。

本发明具有如下优点:本发明的分子探针以香豆素醛和2-噻吩酰肼反应为原料,缩合形成的的母体结构是席夫碱构型,具有很强共轭π电子,香豆素醛和2-噻吩酰肼缩合形成一个金属离子螯合位点,分子探针结合金属离子后能发射很强的荧光,分子探针在铜离子的存在下结构中酚羟基的氢发生去质子化,使得其荧光从有到无,紫外吸收峰蓝移,实现荧光技术精确检测铜离子;在锌离子的存在下结构中酚羟基的氢发生去质子化,使得其荧光从有到无,紫外吸收峰红移,实现荧光技术精确检测锌离子,且均可以检测活细胞和斑马鱼体内外源性的铜离子和锌离子。因此在铜离子和锌离子双重离子检测方面具有良好的应用前景。同时,本发明的合成方法简单、操作方便,不需要苛刻的条件。

附图说明

图1为实施例1中合成小分子探针的路线图;

图2为实施例2中分子探针对铜离子和锌离子的结合模式图

图3为实施例3中分子探针对铜离子和锌离子识别的紫外和荧光光谱图;

图4为实施例4中验证小分子探针对铜离子和锌离子选择性和竞争性图和

365nm紫外照射下cmtah探针在不同金属离子溶液中选择性鉴别的照片;

图5为实施例5中cmtah探针在cu(ii)和zn(ii)存在时的荧光响应时间和

ph值对cmtah探针的荧光强度的影响;

图6为实施例6中分子探针在人牙周膜细胞中检测外源性的铜离子和锌离子;

图7为实施例7中分子探针在人胚肺细胞细胞中检测外源性的铜离子和锌离子;

图8为实施例8中分子探针在斑马鱼中检测外源性的铜离子和锌离子;

图9为实施例9中分子探针在cmtah-cu(ii)和cmtah-zn(ii)状态下在滤纸上的荧光变化图;

图10为分子探针的核磁氢谱图;

图11为分子探针的核磁碳谱图。

具体实施方式

下面将结合实施例和效果例对本发明做进一步的详述,而非限制本发明的范围。

实施例1中分子探针cmtah的制备

向香豆素醛的(200mg,0.81mmol)的无水乙醇(etoh,30ml)溶液中加入2-噻吩酰肼(116mg,0.81mmol)。在室温下回流混合16小时后,反应后用布氏漏斗过滤,并将滤饼用乙醇洗涤,得到cmtah为黄色固体,上述黄色固体粉末溶解在乙醇中,然后加热搅拌过滤,滤液缓慢挥发后得到256mg黄色固体粉末,产率:85%,通过核磁氢谱和核磁碳谱可以确定该产物即为目标小分子探针,如图10-11所示。

合成小分子探针的路线图如图1所示,图1表示合成小分子探针的路线图,其中etoh为乙醇。

1hnmr(500mhz,dmso)δ12.73–11.05(m,1h),8.68–7.77(m,4h),7.63(d,j=0.8hz,1h),7.22(s,1h),6.74(d,j=0.8hz,1h),6.56(s,1h),3.45(brs,4h),1.13(brs,6h);

13cnmr(126mhz,dmso)δ161.34,157.87,156.97,151.82,142.56,139.45,139.08,135.20,132.28,131.34,129.36,128.62,127.28,112.93,110.19,108.53,96.89,44.72,12.83。

实施例2中分子探针对铜离子和锌离子的结合模式

分子探针在452nm激发波长下,在517nm处发绿色荧光。当它与铜离子结合后,荧光淬灭;当探针与锌离子结合后,在564nm波长处发黄色荧光,其结合模拟图如图2所示。

实施例3中分子探针对铜离子和锌离子识别的紫外和荧光光谱

10μm分子探针的etoh-h2o溶液(v/v,=1:10)。同浓度的铜离子和锌离子溶液滴加到探针溶液中。

如图3a所示,在探针溶液中加入铜离子后,随着铜离子浓度的增加(0.00-0.90eq),在455nm处的吸收带逐渐减少,365nm和530nm处出现两个新的吸收峰,并在365nm处出现最大吸收峰,其吸光强度随铜离子浓度增加并逐渐增加,同时,肉眼可观察到探针溶液发生明显的颜色变化:从绿色变为无色,两者化学计量比为1:1。

如图3b所示,在探针溶液中加入锌离子后,随着锌离子浓度的增加(0.00-0.90eq),在455nm处的吸收带逐渐减少,548nm处出现一个新的吸收峰,其吸光强度随锌离子浓度增加并逐渐增加,肉眼可观察到探针溶液发生明显的颜色变化:从绿色变为黄色,两者化学计量比为1:1。

在荧光滴定实验中,制备分子探针(5um)的etoh-h2o溶液(v/v=1:10)。同浓度的铜离子和锌离子溶液滴加到探针溶液中。滴加铜离子时,以452nm为激发波长测量探针荧光强度从450nm到700nm的荧光值,实验结果见图3c。517nm处,可观察到探针的荧光强度随铜离子浓度增加而减弱至淬灭,当两者浓度比例为1:1时,荧光强度完全淬灭。

滴加锌离子时,以452nm为激发波长测量探针荧光强度从450nm到700nm的荧光值,实验结果见图3d。可观察到,517nm处探针的荧光强度随锌离子浓度增加而减弱至淬灭,564nm处探针的荧光强度随锌离子浓度增加而增加,当两者浓度比例为1:1时,荧光强度达到饱和,作用后的体系,通过计算f517/f564的吸光度比率值来确定锌离子的浓度,表明探针可用作锌离子的比率型荧光探针。

实施例4中验证分子探针对铜离子、锌离子和其他离子的荧光光谱图、荧光变化图和紫外照射下cmtah探针对不同金属离子溶液中选择性实验

如图4a所示,cmtah和其他离子混合时,荧光不发生变化,当cmtah和cu(ii)反应,荧光淬灭,cmtah和zn(ii)反应时,峰值波长右移至564nm处,且荧光强度变强。

制备10ml分子探针(2μm)的etoh-h2o溶液(v/v=1:10)。通过将相应的盐溶于去离子水制备各种阴离子溶液(zn2+,cu2+,mg2+,mn2+,hg2+,ni2+,fe2+,fe3+,ga3+,ag+,pb2+,na+,co2,cr3+,cd2+,1.0eq)。随后,将1.0eq金属离子分别加入到探针溶液中。通过荧光光谱进行检测,实验结果见图4b。取荧光最大波长进行对比,如图4b所示,离子包括zn2+,cu2+,mg2+,mn2+,hg2+,ni2+,fe2+,fe3+,ga3+,ag+,pb2+,na+,co2,cr3+,cd2+。除zn2+和cu2+外,这些金属离子对探针的荧光都没有产生明显变化。如图4c所示,在cu2+的加入后,荧光淬灭,而且在探针结合铜离子后,加入其他金属离子对体系的荧光强度没有影响,可以判定探针和铜离子具有很强的结合能力。如图4d所示,在zn2+的加入后,荧光强度明显,而且在探针结合锌离子后,加入其他金属离子,大部分的金属离子对体系的荧光强度没有影响,少部分的金属离子对体系的荧光强度有少量的影响,但是其也能够有明显的差异,也可以判定探针和锌离子具有很强的结合能力。同时,如图4e所示,肉眼可观察到探针溶液和加了其他离子的溶液颜色不变,而加了zn2+的溶液较加了其他离子的溶液变黄,加了cu2+的溶液从绿色变为无色。在365nm紫外灯下,探针溶液和加了其他离子的溶液发绿色荧光,强度相似。加了zn2+的溶液发黄色荧光,加了cu2+的溶液荧光淬灭。结果表明探针对铜离子和锌离子具有高选择性。

实施例5中cmtah探针在cu(ii)和zn(ii)存在时的荧光响应时间和ph值对cmtah探针的荧光强度的影响;

如图5a所示,cmtah-cu(ii)组和cmtah-zn(ii)组(λex=452nm)均在第20min达到稳定值,证明该探针检测反应迅速且成果稳定。

ph作为影响光学性能的重要因素,通常对探针的检测性能有重要影响。通过设定检测溶液不同ph对探针检测的影响,实验结果见图5b。cmtah组在ph=4~9,显示良好的稳定性,cmtah-cu(ii)组在ph=2~12均显示明显稳定性,证实不同ph对探针与cu2+结合无明显影响,而cmtah-zn(ii)组在ph=4~9显示良好的稳定性。

以上实验证明探针具有广泛的ph应用范围。

如图5c和5d所示,cmtah与cu(ii)结合以及cmtah与zn(ii)结合后加入强络合剂edta又可以将复合物变为原来的小分子荧光,整个过程是可逆的,可反复使用。

实施例6分子探针在正常细胞中成像效果

在牙周膜细胞(hpdlcs)成像体系中,设立对照组(单独5um探针在37℃加入5um磷酸盐缓冲液处理细胞20min)和实验组(探针处理后在37℃分别加入5um铜离子和锌离子孵育10min),最后通过荧光成像系统中的绿色通道、红色通道和两者叠加通道进行拍照记录。实验结果见图6。

如图6所示,在没有铜离子和锌离子存在情况下,探针和磷酸盐缓冲液单独处理的正常细胞发绿色荧光,cmtah-cu(ii)组,绿色通道荧光消失,cmtah-zn(ii)组绿色通道和红色通道显示,两者叠加显示黄色荧光,细胞成像结果表明,cmtah具有较高的细胞穿透能力,探针可以检测正常细胞体内外源性的铜离子和锌离子。

实施例7分子探针在正常细胞中成像效果

在正常细胞(mrc-5)成像体系中,设立对照组(单独5um探针在37℃加入5um磷酸盐缓冲液处理细胞20min)和实验组(探针处理后在37℃分别加入5um铜离子和锌离子孵育10min),最后通过荧光成像系统中的绿色通道、红色通道和两者叠加通道进行拍照记录。实验结果见图7。

如图7所示,在没有铜离子和锌离子存在情况下,探针和磷酸盐缓冲液单独处理的正常细胞发绿色荧光,cmtah-cu(ii)组,绿色通道荧光消失,cmtah-zn(ii)组绿色通道和红色通道显示,两者叠加显示黄色荧光,细胞成像结果表明,cmtah具有较高的细胞穿透能力,探针可以检测正常细胞体内外源性的铜离子和锌离子。

实施例8分子探针的在斑马鱼中成像效果

在斑马鱼成像体系中,设立对照组(单独5um探针在37℃加入5um磷酸盐缓冲液处理细胞20min)和实验组(探针处理后在37℃分别加入5um铜离子和锌离子孵育10min),最后通过荧光成像系统中的绿色通道、红色通道和两者叠加通道进行拍照记录。实验结果见图7。

如图8所示在没有铜离子和锌离子存在情况下,探针和磷酸盐缓冲液单独处理的斑马鱼中在绿色通道显示荧光,cmtah-cu(ii)组中,斑马鱼不显示荧光,而cmtah-zn(ii)组斑马鱼在绿色通道和红色通道均显示荧光,两者叠加后显示黄色荧光。这些结果表明cmtah具有较高的组织穿透能力,可以显示斑马鱼中cu2+和zn2+的可视化。

实施例9中分子探针在cmtah-cu(ii)和cmtah-zn(ii)状态下在滤纸上的荧光变化

将探针溶液浸染一系列滤纸,再侵入同浓度的各种离子溶液中,风干后在肉眼和紫外灯下观察荧光颜色变化。结果如图9所示,探针滤纸与其他离子溶液反应,不发生明显变化,在紫外观察下,与含有zn2+的溶液反应,显示深黄色,与含有cu2+的溶液反应,显示褐色。证明该探针检测纸可以用于现场定性检测,携带方便,值得推广。

本发明所述的分子探针可通过荧光光谱技术检测溶液中的铜离子和锌离子。

该分子探针cmtah在铜离子存在下,紫外吸收峰发生红移,同时荧光迅速从有到无,发生淬灭;而在锌离子存在下紫外蓝移,产生很强的荧光信号。

本发明具有如下优点:通过本发明所述制备方法合成分子探针,还可以实现紫外和荧光光谱法精确传感铜离子和锌离子,并且可以快速、准确的检测正常细胞以及斑马鱼体内中外源性的铜离子和锌离子。因此在铜离子和锌离子检测方面具有良好的应用前景。同时,本发明的合成方法简单、操作方便,不需要苛刻的条件。

以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1