提高热塑性基材阻隔性的方法

文档序号:3794565阅读:322来源:国知局
专利名称:提高热塑性基材阻隔性的方法
技术领域
本发明涉及用涂层涂敷热塑性基材,以提高基材的阻隔性。
虽然塑料容器已广泛地用于包装食品和非食物产品,但通常塑料容器对气体(如氧和二氧化碳)或溶剂(如汽油、甲苯、二氯甲烷)或潮气的阻隔性不好。包装食品时更需要对氧、二氧化碳等气体有阻隔性。环境中氧引起的食品氧化会造成褐变、酸败、变味和异味、产生霉菌等,有时会对健康造成严重的危害。另一个不太严重但具有商业重要性的问题是,充气饮料中二氧化碳的流失,这会使饮料变得淡而无味。
无论在食物和非食物包装中都需要对有机物质的阻隔性。若干产品,如咖啡或果汁,虽希望包装在不破碎的轻质或透明塑料容器中,然而这样的容器经常会吸收产品中的精油和香味组分,导致味道或气味丧失,这称之为跑味。香水、古龙香水和化妆品工业在其包装方面的用途认识到同一问题也有很长时间了。当需要包装某些物品如汽油添加剂、溶剂类清洗剂等时,塑料容器的溶剂阻隔性也是很重要的特性。工业也长期面临着未反应的单体、低分子量聚合物以及其它加工助剂和添加剂由容器向产品渗移的问题,即渗沥的问题。
人们已进行了许多努力试图改善塑料容器的阻隔性能。例如,美国专利3,862,284公开了一种方法,因此在型坯膨胀的过程中,通过使用含有约0.1~20%(体积)氟气的吹塑气体而改进了吹塑热塑性制品的阻隔性能。
美国专利4,515,836公开了一种方法,用一种偏二氯乙烯共聚物的气体阻隔涂层涂敷到如聚对苯二甲酸乙二醇酯容器之类的基材上。用经稳定化的聚合物水分散液流,以足够的力量冲击容器的外表面,在表面接触面引起分散液的选择性去稳定化,以形成含有连续相聚合物的凝胶层。这层凝胶对于把聚合物水分散液层涂敷成一层均匀连续涂层起着粘合层的作用。
英国专利2069870B公开了一种改善聚合物容器阻隔性能的方法,具体是用三氧化硫处理容器的至少一个面,然后用水解质洗涤,接着再涂一层三聚氰胺-甲醛或脲甲醛缩合产物的分散体。然后将该分散液层固化形成最终产品。
美国专利4,247,577公开了一种在所形成的氯乙烯树脂制品表面放置一层固化的聚有机硅氧烷组合物覆盖层以改善或掩蔽树脂有缺陷的表面性能的方法。这个方法包括用低温气体等离子体处理氯乙烯树脂制品的表面,在如此处理好的制品表面上覆盖一层可固化的聚有机硅氧烷组合物,然后再把带有可固化的聚有机硅氧烷组合物的制品置于固化条件之下。
美国专利4,550,043公开了一种通过注塑热塑性材料而形成的预成型品,这种预成型品具有内阻隔层和有高度热稳定性的内层。公开的预成型品用来制造吹塑制品。
Dixon等人在美国专利4,009,304中述说了一种改善聚酯增强橡胶制品(如轮胎)中聚酯纱、帘子线或织物的粘合性的方法。在加入轮胎或橡胶制品之前通过氟化聚酯纱、帘子线或织物可获得改善的粘合性。
本发明是一种改善热塑性基材的阻隔性能的方法。热塑性塑料基材的一个或多个表面与反应性气体混合物接触,混合物中F2的浓度大于或等于0.0001大气压(F2分压)/大气压总压,而氧的浓度使得混合物的F2/O2的体积比小于或等于约100,其余部分是附加的反应性和/或非反应性组分(如氮、氩等)。然后将处理过的表面涂上适当的阻隔涂层,接着经过传统的固化阶段。可在0.1~50大气压的压力下进行处理,然而,较好的压力是1~30大气压,例如在“后处理”或在拉坯吹塑中所用的压力。压力最好更低一些,特别是在F2浓度较高时。
最好阻隔涂层使得热塑性基材基本不透过气体(如O2和CO2),也不透过有机液体和蒸汽。本发明的方法适用于所有的模塑工艺,包括挤坯吹塑、注坯吹塑、拉坯吹塑、注塑、热成型等,以及如用于制造薄膜和片材的挤塑工艺。本方法使热塑性基材上涂有一层阻舨牧希獠悴牧侠喂痰卣掣皆诨纳喜⒛茏柚购芸矸段У奈蘼凼羌曰故欠羌缘囊禾寮罢羝ü没摹 本发明是一种增强热塑性基材对气体和有机液体及蒸汽的阻隔性能的方法。热塑性基材首先与反应性气体混合物接触,该混合物中F2的浓度大于或等于0.0001大气压(F2分压)/大气压总压,而氧的浓度使混合物的F2/O2的体积比小于或等于约100,其余部分是附加的对热塑性基材有反应性和/或惰性或非反应性的气体。该热塑性基材可以是任何种类的可进行注塑或吹塑的塑料,典型的例子包括高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸乙二醇酯二醇(PETG)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚苯乙烯、聚酰胺、聚对苯二甲酸丁二醇酯、聚甲基戊烯及它们的共聚物。本发明的典型应用包括由一种或多种上述热塑性基材模塑的容器或瓶子。将热塑性基材的至少一个主表面与反应性气流接触1秒至5分钟的时间,这取决于待处理基材的大小。在本发明的优选实施方案中,当容器正在被吹塑时,用反应性气体混合物一步处理由热塑性基材成型的容器的内部。最好是对由基材制造的容器的内部进行处理和涂敷,使得能防止任何气味,气体或储存于容器内的物质所具有的香味穿过内层。虽然也可以再对外层进行处理、涂敷或是处理、涂敷外层而不是内层,但一般只有处理内部是较好的。
现已发现,在处理气体中无论氟还是氧的含量必须是按很严格规定范围的,为的是使处理后所加上去的阻隔涂层达到所要求的粘合性。除了必须有的限定的氟和氧的含量外,还可以任意性地加入直至40%(体积)的氯,在许多情况下这可增加阻隔涂层的粘合性。其它一些反应性气体可以增强也可能不增强本发明的性能,这要取决于所使用的具体的基材和涂层。这种附加的反应性气体组分包括;氯、溴、二氧化硫、三氧化硫、一氧化碳、氧化氮、BrCl、BrCl3、ClF、ClF3及其混合物。反应性气体的压力和温度取决于对于具体的热塑性基材所使用的吹塑类型。典型的压力范围为0.1~50大气压,拉坯吹塑要用较上的范围,典型的温度为室温附近直至超过所用聚合物的常用吹塑温度的温度。
在热塑性基材与反应性气体混合物接触以后,随后在处理过的表面上涂敷阻隔涂层。可以通过本技术领域中熟知的任何技术如喷涂、流涂、浸涂等涂敷该阻隔涂层。可以使用许多品种的阻隔涂层,这要取决于希望给予基材的具体性能。对于防止有机化合物、气体(如氧和二氧化碳)和水份进入容器或从容器中散失是非常有效的阻隔涂层的典型例子包括主要选自聚偏二氯乙烯、乙烯-乙烯醇共聚物、环氧树脂、聚氨酯、丙烯酸类、聚氯乙烯、脲醛树脂、硅氧烷和碳氟化合物类。任意地,在涂敷到基材上之前,涂层可存在于溶剂中形成溶液或混合成为乳液。一般涂层厚度平均为1~15微米,最好为2~25微米。已经发现,在用适当的反应性气体混合物处理表面之后,上述阻隔涂层牢固地粘附于所述表面上,而不用另外的粘合剂。当用同样的阻隔涂层涂敷未处理的类似热塑性基材时,基材表面仍是不可浸润的,并且涂层不能牢固地粘附在该表面上。
不受理论上的约束,据信,由于反应性气体对热塑性基材表面进行了改性,使得涂层能粘附在基材表面上,因此,本发明是有效的。现已观察到,热塑性基材的表面能增加了至少50%,而且在许多情况下,在用反应性气体混合物处理后大于100%。据信,包括氟、氧和任意地其它反应性气体的反应性气体混合物会导致在基材的一般是低能的聚合物表面上生成一些官能度,比如羟基、羧基、氯等。这种附加的官能度提高了表面能,并使表面更易浸润。因为涂层对表面适当的浸润是粘附性的要求之一,所以这种官能性的存在使各种涂层更容易粘附到改性的表面上。一旦涂层被粘到聚合物基材表面上,它就能通过一种或多种不同的机理,(亦即高结晶度、高交联度、渗透中的低溶剂化程度等)阻止渗透作用。
在用阻隔涂层涂敷已处理的基材表面以后,接着就用在该技术领域中熟知的任何典型方法进行固化,比如有热处理、紫外线辐照处理等。
本发明提供了一个有效和多功能的方法,它可使用各种热塑性基材和阻隔涂层,但这要取决于所希望的最终用途。虽然本发明特别适用于处理塑料容器的内部,但基本方法可用于许多各种应用,也就是薄膜或平片材的挤出涂敷。
实施下述实例用来说明本发明的方法,但并不限制本发明的范围。
实例1用1%(体积)F2(0.07大气压分压)、18%(体积)O2(1.25大气压分压)和其余量的N2(5.7大气压分压)的混合物,在一个挤坯吹塑机上,使用前面列举过的几种热塑性基材吹制容器。为了进行比较,还用空气象在通常的实施中那样吹制类似的容器。用过量的阻隔涂层溶液流涂这些容器,并在140℃下干燥2小时。将这些容器在室温下空气干燥几天之后,用Scotch
牌的赛珞玢胶粘带按照ASTM D-3359-78的方法(通常称为网格刻划测试)来评价涂层的粘附性。
ASTMD-3359-78测试的粘附程度如下所示等级剩余面积%5100495+385+265+135+00-355的粘附程度是最理想的,不过3和4的程度也认为是可接受的。
对于处理过和未处理过(空气吹塑)的容器,所用的具体基材和涂层以及粘附的ASTM等级列在下面表1中
表1是否处理基材涂层ASTM等级已 PP1PVOH25未PPPVOH0已 PP PVDC35未PPPVDC0已HDPEPVOH5未HDPEPVOH0已HDPEPVDC5未HDPEPVDC0已PVCPVOH5未PVCPVOH01、聚丙烯2、10%(重量)的聚乙烯醇水溶液3、50%(重量)的聚偏二氯乙烯乳液实例2用1%F2(0.01大气压分压)、40%Cl2(4大气压分压)、10%O2(0.1大气压分压)和其余量的N2(0.5大气压分压)的混合物注坯拉伸吹塑几个16盎司聚酯(PET)容器,并进行后处理。也用空气吹塑类似的容器以用作为标准第一批由乙烯与乙烯醇的共聚物制备10%(重量)的水溶液。用过量的这种水溶液对已处理过和未处理过的容器进行流涂,在形成薄膜以后,倒掉多余的溶液。将这些容器在65℃下干燥数小时,然后在室温下干燥数天。如上面实例1中所述,对容器进行粘附性测试。不出所料,在未处理过(空气吹塑)的容器上的涂层很容易剥离(ASTM等级为0),而对于已处理过的容器上的涂层,虽几经努力还是不会剥下(ASTM等级为5)。
第二批第二批的进行方法与上面第一批所述的方法相似,用50%(重量)高结晶度PVDC乳液作为阻隔涂层。在涂层干燥后,进行粘附性测试。也是未处理过的容器上的涂层很容易剥离(ASTM等级=0);而在已处理过的容器上的涂层牢牢地粘附在被涂的容器上(ASTM等级=5)。
实例3用与实例1相同的方法和反应性气体组合物,通过拉坯吹塑制备12盎司定向聚丙烯大口瓶。经过后处理和未经处理的瓶都用PVOH和PVDC在里面流涂一层涂层。在干燥之后,测试涂层的粘附情况。经处理的容器在涂层和容器壁之间表现出优异的粘附性;而对于未处理的容器上的涂层甚至用手在上面干擦几下就能很容易剥离。
实例4用空气和含有0.5%F2(0.015大气压分压)、20%O2(1.4大气压分压)及其余量的N2(5.6大气压分压)的气体混合物吹塑几只16盎司的HDPE容器。在内侧上流涂环氧树脂涂层并在65℃固化4小时。涂层的组成为液体环氧树脂(双酚A型;DOW Che mical Co.生产的D.E.R324)100克和作为硬化剂的三亚乙基四胺(TETA,Dow Chemical Co.生产的D.E.H24)12.9克。在涂层完全固化以后,对容器进行反复的挤压以评价涂层对容器的粘附力。在未处理的容器上的涂层很容易开裂并起片剥离,而在处理过的容器上的涂层则牢牢地粘附在壁上。为了进一步检验涂层的粘附性,在一平方英寸处理过的容器的涂层面积上,间隔均匀地刻划100个网格。对处理过的容器进行几次胶带粘附性测试,但没有一点面积被粘下来。
实例5为了确定吹塑气体中氧的浓度对粘附性的影响,在大约7大气压的总压下,用下面表2中所列的气体组合物吹塑几只HDPE和PP瓶。还吹塑几只对照瓶,即只用空气吹塑的瓶。通过流涂在容器的内部上涂施PVDC胶乳(W.R.Grace and Co.生产的Daran
8600),并按照厂方推荐的方法进行固化。按ASTMD 3359-78的方法处理试样,结果列在下面表2中。
表2批气体组合物ASTM等级%F2%O2%N2HDPE PP1对照不能成膜21.10.001598.91031.50.009698.50040.90.045799.02051.00.095398.92061.00.50698.53470.150.1099.753481.019.080.055
列在上面表2中各批的结果表明,在任何氟含量的情况下都要求有足够的氧浓度以保持F2/O2比小于约100,这样来提供可接受的粘附性(ASTM度至少为3)。对于如上所述的就地处理,F2/O2比最好小于约10,而对于后处理,则较高的比例即直至约100是可以接受的。
实例6使用痕量的氟(即小于0.01%(体积)或0.0007大气压分压,这相当于0.0001大气压分压/大气压总压)在各种不同的氧含量下进行类似于上述实例5的实验(即在7大气压下吹塑)。在大多数情况下,在容器的表面无法形成PVDC膜。当无法成膜时,按ASTM D3359-78发现粘附程度为0或1。这些结果表明,对于本方法,关键的是氟(F2)的浓度要达到至少0.01%(体积),即0.0001大气压分压/大气压总压。
实例7用很少量的HDPE和PP进行几个实验以确定处理气体的有效上限。结果发现,当温度低至70℃,在7大气压的压力下的反应性气体混合物中氟少到10%(即0.1大气压F2分压/大气压总压)时,会在表面上产生棕色并有裂纹的表面,而且有相当显著的放热。很明显聚合物的表面发生了降解。这表明,如果在30大气压的压力下进行吹塑操作,应使用低于3大气压分压(0.1×30)的F2浓度。进一步的试验被认为是不安全的,因此实际上是不在高气体浓度下进行吹塑的。
实例8进行几批实验以说明使用本方法进行内涂敷的容器的阻气性。为进行比较,也测试了未处理的容器以及经过处理但未涂敷的容器。各种基材(容器)、气体组合物和涂层以及气体透过率列在下面的表3中。
表3容器表面处理涂层厚度气体透过率(CC/包装24小时)HDPE - - O2- 1.96HDPE 1%F**218%O2,81%N2- O2- 1.83HDPE 1%F2,18%O2,81%N2PVDC-0.4密耳O2- 0.33PC*- - O2- 3.61PC 1%F2,18%O2,81%N2- O2- 3.10PC 1%F2,18%O2,81%N2PVDC-0.4密耳O2- 0.20PET - - O2- 0.561PET 1%F2,18%O2,40%Cl2,41%N2PVDC-0.4密耳O2- 0.058PP - - O2- 1.503PP 1%F2,18%O2,81%N2PVDC-0.3密耳O2- 0.130PET - - O2- 1.561PET 1%F2,18%O2,40%Cl2,41% N2PVDC-0.4密耳O2- 0.030PP - - O2- 1.029PP 1%F2,18%O2,81%N2PVDC-0.3密耳O2- 0.286*聚碳酸酯**0.01大气压F2分压/大气压总压从以上结果可以看出,对按照本发明进行了处理并涂敷的容器,阻隔性明显增强(气体透过率低)。此外,还表明,用上述反应性气体混合物进行表面处理后不进行涂敷对于提供阻气性是无效的。
实例9进行几批实验以说明用本方法进行内涂敷的容器对溶剂的阻隔性能。为进行比较,也对未处理的容器以及虽经处理但未涂敷的容器进行了测试。使用的各种材料,以及方法和处理条件,和阻隔结果列在下面表4中。
正如从上面表4中所列的结果可以看到的,与未经处理或虽经处理但未经涂敷的容器相比,按照本发明进行处理和涂敷的容器表现出大为改善的溶剂阻隔性能。对测试的所有的涂层和溶剂都观察到这种溶剂阻隔性能的提高。
实例10用包括5%F2、10%O2和85%N2的总压为1大气压的气体混合物进行大口5立升聚丙烯容器的注塑和后处理。也用空气在模具中注塑出类似的容器。在两个容器当中每一个的内侧上涂敷聚氨酯涂层并固化。然后,对它们进行粘附性测试。涂层很容易从未处理的容器上剥离,而涂层牢牢地粘附在经处理的容器上。用溶剂型涂料评价类似容器的溶剂阻隔性能。涂料的主要成份是妥尔油醇酸树脂和干燥剂(45%)以及矿油精(51%)。在用盖子将容器密封之后,将其储存在50℃的渗透烘箱中。在两三天的时间之内,未处理的容器上的涂层与器壁分离了。容器开始条状瘪陷而且表现出了很大的重量损失(大于2%)。处理过的容器没表现出任何分离的迹象,而且重量损失小于0.1%。
已对本发明进行了这样的说明,被认为是适合专利证书权项列在下面附属的权利要求书中。
权利要求
1.一种增加热塑性基材阻隔性能的方法,该基材主要选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯二醇、聚碳酸酯、聚苯乙烯、聚酰胺、聚对苯二甲酸丁二醇酯、聚甲基戊烯、聚氯乙烯及它们的共聚物,所述方法包括以下各步骤a)将热塑性基材的至少一个主表面与反应性气流接触,该气体中F2的浓度大于或等于0.0001大气压/(氟分压)/大气压总压,氧的浓度足以使F2/O2体积比小于100,其余部分是附加的反应性和/或非反应性组分;b)在热塑性基材的所述主表面上涂敷一种阻隔涂层,该涂层选自聚偏二氯乙烯、乙烯-乙烯醇共聚物、环氧树脂、聚氨酯、丙烯酸类、聚氯乙烯、脲醛树脂、硅氧烷和碳氟化合物;c)固化所述阻隔涂层。
2.按照权利要求1所述的方法,其中所述热塑性基材呈容器状。
3.按照权利要求2所述的方法,其中与反应性气流接触随后被涂敷上阻隔涂层的热塑性基材的主表面是容器的内表面。
4.按照权利要求3中所述的方法,其中容器用注塑、吹塑或热成型的方法成型。
5.按照权利要求4所述的方法,其中当模塑容器时,用反应性气体混合物经一步处理由热塑性基材成型的容器的内表面。
6.按照权利要求1所述的方法,其中用选自喷涂、流涂和浸涂的一种技术在处理过的表面上涂敷阻隔涂层。
7.按照权利要求1所述的方法,其中反应性气体的温度是从室温附近直至超过所处理的基材的常用吹塑温度的温度。
8.按照权利要求1中所述的方法,其中反应性气流含有一种或多种选自氯、溴、二氧化硫、三氧化硫、一氧化碳、氧化氮、BrCl、BrCl3、和ClF3的附加的反应性组分。
9.按照权利要求1所述的方法,其中将热塑性基材的至少一个主表面与反应性气流接触1秒至5分钟的时间。
10.按照权利要求1所述的方法,其中阻隔涂层的平均厚度为1~50微米。
11.按照权利要求1所述的方法,其中热塑性基材对O2、CO2、有机液体和有机蒸汽的阻隔性能增强。
12.按照权利要求1所述的方法,其中反应性气流含有足够量的氧,使得F2/O2的体积比小于约10。
13.按照权利要求1中所述的方法,其中反应性气流的压力在0.1~50大气压。
14.一种具有改进的阻隔性能的聚合物容器,所述容器包括a)一种选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯二醇、聚碳酸酯和聚氯乙烯的热塑性基材,其中至少一个主表面与反应性气流接触1秒至5分钟的时间,该气流中F2的浓度大于或等于0.0001大气压F2分压/大气压总压,O2的浓度足以使F2/O2的体积比小于100。b)在不使用任何粘合剂的条件下,涂敷到用所述反应性气流接触过的所述热塑性基材的表面上的选自聚偏二氯乙烯、乙烯-乙烯醇共聚物、环氧树脂、聚氨酯和碳氟化合物类的阻隔涂层。
15.按照权利要求14所述的容器,其中已与反应性气流接触过的热塑性基材的表面是容器的内表面。
16.按照权利要求14所述的容器,其中阻隔涂层的平均厚度为1~50微米。
17.按照权利要求14所述的容器,其中该容器具有改进的对O2、CO2、有机液体和有机蒸汽的阻隔性能。
全文摘要
本发明是一种改进热塑性基材阻隔性能的方法。将热塑性基材的表面与反应性气流接触,该气流中F
文档编号B05D7/02GK1031241SQ88104458
公开日1989年2月22日 申请日期1988年7月22日 优先权日1987年7月22日
发明者贝纳德·丹尼尔·包曼, 拉简德拉·库玛·美塔, 马克·艾伦·威廉斯 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1