一种超疏水导电涂料及其制备方法与流程

文档序号:11504664阅读:671来源:国知局

本发明涉及涂料领域,具体涉及一种超疏水导电涂料及其制备方法。



背景技术:

空气处理机组或热泵在冬季制热时,外机结霜是常常会出现的问题。结霜带来的不利影响有:(1)堵塞翅片间通道,增加了空气流动阻力;(2)影响了换热器的传热,使换热能力下降;(3)频繁化霜,增加了能耗,空气处理机组或热泵运行性能恶化。

目前常用的除霜手段一种是停机除霜,让霜自己融化,这种方式在温度较低时是不可行的,且融化霜的时间较长,空气处理机组一般不采用这种方法;另一种是制热除霜,即四通阀将内外机功能互换,外机内冷媒为高温高压氟利昂,来融化冰层。一般来说定速空气处理机组在冬季最短除霜周期为50分钟,除霜时间为5-8分钟,变频空气处理机组最短除霜周期为30分钟,除霜时间为3-15分钟。这不仅影响了制热效果,也大大增加了能耗。

超疏水涂层在自清洁、防腐防污、油水分离、防冰雪等领域具有巨大的应用价值。该技术应用于如空气处理机组、热泵外机的除霜方面非常有优势,使用超疏水涂层既可以延长除霜周期,又可以减少除霜时间,有利于节能。利用超疏水涂层进行抗结霜结冰的原理是:超疏水表面的微观结构使其表面与水滴的接触面积非常小,可大大减小水滴在超疏水涂层表面的附着和冰成核的机会,从而使得结霜结冰的时间被延缓。

然而,在较为极端的环境下,超疏水涂层也不足以解决结霜结冰问题,则需要辅助以加热除冰的方式。现有技术中,辅以加热除冰的方式主要有以下两类:

(1)cn105032731a,其公开了一种超疏水涂层与加热涂层复合的节能防除冰涂层,其在基材上依次包括隔热涂层、加热涂层、防护涂层和超疏水涂层。在该专利中,实质发挥效果的有三层:超疏水涂层、防水导热层和加热层。一方面防水导热层使得加热无法直接作用于超疏水层,传热除霜效率不高;另一方面,多层的结构很容易因为附着力不强和加热不均匀而导致层的剥落,进而导致涂层失效;多层结构也增加了工艺的复杂性;

(2)cn103203938a,其公开了一种用于基材表面的自发热涂层,所述涂层包括绝缘底层和自发热层,所述自发热层涂料原料含有电气石粉体、疏水树脂和有机溶剂,其中在绝缘底层与自发热层之间设有碳纤维激发层。该专利使用碳纤维激发层和电气石/疏水复合材料层用于机翼除冰。

该专利采用电气石粉体作为自发热涂层部分原料,但电气石性质为热释电,即受热会产生电荷。从理论上来说该种材料并不具有自发热功能,因此该专利中电气石实质与发热无明显关系,发热实际是依靠碳纤维来进行。在该专利中,碳纤维作为底层,与其他涂料成分不能均匀复合,长期加热易因热膨胀率不同而导致涂料脱落,使涂层失效。为此,本发明提供一种超疏水导电涂料来解决上述问题。



技术实现要素:

本发明提供了一种集超疏水和发热导热于一体的涂料及其制备方法,该涂料既可以保证涂层具有抗结冰和易除冰的性能,又简化了实际的操作步骤,易于施工。该涂料所形成的涂层整体发热均匀,材料间结合力强,寿命长久。

该超疏水导电涂料的制备方法,包括步骤:

(1)制备石墨烯包覆的纳米无机粒子:

将以质量计85-99%的纳米无机粒子、0.5-10%的石墨烯和0.5-5%的分散剂加入到介质中湿法球磨2-12小时,使纳米无机粒子表面包覆石墨烯;随后干燥;获得石墨烯包覆的纳米无机粒子;

(2)制备超疏水导电涂料:

将在有机溶剂中均匀混合功能性材料,获得超疏水导电涂料,其中,以所述功能性材料的总质量计,所述功能性材料包括40-79%的超疏水原料、1-10%的石墨烯以及20-50%的石墨烯包覆的纳米无机粒子。

其中,所述纳米无机粒子的粒径为1-200nm。

其中,所述纳米无机粒子包含二氧化钛、三氧化二铝、二氧化硅、氧化锌、氢氧化钙、氢氧化镁中的一种或几种混合。

其中,所述分散剂包括聚乙二醇(peg),优选为peg-400。

其中,所述介质包括乙醇,优选为无水乙醇。

其中,所述超疏水原料包括全氟十八烷基三氯硅烷、全氟聚甲基酸丙烯酸酯、十七氟癸基三乙氧基硅烷、丙烯酸酯、聚碳酸酯、正硅酸乙酯、硅胺烷、硅氧烷中的一种或多种混合。

其中,所述有机溶剂包括丙酮、n,n-二甲基甲酰胺、二甲苯、乙酸乙酯、正己烷、三氟三氯乙烷、二氯甲烷、氯仿中的一种或几种混合。

一种由上述方法所制得的超疏水导电涂料。

一种超疏水导电涂料,包括功能性材料和有机溶剂,其中以功能性材料的总质量计,所述功能性材料包括40-79%的超疏水原料、1-10%的石墨烯以及20-50%的石墨烯包覆的纳米无机粒子,其中,所述石墨烯包覆的纳米无机粒子包括粒径在1-200nm的无机粒子以及包覆该无机粒子的石墨烯。

一种由上述超疏水导电涂料所形成的超疏水导电涂层,包括将上述超疏水导电涂料涂覆于待涂覆物体表面并干燥。

一种空气处理机组,其至少一部分表面上涂覆有上述超疏水导电涂层。

本发明的优点在于:

(1)本发明的涂料包括石墨烯包覆的纳米无机粒子,由此,通过石墨烯对纳米粒子的预包覆,借助纳米粒子这一载体实现石墨烯在整个体系中的均匀分散;进而实现后续较高的导电性和加热均匀性;尽管其它碳材料如碳纤维、碳纳米管、石墨粉、炭黑等也具有与石墨烯类似的电发热作用,但是这些碳材料不具有石墨烯的二维片状结构,从而不能包覆纳米无机粒子,由此,这些碳材料在涂料中容易团聚,难以均匀分散,从而不能获得较高的导电性和加热均匀性;

(2)本发明的涂料包括纳米无机粒子、石墨烯和超疏水高分子聚合物,从而在纳米无机粒子构建的具有疏水功能的微纳结构的基础上,藉由超疏水高分子聚合物和石墨烯进一步提高了疏水性;即,将纳米粒子构建的仿生表面的疏水性、高分子聚合物超疏水材料、石墨烯疏水性三重结合,达到高疏水性的目的。

由此,本发明获得了如下有益技术效果:

(1)本发明涂料将超疏水与导电相结合,可在同一层涂层中实现超疏水和发热导热功能;简化了后续操作工艺,也提高了涂层稳定性和寿命;

(2)本发明的涂层的水接触角为135°-160°,可在较低电压(12-24v)下发热至20-40℃。

附图说明

图1示出了本发明的石墨烯包覆的纳米无机粒子的典型断面扫描电镜照片。

具体实施方式

本发明提供了一种超疏水涂料及其制备方法。具体的:

该超疏水导电涂料的制备方法,包括步骤:

(1)制备石墨烯包覆的纳米无机粒子:

将85-99%的粒径在1-200nm的纳米无机粒子、0.5-10%的石墨烯和0.5-5%的分散剂加入到无水乙醇中通过湿法球磨进行充分混合2-12小时,使纳米粒子表面包覆片状石墨烯;随后进行充分干燥和过500目筛;获得石墨烯包覆的纳米无机粒子;该石墨烯包覆的纳米无机粒子典型扫描电镜照片如图1所示,可观察到在粒子表面包覆了一层薄膜状的石墨烯;

(2)制备超疏水导电涂料:

在一定温度和/或气氛保护条件下,将40-79%的超疏水原料、1-10%的石墨烯以及20-50%的石墨烯包覆的纳米无机粒子在有机溶剂中混合均匀获得超疏水导电涂料。

实施例1

(1)将90%的粒径200nm的tio2,与5%石墨烯、5%peg-400加入到无水乙醇溶剂中,随后进行4小时球磨;球磨后的浆料放置于60℃烘箱中干燥8小时,随后进行研磨和过500目筛;获得石墨烯包覆的二氧化钛粒子。

(2)将40%上述石墨烯包覆的二氧化钛粒子、10%石墨烯与50%全氟十八烷基三氯硅烷溶于正己烷中进行充分混合;获得超疏水导电涂料。

该涂料喷涂干燥后所得涂层对水接触角可达150°,接入24v电压可发热至38℃。

实施例2

(1)将95%的粒径100nm的al2o3,与3%石墨烯、2%peg-400加入到无水乙醇溶剂中,随后进行8小时球磨;球磨后的浆料放置于60℃烘箱中干燥8小时,随后进行研磨和过500目筛;获得石墨烯包覆的氧化铝粒子。

(2)将30%上述石墨烯包覆的氧化铝粒子、5%石墨烯与65%全氟聚甲基酸丙烯酸酯溶于三氟三氯乙烷中进行充分混合;获得超疏水导电涂料。

该涂料喷涂干燥后所得涂层对水接触角可达157°,接入24v电压可发热至25℃

实施例3

(1)将93%的粒径50nm的sio2,与6%石墨烯、1%peg-400加入到无水乙醇溶剂中,随后进行12小时球磨;球磨后的浆料放置于60℃烘箱中干燥8小时,随后进行研磨和过500目筛;获得石墨烯包覆的二氧化硅粒子。

(2)将60%上述石墨烯包覆的二氧化硅粒子、10%石墨烯与30%六甲基二硅胺烷混合并在氮气保护下油浴加热至100℃,保温12小时;再将该混合物、石墨烯、聚碳酸酯按照6:1:3的比例混合并分散于二氯甲烷中,获得超疏水导电涂料。

该涂料喷涂干燥后所得涂层对水接触角可达137°,接入24v电压可发热至35℃

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1