用于涂覆制品的方法以及由此方法制造的制品的制作方法

文档序号:3818849阅读:115来源:国知局
专利名称:用于涂覆制品的方法以及由此方法制造的制品的制作方法
技术领域
本发明涉及用于涂覆制品的方法以及由此方法制造的制品。
背景技术
当金属暴露于高温(即大于或等于约1,300℃)和氧化的环境时会被氧化、腐蚀并且变得容易破碎。这种环境产生于用来发电的涡轮中。当把热障涂层(TBC)应用到金属涡轮部件时,可以减少高温、腐蚀性及氧化环境对金属部件的影响。
热障涂层可以包含一层金属接合涂层(metallic bond coating)和一层陶瓷涂层。金属接合涂层可以包含诸如铝、铬、铝合金及铬合金等抗氧化防护材料。例如,金属接合涂层可以包含铬、铝、钇或者上述物质的组合,例如MCrAlY,其中M是镍、钴或铁(Hecht的美国专利No.4,034,142,以及Gupta等人的美国专利No.4,585,481描述了一些涂层材料)。这些金属接合涂层可以通过热喷涂技术得以施加。
热喷涂方法系列包括爆炸枪沉积、高速氧-燃料沉积(HVOF)和它的变化形式,例如空气-燃料喷涂、等离子体喷涂、火焰喷涂以及电线弧喷涂(electric wirearc spray)。在大多数的热涂覆工艺中,粉末状、丝状或棒状的材料(例如金属)被加热到接近或略高于其熔点,且该材料的微滴在气流中被加速。把微滴对准待涂覆基底的表面,它们粘附并且流入被称为薄片激冷金属(splat)的细小薄片状的颗粒中。
在典型的爆炸枪喷涂工艺中,氧气和燃料,例如乙炔,的混合物,与一股涂覆材料的粉末一起被注射到一个圆筒中,例如直径约25毫米(mm)且超过1米长的圆筒。引爆气体混合物,爆炸波沿着圆筒向下移动,把粉末加热到接近或者略高于其熔点,并且把它加速到约750米/秒(m/sec)的速率。熔化或者接近熔化的材料微滴撞击待涂覆基底的表面并且流入牢固结合的薄片激冷金属中。在每次爆炸之后,圆筒通常用例如氮气等惰性气体吹扫,并且该过程每秒钟重复多次(repeated many times a sesond)。爆炸枪涂层典型地具有小于百分之二体积百分比的孔隙率、很高的粘合强度以及很高的对基底的粘着强度的特点。
在高速氧-燃料火焰喷涂及其相关的涂覆工艺中,在燃烧室中用氧气、空气或者其它来源的氧燃烧例如氢、丙烷、丙烯、乙炔或者煤油等燃料,并且让气态燃烧产物通过一喷嘴膨胀。气体速度可以是超音速的。粉状的涂层材料被注入到喷嘴中,加热到接近或者高于其熔点,并且加速到一个比较高的速度,例如在某些涂覆系统中能达到约600米/秒。气流通过喷嘴的温度和速度以及最终的粉末颗粒可以通过改变进入喷枪的气体或者液体的组成和流速来控制。熔化的颗粒撞击待涂覆的表面,并且流入相当密集填充的、与基底及彼此之间都充分粘结的薄片激冷金属中。
在等离子体喷涂方法中,当气体围绕钨阴极流动并且通过一个相对短的收敛和扩散喷嘴时,该气体被电弧部分电离。等离子体核心温度可以超过30,000K并且气体的速度可以超过音速。涂层材料通常以粉末的形式被注入到气体等离子体中,而后被加热到接近或者超过其熔点,并且可以被加速到约600米/秒。涂层材料的热传递速率以及涂层材料的最终温度随气体等离子体的流速和组成以及火炬的设计、粉末注入技术而变化。熔化的颗粒射向待涂覆表面形成粘合的薄片激冷金属。
在火焰喷涂方法中,氧气和燃料,例如乙炔,在喷灯中燃烧。粉末、丝或者棒被注入到火焰中熔化并且加速。颗粒速度可以高达约300米/秒。气体的最高温度和最终的涂层材料随所使用的气体流速和组成以及火炬的设计而变化。同样,熔化的颗粒射向待涂覆表面形成粘合的薄片激冷金属。
热喷涂法被用于沉积层状涂层已经有很多年了。这些涂层由具有不同组成和性质的不连续的层组成。例如,这涂层可以是由一层金属合金,例如镍-铭合金,邻接于覆有一层氧化锆的基底而组成的简单的双涂层。
涂覆工艺可用于涡轮以及引擎等等部件的热障涂层(TBC)和/或环境阻挡涂层(EBC)的涂覆,以在苛刻的操作环境中保护这些部件。为了在这些燃烧环境中保护涡轮部件,已经发展了一系列以式MCrAlY为基础的涂层,其中M代表过渡金属元素,例如铁、钴或镍。如今,当MCrAlY涂层用于整体气化联合循环(IGCC)系统时存在一个问题。IGCC体系使用了一套运用煤炭制造电力的创新方法。该方法比其他使用煤炭制造电力的方法更加清洁和经济有效。该方法包括处理煤炭以及将煤炭转化为包括氢气(H2)、一氧化碳(CO)和碳微粒的气体混合物。这些气体混合物在涡轮中与氧气燃烧以制造电力。然而,这些碳微粒会与涂覆的涡轮部件碰撞并且侵蚀部件和/或涂层,因此,缩短了这些部件的有效使用寿命。
因此,存在一种能够提供对涡轮部件具有改进的保护功能的涂层的需要。

发明内容
此处公开了用于涂覆制品的方法以及由此方法制造的制品。在一个实施方案中,一涂覆涡轮制品至少在其局部包含均匀的增强涂层,其中该增强涂层包括涂层材料和结构增强物,所述结构增强物选自氧化物、碳化物、氮化物、金属间材料以及包含上述至少一种的组合,该结构增强物具有一平均粒度,沿主轴测量约1μm至约100μm。
在另一个实施方案中,一涂覆涡轮制品包含一种由以下方法形成的制品,该方法包括形成涂层材料和结构增强物的混合物,结构增强物选自氧化物、碳化物、氮化物、金属间材料,以及包含上述至少一种的组合,其中该混合物具有初始结构增强物浓度;加热该混合物;促使该混合物在制品上形成增强涂层,其中增强涂层的最终结构增强物浓度高于初始结构增强物浓度,基于增强涂层的总体积,该最终结构增强物浓度小于或等于5体积%。
以上描述的及其他特征由以下详述和所附的权利要求加以例证。
具体实施例方式
术语“第一”、“第二”等等,在这里并不表示任何顺序、数量或者重要性,而是用于将某要素与其他要素区分开来,术语“一”在这里并不表示数量上的限制,而是表示存在至少一种被引用的项目。用于与数值连接的修饰语“约”包含所述值并具有上下文中表述的意思,(例如,包括与特定值的测量方法相关的误差程度)。这里公开的范围是包括端点的以及独立可结合的(例如,范围“直到约25重量%,或者,更具体地说,约5重量%到约20重量%”,包括“约5重量%到约25重量%”该范围的端点以及其内的所有中间值,等等)。注释“口10%”意思是表明度量范围可以是从指定值的-10%到指定值的+10%。
金属涂层的结构完整性可以通过在涂层中结合使用结构增强物(例如,碳化物和/或氧化物)来提高。然而,当涂层材料被喷涂于部件,控制热喷涂工艺(例如,温度)以形成结构增强物(例如,氧化物)时,结构增强物的分布及其粒径是不能被充分控制的。本发明公开了一种在部件上形成增强的阻挡涂层的方法,以及由此方法制造的部件。该方法能够控制结构增强物粒径以及使结构增强物在需要的涂层面积内均匀分布。这里的“均匀”和“均匀分布”是指包含该种材料的增强涂层在全部面积内的浓度变化小于或等于5体积百分比(vol%)。例如如果增强涂层是沉积于部件的前缘,而另一不同的涂层沉积于该部件的其余部分,那么增强涂层范围内的浓度变化将小于或等于5体积%。
热喷涂方法(例如,HVOF、等离子体喷涂(例如低压等离子体喷涂、真空等离子体喷涂等等),或者包含至少一种上述方法的组合)包括混合涂层材料和结构增强物的步骤,例如,该步骤可在将混合物引向和/或引入喷射气流之前进行。理想状态下,在涂覆工艺期间,小于或等于约5体积%,或者,更具体地说,小于或等于约2体积%的涂层材料转变为氧化物和/或碳化物。所以,增强涂层的浓度是得到控制的。也就是说,该方法能够使这种特定的结构增强物得到控制,包括所需的粒径和粒径分布,同时将那些结构增强物和涂层材料结合,以形成一种能产生具有选择组成的增强涂层的混合物。(例如,结构增强物的浓度可以被控制)。
该方法包括将该混合物引入到燃烧室、喷射气流和/或等等的步骤(取决于特定的喷涂方法),并且充分地加热该混合物使颗粒能够掉落和粘附在部件上。例如,HVOF方法可用于氧气和燃料燃烧并将混合物喷向部件。为了控制喷涂过程中当混合物喷向部件时氧化物和/或碳化物的产生,喷涂条件是可以控制的。可以如此来控制喷涂过程使喷向部件的颗粒(即涂层材料和结构增强物)的温度足够软化颗粒以致它们能够粘附到部件上,并且其低于能够导致涂层材料氧化的温度,此特定的温度取决于涂层材料和结构增强物的种类。例如涂层温度可以小于或等于约1,500℃,或者,更具体地说,小于或等于约1,200℃,或者,甚至更具体地说,约750℃至约1,100℃。可以如此控制温度以使混合物形成增强涂层时结构增强物的浓度的变化小于或等于约5体积%,或者,更具体地说,小于或等于约2体积%,或者,甚至更具体地说,小于或等于约1体积%。例如如果该混合物包含基于其体积总数的10体积%的结构增强物,那么基于增强涂层的总体积,最后涂层中将包含小于或等于约15体积%的结构增强物。
形成阻挡涂层的涂层材料(例如,热障涂层和/或环境阻挡涂层)可以包括镍(Ni)、钴(Co)、铁(Fe)、铬(Cr)、铝(Al)、钇(Y)、包含上述至少一种的合金,以及包含上述至少一种的组合,例如,该涂层可以包含MCrAlY(其中M包括镍、钴、铁,以及包含至少一种上述金属的组合)。MCrAlY涂层可以进一步包含其他成分,例如硅(Si)、钌(Ru)、铱(Ir)、锇(Os)、金(Au)、银(Ag)、钽(Ta)、钯(Pd)、铼(Re)、铪(Hf)、铂(Pt)、铑(Rh)、钨(W),包含上述至少一种的合金,以及包含上述至少一种的组合。
可以与涂层材料混合的结构增强物包括氧化物、碳化物、氮化物、金属间化合物(例如,化学计量的金属化合物),等等,以及包含上述至少一种的组合。可能的氧化物包括氧化铝、氧化锆、二氧化硅等等,以及包含上述至少一种的组合。此氧化物可以被稳定,例如使用诸如钇、钡、镁、钙、锶、铍、镧系元素等稳定剂,以及包括上述至少一种稳定剂的组合;例如,氧化钇稳定的氧化锆。
结构增强物可具有一平均粒度,当沿主轴测量,最大约100(μm)左右(例如约0.01μm到约100μm),或者,更具体地说,约1μm到约50μm、或者,甚至更具体地说,约5μm到约25μm。由于结构增强物是在被引入喷射气流之前与涂层材料混合,粒度既是混合物中的结构增强物的粒度也是增强涂层中的结构增强物粒度。
结构增强物可以以充分的量存在,以提高涂层对抗物理侵蚀的结构完整性。例如,基于增强涂层的体积总量,结构增强物的量可以小于或等于约25体积%,或者,更具体地说,约1体积%到约15体积%,或者,甚至更具体地说,约5体积%到约10体积%,结构增强物特定的浓度取决于特定的部件及该部件的操作条件。例如该部件是否是涡轮(例如在IGCC体系中)的轮叶(blade)、桨叶(vane)、定子、喷嘴、叶片(bucket)等等,以及该部件在体系中的位置(例如,第一阶段,第二阶段等),都会影响所需要的涂料组成以及该部件上增强涂层的数量和位置。例如本发明涂层特别适用于第一阶段部件,比如,倾向于经受比其它涡轮部件更高的侵蚀速率的涡轮部件。
和增强涂料的组成一样,增强涂层的厚度也可以根据特定的部件,该部件的工作条件,以及该部件上涂层的位置来选择。增强涂层的厚度可以为约0.05毫米(mm)到约0.75毫米左右,或者,更具体地说,约0.1毫米到约0.5毫米,或者,甚至更具体地说,约0.15毫米到约0.3毫米。
任选地,一旦增强涂层施加于部件后,部件可以被进一步地处理,以改善涂层材料和底物之间的粘合。例如可以将具有增强涂层的部件热处理,使其能够形成化学结合。热处理过程的温度可以为约900℃(1,650)到约1,200℃(2,190),例如在约1,100℃(2,012),真空或者惰性环境下(例如一种不与涂层起化学作用的惰性气体环境),加热约0.5小时到约6小时左右。
实施例喷涂可以使用诸如等离子体喷涂(低压等离子体喷涂(LPPS)、真空等离子体喷涂(VPS)和/或HVOF)等方法,例如,使用由Sulzer Metco.制造的热喷涂喷枪来实现。
在沉积过程中,MCrAlY和结构增强物各自以80体积%比20体积%的比例在一加料斗中混合,MCrAlY粉末和结构增强物的粒度可以为约0.01口m至约100口m。粉末混合物随后由加料斗送入喷枪,在那里加热和加速,喷向置于热气路径上的部件。该涂覆能够被应用于10mils这样一个极微小的厚度,该厚度和被覆盖区域内所含结构增强颗粒的体积百分比是一定的。已经发现该方法对用于IGCC装置中的涡轮部件特别有用。
增强涂层和其形成的方法可用于许多应用,包括涂覆涡轮部件或其局部。更具体地说,增强涂层可使用在包括那些用于IGCC体系的,暴露于涡轮发电机热气路径的部件。在IGCC体系中,首先由煤形成合成气,然后在涡轮发动机内部燃烧。燃烧气流经常包含可以撞击涡轮部件的碳微粒,导致物理侵蚀。通过在部件易受侵蚀的部位形成增强涂层的方法,部件的寿命可以显著地提高。
虽然通过引入优选实施方案对本发明进行了描述,本领域技术人员将会明白,在不偏离本发明范围的前提下,可以作出很多变化以及要素的等同替换;此外,在不偏离发明的本质范围的前提下,可以通过作许多修改以将某一特定情形或材料运用于本发明的教导之中,所以,本发明并不限于为了展开本发明而作为最佳方式公开的特定的实施方案,其包括落入所附权利要求确定范围内的所有实施方案。
权利要求
1.一种涂覆制品,其至少在涡轮部件的局部具有均匀增强涂层,其中该增强涂层包括涂层材料和结构增强物,其中所述结构增强物选自氧化物、碳化物、氮化物、金属间材料以及包含上述至少一种的组合,其中该结构增强物具有一平均粒度,沿主轴测量约0.01μm至约100μm。
2.一种涂覆制品,其由以下方法形成,该方法包括形成涂覆材料和结构增强物的混合物,该结构增强物选自氧化物、碳化物、氮化物、金属间材料以及包含上述至少一种的组合,其中该混合物具有初始结构增强物浓度;加热该混合物;并且将该混合物喷向制品形成增强涂层,其中该增强涂层的最终结构增强物浓度高于初始结构增强物浓度,基于增强涂层的总体积,该最终结构增强物浓度小于或等于5体积%。
3.如权利要求2所述的制品,其中该结构增强物具有一平均粒度,沿主轴测量为约0.01μm至约100μm。
4.如权利要求1-3任意一项所述的制品,其中该平均粒度为约1μm至约50μm。
5.如权利要求1-4任意一项所述的制品,其中该增强涂层包括MCrAlY,其中M选自镍、钴、铁以及包括上述至少一种的组合;将金属接合涂层成分热喷涂在基底上。
6.如权利要求1-5任意一项所述的制品,其中增强涂层进一步包括一种成分,其选自硅、钌、铱、锇、金、银、钽、钯、铼、铪、铂、铑、钨、包括上述至少一种的合金、以及包括上述至少一种的组合。
7.如权利要求1-6任意一项所述的制品,其中,基于增强涂层的总体积,最终结构增强物浓度为约1体积%到约25体积%。
8.如权利要求1-7任意一项所述的制品,其中最终结构增强物浓度为约5体积%到约15体积%。
9.如权利要求1-8任意一项所述的制品,其中增强涂层具有均匀的结构增强物浓度。
10.如权利要求1-9任意一项所述的制品,其中结构增强物包含金属间材料。
全文摘要
在一个实施方案中,涂覆的涡轮部件至少在其局部包含均匀的增强涂层,其中该增强涂层包括涂层材料和结构增强物,所述结构增强物选自氧化物、碳化物、氮化物、金属间材料、以及包含上述至少一种的组合,该结构增强物具有一平均粒度,沿主轴测量约0.01μm至约100μm。
文档编号B05D7/10GK1982656SQ20061017291
公开日2007年6月20日 申请日期2006年11月21日 优先权日2005年11月21日
发明者V·K·帕里克, D·A·赫尔米克 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1