动力输出装置、混合车辆及其控制方法

文档序号:3919095阅读:505来源:国知局
专利名称:动力输出装置、混合车辆及其控制方法
技术领域
本发明涉及,作为动力源备有发动机和电动机,并且能够切换前述电动机与前述发动机的结合状态的动力输出装置,混合车辆及其控制方法。
背景技术
近年来,提出了以发动机和电动机为动力源的混合车辆。在混合车辆中,大致划分有串联混合车辆和并联混合车辆。所谓串联混合车辆是指借助于发电机把来自发动机的动力完全转换成电力,靠由此得到的电力来驱动结合于驱动轴的电动机的混合车辆。所谓并联混合车辆是指把从发动机所输出的动力分配成两股,一部分作为机械动力输出到驱动轴,同时其余部分转换成电力输出到驱动轴的混合车辆。
串联混合车辆因为在能够供给驱动结合于驱动轴的电动机所需的电力的运行状态当中,可以选择效率最高的运行状态来运行发动机,故存在着能够与车辆的运行状态无关地在高运行效率下运行混合车辆的优点。
并联混合车辆因为能够把从发动机所输出的动力的一部分作为机械动力传递到驱动轴,故不伴随向电力的转换引起的损失。因而,能够实现比串联混合车辆更高的运行效率。另一方面,并联混合车辆用来以高运行效率来运行车辆的控制与串联混合车辆相比往往变得复杂。此外,有时因车辆的运行状态的不同,传递动力之际的损失加大,运行效率降低。
以往的混合车辆固定成串联混合或者并联混合中的某一种构成。关于同时发挥两者的长处的技术没有任何研究。因此,在以往的混合车辆上,关于运行效率等留有进一步谋求改善的余地。这个课题不仅是车辆而且一般来说是混合式动力输出装置共同的课题。
发明的公开本发明是为了解决上述课题而作成的,其目的在于提供一种兼有串联混合和并联混合的长处的混合式动力输出装置和混合车辆。
本发明的动力输出装置是至少备有发动机和两个电动机,从驱动轴输出动力的动力输出装置,其特征在于,其中备有能够在把该发动机的输出的至少一部分以机械动力的形式传递到前述驱动轴,同时能够把前述电动机的至少一方作为动力源来使用的并联结合状态,与靠前述至少一方的电动机把该发动机的输出转换成电力而靠另一方的电动机再转换成机械动力输出到驱动轴的串联结合状态之间,切换前述发动机和电动机的结合状态的切换机构。
如果用这种动力输出装置,则适当地分别使用并联结合状态和串联结合状态,借此实现兼备并联式动力输出装置的优点和串联式动力输出装置的优点的运行成为可能。
前述动力输出装置这样来实现,即例如前述电动机当中的一个是有至少两个旋转轴,作为能够调整通过接受电力而在两个旋转轴之间传递的动力的大小的动力调整装置发挥功能的电动机,该动力调整装置和另一个电动机串联地配备于前述发动机的输出轴与驱动轴之间,前述切换机构是备有进行前述动力调整装置与电动机的结合和分离的结合机构和保持前述动力调整装置的某个旋转轴,借此能够实现在进行前述分离的场合的前述动力调整装置中的电力与动力的转换的保持机构的机构。
如果用这种动力输出装置,则结合前述结合机构,借此构成能够把从发动机所输出的动力传递到驱动轴的并联式动力输出装置成为可能。另一方面,如果分离前述结合机构,则不能把从发动机所输出的动力直接传递到驱动轴。此时如果能够借助于前述保持机构进行前述动力调整装置中的电力与动力的转换,则可以构成一度把从发动机所输出的动力全都转换成电力然后从驱动轴输出的串联式动力输出装置。
在这种动力输出装置中,更具体地说,可以举出两种构成。就是从发动机一侧向驱动轴一侧,依次备有“发动机、动力调整装置和保持机构、结合机构、电动机、驱动轴”的第1构成,和依次备有“发动机、电动机、结合机构、动力调整装置和保持机构、驱动轴”的第2构成。在第1构成中,在分离结合机构的场合,构成借助于动力调整装置把从发动机所输出的动力转换成电力,同时接受该电力的供给拖动电动机的串联式动力输出装置。在第2构成中,在分离结合机构的场合,构成借助于电动机把从发动机所输出的动力转换成电力,同时接受该电力的供给拖动动力调整装置的串联式动力输出装置。本发明作为采用哪一种构成者都可以。
在本发明的动力输出装置中,前述动力调整装置可以是具有能够相对旋转的两个转子的双转子电动机,前述动力调整装置也可以是包括有着三个旋转轴的行星齿轮,和结合于该旋转轴之一的电动发电机的装置。
当然,只要是实现上述功能的装置,也可以运用其他的构成。
这些装置通过以下所示的作用,作为动力调整装置发挥功能。在双转子电动机中,通过两个转子间的电磁结合可以把机械动力从一方转子传递到另一方转子。此外,在两个转子间产生滑差的场合,也可以通过再生与该滑差相对应的电力,减小动力而传递到另一方转子。相反如果供给电力而拖动双转子电动机,则增加动力而传递到另一方转子也是可能的。
在后者的构成中,可以基于行星齿轮的作用来进行以下所示的动力调整。行星齿轮亦称逰星齿轮,具有如果确定了三个旋转轴当中两个旋转轴的旋转状态,则唯一地确定剩余旋转轴的旋转状态的机械性质。在行星齿轮中如果从一个旋转轴输入动力,则该动力分配成传递到电动发电机的动力和传递到剩余旋转轴的动力。传递到电动发电机的动力,能够作为电力而再生。因而,如果用上述构成,则把输入行星齿轮的动力的一部分作为电力再生,借此可以减小作为机械动力传递的动力的大小。此外,如果供给电力而拖动电动发电机,则可以增加输入行星齿轮的动力而传递。
在本发明的动力输出装置中,在运用把行星齿轮用作前述动力调整装置的装置的场合,前述保持机构可以是把前述行星齿轮的其余两个旋转轴相互结合的机构。
如前面说明的,行星齿轮有三个旋转轴。在本发明的动力输出装置中,第1旋转轴结合于电动发电机,第2旋转轴结合于结合机构,第3旋转轴结合于发动机的输出轴或驱动轴。考虑在这种结合状态下结合机构分离的场合。在结合机构分离的状态下,第2旋转轴的旋转状态不受约束。因为行星齿轮具有在确定了两个旋转轴的旋转状态的场合剩余的旋转轴的旋转状态被确定的机械性质,所以在第2旋转轴的旋转状态未确定的情况下,在第1旋转轴与第3旋转轴之间交换动力的场合,接受动力一侧的旋转轴的旋转状态未确定。
如果用上述保持机构,则结合行星齿轮的其余两个旋转轴,也就是第2旋转轴和第3旋转轴。因此,第2旋转轴的旋转状态受第3旋转轴的旋转状态的约束,整体地旋转。结果,因为第2旋转轴的旋转状态被确定,故第1旋转轴与第3旋转轴之间的动力交换成为可能。再者,作为结合两个旋转轴的机构可以运用离合器或齿轮等种种方法。
此外,前述保持机构可以是在前述动力调整装置上所备有的旋转轴当中,约束结合于前述结合机构的旋转轴的旋转的机构。
这种保持机构存在着即使在备有由某种构成组成的动力调整装置的场合也能运用的优点。
本发明除了作为上述动力输出装置来构成之外,也可以作为搭载该动力输出装置的混合车辆来构成。如果作为混合车辆来构成,则与前面针对动力输出装置说明者同样,实现根据车辆的行驶状态等来发挥并联混合车辆和串联混合车辆双方的优点的运行成为可能。
在像这样作为混合车辆来构成本发明的场合,虽然也可以用手动来切换前述切换机构,但是最好是备有检测与该车辆的运行状态有关的规定参数的检测机构, 以及根据该检测结果控制前述切换机构而切换前述结合状态的控制机构。
这样一来,不给驾驶员增加特别的负担,能够根据车辆的运行状态分别使用适当的结合状态,充分发挥并联混合车辆和串联混合车辆的优点成为可能。
在具有这种控制机构的并联混合车辆中,结合状态的切换可以用种种控制形态来实现。
作为第1种形态,前述控制机构可以是实现对于车辆的运行状态来说运行效率高的结合状态的机构。
串联混合车辆因为可以在能输出所需动力的运行状态当中选择运行效率高的状态来运行发动机,故可以与车辆的行驶状态无关地得到比较稳定而高的运行效率。但是,因为把从发动机所输出的动力一度转换成电力后,靠电动机等再次转换成机械动力而从驱动轴输出,故产生伴随着这些转换的损失。并联混合车辆因为也可以选择运行效率高的状态来运行发动机,并且把从发动机所输出的动力的一部分保持机械动力的原样传递到驱动轴,故可以得到比串联混合车辆更高的运行效率。但是,有时因车辆的行驶状态产生以下所示的动力循环,运行效率降低。
一开始,针对把电动机结合于驱动轴的构成,也就是从发动机一侧依次备有“发动机、动力调整装置和保持机构、结合机构、电动机、驱动轴”的第1构成来说明产生动力循环的理由。图34是表示这种混合车辆的构成例的说明图。在此一混合车辆中,作为动力调整装置用组合行星齿轮PG和发电机G而成的机构。所谓行星齿轮PG,也称为逰星齿轮,由在中心旋转的太阳轮SG、在太阳轮周围自转并公转的行星轮PC、进而在其外周旋转的齿圈RG三个齿轮来构成。在图34的混合车辆中,发动机的曲轴CS结合于行星架PC。发电机G结合于太阳轮SG。电动机AM结合于齿圈RG。齿圈RG还结合于驱动轴DS。
基于图35和图36来说明这种混合车辆中的动力传递的情况。图35是示意地表示减速传动时,也就是针对从发动机所输出的动力,在把转速与转矩之积保持一定的条件下,降低转速同时增大转矩而从驱动轴DS输出的状态下的动力流的说明图。从发动机所输出的动力PU1根据行星轮PG的齿轮比分配成两股。控制结合于太阳轮SG的发电机G的转速和转矩,借此与目标转速一致的转速的动力PU2传递到齿圈RG。在减速传动时,因为目标转速<发动机的转速,所以动力PU2小于从发动机所输出的动力PU1。从发动机所输出的动力当中剩余的动力传递到太阳轮SG。此一动力借助结合于太阳轮SG的发电机G作为电力再生。如果借助于此一电力来拖动电动机AM,调整不足部分的转矩,则由所需的转速和转矩组成的动力PU3输出到驱动轴DS。
图36是示意地表示增速传动时,也就是增大曲轴CS的旋转同时减小转矩而从驱动轴DS示出的状态下的动力流的说明图。此时从发动机EG所输出的动力PU1拖动结合于太阳轮SG的发电机G,借此作为转速增速的动力PU3传递到齿圈RG。接着,通过靠辅助电动机AM来加载,调整剩余的转矩,借此由所需的转速和转矩组成的动力PU4输出到驱动轴DS。在辅助电动机AM中把动力PU4的一部分作为电力EU2再生,借此来加载。此一电力EU4用来拖动发电机G。
比较两者,在减速传动时,在从发动机所输出的动力传递到驱动轴DS的路径中,在位于上游侧的发电机G中所再生的电力供给到位于下游侧的电动机AM。相反,在增速传动时,在位于下游侧的电动机AM中所再生的电力供给到位于上游侧的发电机G。供给到发电机G的电力再作为机械动力传递到位于下游侧的电动机AM。这样一来在增速传动时,如图所示,产生动力循环γ1。如果产生这种循环γ1,则因为从发动机EG所输出的动力当中,有效地传递到驱动轴DS的动力减少,故混合车辆的运行效率降低。
再者,在驱动轴的转速高于发动机转速的区域内不一定就产生动力循环。开始产生动力循环的转速的关系因行星齿轮的齿轮比而不同。在本说明书中,在把电动机结合于驱动轴一侧的构成中,把驱动轴的转速高于发动机转速的状态当中产生动力循环的状态称为增速传动。
接着,把电动机结合于发动机一侧的构成,也就是从发动机一侧依次备有“发动机、电动机、动力调整装置、驱动轴”的混合车辆的构成示意图37。发电机G结合于行星齿轮PG的太阳轮SG,发动机的曲轴结合于行星轮架PC,驱动轴DS结合于齿圈RG等项与图34的构成相同。在图37的构成中,在电动机AM结合于曲轴这一点上不同。
这种构成的混合车辆中的动力传递情况示于图38和图39。图38示出减速传动时的动力传递的情况,图39示出增速传动时动力传递的情况。在这种构成中,发生与把电动机结合于驱动轴一侧的场合相反的现象。在减速传动时,在位于下游侧的发电机G中所再生的电力EO1供给到位于上游侧的电动机AM。在增速传动时,由位于上游侧的辅助电动机AM所再生的EO2供给到位于下游侧的发电机G。因而,在把电动机结合于发动机的输出轴的状态下,在减速传动时产生图39中所示的动力循环γ2,混合车辆的运行效率降低。在本说明书中,在发电机结合于发动机一侧的构成中,把驱动轴的转速低于发动机转速的状态当中产生动力循环的状态称为减速传动。
这样一来并联混合车辆即使采用上述第1构成和第2构成中的某一个,也因车辆的行驶状态而产生动力循环,运行效率降低。如果用本发明的混合车辆,则鉴于这一点,根据车辆的行驶状态,比较串联混合车辆的构成与并联混合车辆的构成的运行效率,以运行效率更高的构成来进行行驶成为可能。因而,如果用本发明的混合车辆,则更加提高运行效率成为可能。虽然这里针对一部分具体的构成举例示出车辆的行驶状态与运行状态的关系,但是因为无论什么样的构成,在并联混合车辆和串联混合车辆中通常运行效率高的区域是不同的,所以通过适当地分别使用两者,可以在宽阔的运行区域内提高运行效率。
作为第2种形态,前述检测机构是检测挡位是否处于后退位置的检测机构,前述控制机构可以是在检测到处于后退位置的场合,实现前述串联结合状态的机构。
这种混合车辆,在挡位处于后退位置的场合,也就是车辆处于应该后退的状态时,分离前述结合机构而取为串联混合车辆的构成。通过进行这种控制,出于以下所示的理由,混合车辆在后退时输出足够的转矩,而且顺利地进行行驶成为可能。
如已经说明的,并联混合车辆从发动机所输出的动力的一部分可以照原样输出到驱动轴。通常发动机与车辆处于前进中还是后退中无关地朝一个方向旋转。因而,在并联混合车辆中,在后退时有必要把从发动机所输出的机械动力转换成反转方向而输出。这种转换随然通过控制动力调整装置和电动机转速不是不可能的,但是从驱动轴所输出的转矩不得不减少抵销从发动机沿使车辆前进的方向所输出的转矩的量。此外,因为要求发动机、动力调整装置、电动机三者精致的平衡,故例如在来自发动机的转矩中发生变动的场合容易产生输出到驱动轴的转矩变动,乘坐舒适性容易受损。
如果用上述混合车辆,则在后退时采用串联混合车辆的构成,借此从发动机所输出的动力不直接传递到驱动轴。后退时使结合于驱动轴的动力调整装置或电动机反转,借此容易地进行控制成为可能。此外,因为没有必要抵销来自发动机的转矩,故从动力调整装置或电动机输出足够的后退转矩成为可能。
作为第3种形态,前述检测机构是检测是否正在停车的机构,前述控制机构可以是在检测到正在停车的场合,实现前述串联结合状态的机构。
在这种混合车辆中,正在停车时分离结合机构,借此采用串联混合车辆的构成。这样一来,上述混合车辆在正在停车时发动机起动或停止的场合,如以下所示,可以避免驱动轴上产生转矩变动,可以大大提高乘坐舒适性。
混合车辆根据蓄电池的充电状态等在正在停车时使发动机运行或停止。在并联混合车辆中,借助于动力调整装置的功能即使正在停车也可以运行发动机而不把动力输出到驱动轴。例如,在图34的构成中,从发动机所输出的动力当中从辅助电动机AM输出抵销传递到行星齿轮PG的齿圈RG的转矩的转矩就可以了。此时从发动机所输出的动力由发电机G作为电力被再生。因而,如果正在停车时运行发动机,则可以靠再生电力给蓄电池充电。在蓄电池处于充分充电状态的场合,停止发动机的运行,借此可以抑制燃油的消耗。串联混合车辆也能进行同样的运行。
这里,在并联混合车辆的构成中,如果进行发动机的起动和停止, 则传递到驱动轴的转矩变动。完全追随这种变动地控制结合于驱动轴的辅助电动机AM,抵销传递到驱动轴的转矩是非常困难的。因而,在并联混合车辆中,如果正在停车时进行发动机的起动或停止,则有时产生车辆的振动,损及乘坐舒适性。如果用上述混合车辆,则因为正在停车时采用串联混合车辆的构成,故可以避免伴随发动机的起动和停止的转矩变动传递到驱动轴,可以大大提高正在停车时的乘坐舒适性。
再者,在第3种形态中,虽然车辆正在停车时与蓄电池的充电状态无关地采用串联混合车辆的构成,但是也可以在满足车辆正在停车这个条件,和蓄电池的充电容量处于规定范围这个条件双方的场合采用串联混合车辆的构成。所谓规定范围是进行发动机的起动和停止的范围。如果进行这种控制,则即使正在停车也可以根据蓄电池的充电状态采用并联混合车辆的构成,例如,可以得到不经过从串联混合车辆向并联混合车辆的切换而可以指望顺利的加速等优点。
作为第4种形态,前述检测机构是检测是否处于应该进行前述发动机的拖动的运行状态的机构,前述控制机构可以是在检测到处于该运行状态的场合,实现前述串联结合状态的机构。
此外,作为第5种形态,前述检测机构是检测是否处于应该停止前述发动机的运行的运行状态的机构,前述控制机构可以是在检测到处于该运行状态的场合,实现前述串联结合状态的机构。
如果用第4种形态和第5种形态,则在进行发动机的拖动也就是起动和停止的场合可以采用串联混合车辆的构成。如前面说明的在并联混合车辆的构成中,如果进行发动机的起动和停止,则因为当时的转矩变动传递到驱动轴,故产生车辆的振动,损及乘坐舒适性。如果用上述混合车辆,则因为在这种场合采用串联混合车辆的构成,借此可以避免发动机的转矩变动传递到驱动轴,故可以大大提高发动机起动和停止时的乘坐舒适性。
再者,在第4种形态和第5种形态中,与车辆是否正在停车无关,在发动机起动和停止时采用串联混合车辆的构成。与此相反,也可以在车辆正在停车或者以微速行驶的场合里,仅在发动机起动或停止时采用串联混合车辆的构成。通常在车辆行驶之际驾驶员和乘员对车辆的振动并不那么敏感。因而,如果仅在车辆正在停车或者以微速行驶的场合采用串联混合车辆的构成,则具有可以避免以并联混合车辆的构成行驶中每当进行发动机的起动或停止就发生向串联混合车辆的构成切换的情况,可以实现顺利的行驶的优点。
作为第6种形态,前述动力调整装置是包括有着三个旋转轴的行星齿轮和结合于该旋转轴之一的电动发电机的装置,在作为前述保持机构是把前述行星齿轮的其余两个旋转轴相互结合的机构的混合车辆的场合,前述检测机构是检测应该从前述驱动轴输出的要求转矩的机构,前述控制机构可以是在要求转矩超过规定值时把前述结合机构和前述保持机构双方取为结合状态的机构。
在具有上述构成的混合车辆中,通过结合结合机构和保持机构双方,可以从发动机、电动机、和电动发电机三者向驱动轴输出动力。如果用上述混合车辆,则在要求转矩超过规定值时,通过取为这种结合状态,可以有效地发挥来自三者的动力来进行行驶。所谓规定值是指基于通过像这样把来自三者的动力输出到驱动轴能够实现的要求转矩来设定的值。
作为第7种形态,可以备有针对前述发动机的输出轴和前述驱动轴中的至少一方检测是否产生共振的共振检测机构,以及在检测到该共振的场合,控制前述结合机构和前述保持机构,抑制产生该共振的轴的转矩的共振抑制控制机构。备有针对前述发动机的输出轴和前述驱动轴中的至少一方检测是否产生共振的共振检测机构,以及在检测到该共振的场合,控制前述结合机构和前述保持机构,抑制产生该共振的轴的转矩的共振抑制控制机构。
在混合车辆中,由于结合于发动机的输出轴和驱动轴的动力调整装置和电动机的惯性,有时在这些旋转轴上产生所谓扭转共振。这种扭转共振的原因之一是在附加于这些旋转轴上的转矩大于动力调整装置等的惯性力的场合在旋转轴上产生弹性变形。如果用上述混合车辆,则在检测到这种共振的场合可以控制结合机构和保持机构以便抑制产生共振的旋转轴的转矩,可以抑制共振。
再者,结合机构和保持机构的控制,只要是能够抑制旋转轴的转矩者就可以了,可以取为分离这些者,也可以取为减小结合力者。此外,共振抑制控制机构没有必要一定控制结合机构和保持机构双方,只要是控制用来抑制共振的适当一侧就可以了。
在像这样控制结合机构和保持机构的场合,前述共振抑制控制机构最好是把产生前述共振的轴的转矩抑制到该轴的扭转强度以下的机构。
所谓扭转强度是指因扭转使旋转轴断裂的最大转矩。这种转矩能够根据构成旋转轴的材料和旋转轴的断面形状预先设定。通过像这样进行控制,至少可以避免产生共振的旋转轴因扭转而断裂的情况。
此外,前述共振抑制控制机构最好是把产生前述共振的轴的转矩抑制到车辆上不产生振动的转矩的机构。
通过像这样进行控制,可以大大提高车辆的乘坐舒适性。再者,车辆上不产生振动的转矩能够通过预先分析或实验来设定。另外,也可以取为基于来自检测车辆的振动的加速度传感器等的输出对产生共振的轴的转矩进行反馈控制者。
在前述第7种形态,也就是进行用来抑制共振的控制的形态中,前述动力调整装置结合于前述发动机一侧,前述共振检测机构是在前述结合机构分离状态、前述保持机构保持状态下,检测前述发动机的输出轴上是否产生共振的机构,前述共振抑制控制机构可以是在检测到该共振的场合减小前述保持机构的保持力的机构。
在结合机构分离状态,也就是采用串联混合车辆的构成的状态下,保持机构约束动力调整装置的某个旋转轴的旋转,借此成为转矩能够传递到发动机的输出轴。如果用上述混合车辆,则在此一输出轴上产生共振的场合,减小保持机构的保持力,借此可以抑制这种共振。
在此一场合,前述共振检测机构是在前述发动机被拖动的场合检测前述共振的机构,前述共振抑制控制机构可以是在能拖动前述发动机的转矩能够附加于前述输出轴的范围内减小前述保持机构的保持力的机构。
这样一来,因为即使在为了抑制共振而减小保持机构的保持力的场合,也能够继续发动机的拖动,所以可以无障碍地起动发动机。
此外,在前述第7种形态中,前述共振检测机构是在前述结合机构为结合状态的场合检测前述驱动轴上是否产生共振的机构,前述共振抑制控制机构可以是在检测到该共振的场合减小前述结合机构的结合力的机构。
在结合机构的结合状态,也就是采用并联混合车辆的构成的状态下,发动机、动力调整装置、电动机全都机械地结合,成为惯性非常大的构成。在这种构成下如果车辆进行急起步或急制动,则有时传递到驱动轴的转矩过大而产生共振。如果用上述混合车辆,则因为在这种场合可以控制结合机构,抑制传递到驱动轴的转矩,故可以抑制急起步或急制动时等产生的共振。
在此一场合,前述共振检测机构是在该混合车辆制动时检测前述共振的机构,前述共振抑制控制机构可以是在能够传递超过前述动力调整装置和前述电动机当中结合于靠近发动机一侧者产生的最大再生转矩的转矩的范围内减小前述结合机构的结合力的机构。
这样一来,即使在为了抑制共振而减小结合机构的结合力的状态下,也可以用动力调整装置和电动机双方来进行再生制动。因而,可以把伴随车辆行驶的动能以高的比率作为电力再生,可以实现高效率的运行。
本发明的混合车辆作为该车辆行驶者备有针对预先设定的路径的状态,输入关于车辆的行驶状态的规定信息的路径信息输入机构,前述控制机构可以是也考虑该路径信息而进行前述切换的机构。
这样一来,可以更适当地分别使用串联混合车辆的构成和并联混合车辆的构成,实现顺利的行驶。例如,在仅考虑某个时刻的运行状态,通过前面说明的种种控制,选择串联混合车辆的构成和并联混合车辆的构成的某一个适当的构成的场合,也存在着构成根据行驶状态频繁地切换的可能性。频繁切换损及乘坐舒适性或车辆对驾驶的响应性。如果用上述混合车辆,则因为可以考虑将来车辆行驶的预定路径信息来进行切换,故可以抑制这种频繁切换引起的弊病。此外,在估计到将来电力消耗增大的场合,以宜于蓄电的构成来运行也是可能的。
作为路径信息,可以举出例如关于所设定的路径是否为上坡路的信息,关于是否正在塞车的信息,关于速度限制的信息等。例如在得到接近上坡路的信息的场合,可以优先使用宜于给蓄电池充电的并联方式。此外,在检测到路径上存在弯路的场合,在检测到减速时的塞车的场合等,可以基于种种信息抑制各个运行方式的频繁切换地运行混合车辆。
再者所谓“也考虑路径信息”可以取为与取决于车辆的行驶状态的运行方式无关而把基于路径信息确定的运行方式优先者。此外,也可以基于路径信息来变更车辆的行驶状态与运行方式的对应关系。也就是说,也可以取为根据路径信息扩展优先运用串联方式的行驶状态,或扩展优先运用并联方式的行驶状态者。此外,也可以取为基于路径信息来修正关于车辆的行驶状态的参数者。另外,包含反映路径信息的运行方式的种种设定方法。
本发明,如以下所示,也可以作为混合车辆的控制方法来构成。
也就是说,本发明的控制方法,是作为从驱动轴输出动力的动力源至少备有发动机和电动机,备有能够在把该发动机的输出的至少一部分以机械动力的形式输出到前述驱动轴的并联结合状态,与一度把该发动机的输出转换成电力再从前述驱动轴输出的串联结合状态之间,切换它们的结合状态的切换机构的混合车辆的控制方法,其中包括(a)检测与该车辆的运行状态有关的规定参数的过程,以及(b)针对该检测结果和结合状态基于预先设定的关系来控制前述切换机构而切换结合状态的过程。
如果用这种控制方法,则适当地切换混合车辆的结合状态,借此可以实现兼备并联混合车辆和串联混合车辆的优点的运行。上述控制方法可以运用于前面说明的种种构成的混合车辆。此外,上述所谓预先设定的关系,可以运用把运行效率优先而设定的关系,基于挡位而设定的关系等,前面第1种形态至第7种形态中说明的种种关系。
附图的简要说明

图1是表示作为第1实施例的混合车辆的总体构成的说明图。
图2是表示第1实施例的混合车辆的结合状态的说明图。
图3是说明行星齿轮的基本动作的共线图。
图4是表示车速与发动机转速的限制的说明图。
图5是运行控制子程序的程序框图。
图6是运行方式切换处理子程序的程序框图。
图7是表示第1实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
图8是转矩控制子程序的程序框图。
图9是表示发动机的运行点与运行效率的关系的说明图。
图10是起动·停止子程序的程序框图。
图11是共振抑制控制处理子程序的程序框图。
图12是表示制动器油压的设定的说明图。
图13是表示离合器油压的设定的说明图。
图14是表示各运行方式与运行效率的关系的说明图。
图15是高速行驶时的共线图。
图16是表示作为第1实施例的变形例的混合车辆的构成的说明图。
图17是表示作为第1实施例的变形例的混合车辆的结合状态的说明图。
图18是表示作为第2实施例的混合车辆的总体构成的说明图。
图19是表示第2实施例的混合车辆的结合状态的说明图。
图20是第2实施例中的运行方式切换处理子程序的程序框图。
图21是表示第2实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
图22是表示作为第3实施例的混合车辆的总体构成的说明图。
图23是表示第3实施例的混合车辆的结合状态的说明图。
图24是表示第3实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
图25是第3实施例中的共振抑制控制处理子程序的程序框图。
图26是表示作为第3实施例的变形例的混合车辆的构成的说明图。
图27是表示作为第3实施例的变形例的混合车辆的结合状态的说明图。
图28是表示作为第4实施例的混合车辆的总体构成的说明图。
图29是表示第4实施例的混合车辆的结合状态的说明图。
图30是表示第4实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
图31是表示作为第5实施例的混合车辆的总体构成的说明图。
图32是第5实施例中的运行方式切换处理子程序的程序框图。
图33是表示第5实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
图34是表示以往的混合车辆中,把辅助电动机结合于车轴的场合的构成的说明图。
图35是表示以往的混合车辆中,把辅助电动机结合于车轴的场合里,减速传动行驶时的动力传递情况的说明图。
图36是表示以往的混合车辆中,把辅助电动机结合于车轴的场合里,增速传动行驶时的动力传递情况的说明图。
图37是表示以往的混合车辆中,把辅助电动机结合于曲轴的场合的构成的说明图。
图38是表示以往的混合车辆中,把辅助电动机结合于曲轴的场合里,减速传动行驶时的动力传递情况的说明图。
图39是表示以往的混合车辆中,把辅助电动机结合于曲轴的场合里,增速传动行驶时的动力传递情况的说明图。
实施发明的最佳形态(1)第1实施例的构成首先用图1就第1实施例的构成进行说明。图1是表示搭载了本实施例的动力输出装置的混合车辆的概略构成的说明图。此一混合车辆的动力系统由以下构成而成。动力系统中所备有的发动机150是通常的汽油机,使曲轴156旋转。发动机150的运行由EFIECU170来控制。EFIECU170是内部有CPU、ROM、RAM等的单片微计算机,CPU按照记录在ROM中的程序来实现发动机150的燃油喷射及其他控制。为了使这些控制成为可能,在EFIECU170上连接着表示发动机150的运行状态的种种传感器。省略了其他传感器和开关等的图示。再者,EFIECU170电气上还连接于控制单元190,借助于通信与控制单元190之间交换种种信息。EFIECU170从控制单元190接收关于发动机150的运行状态的种种指令值而控制发动机150。
在图1的混合车辆中,作为动力系统从上游侧备有发动机150和电动机130、140。三者经由行星齿轮120机械地结合着。行星齿轮120也称为逰星齿轮,由在中心旋转的太阳轮121、在太阳轮周围自转并公转的行星轮124、进而在其外周旋转的齿圈122三个齿轮来构成。行星轮124轴支承于行星轮架123。在图1的混合车辆中,曲轴156结合于行星轮架123。电动机130的定子133固定于壳体,转子132结合于太阳轮121。电动机140的定子143固定于壳体,转子142结合于齿圈122。齿圈122经由差速齿轮结合于车轴116。
在本实施例的混合车辆的动力系统中,还备有进行齿圈122与电动机140之间的结合与分离的离合器160。此外,在离合器160的上游侧备有保持齿圈122不旋转的制动器162。离合器160和制动器162的动作由控制单元190来控制。
电动机130、140是三相同步电动机,备有在外周面上有多个永久磁铁的转子132、142,和卷绕有形成旋转磁场用的三相线圈的定子133、143。电动机130、140通过转子132、142上所备有的永久磁铁产生的磁场与定子133、143的三相线圈所形成的磁场的相互作用作为旋转驱动的电动机工作,根据情况通过这些相互作用还作为在三相线圈的两端产生电动势的发电机工作。再者,电动机130、140虽然也可以运用转子132、142与定子133、143之间的磁通密度沿圆周方向正弦分布的正弦波励磁电动机,但是在本实施例中,采用能够输出比较大的转矩的非正弦波励磁电动机。
定子133、143分别经由驱动电路191、192电气上连接于蓄电池194。驱动电路191、192是内部备有作为开关元件的晶体管的晶体管逆变器,电气上连接于控制单元190。如果控制单元190对驱动电路191、192的晶体管的通·断时间进行PWM控制则以蓄电池194为电源的三相交流流过定子133、143的三相线圈,形成旋转磁场。
本实施例的混合车辆的运行状态由控制单元190来控制。控制单元190也与EFIECU 170同样,是内部有CPU、ROM、RAM等的单片微计算机,按照记录在ROM中的程序,CPU进行下文述及的种种控制处理。为了使这些控制成为可能,各种传感器和开关电气上连接于控制单元190。作为连接于控制单元190的传感器和开关,可以举出用来检测加速踏板操作量的加速踏板位置传感器165、用来检测换挡杆的位置的挡位传感器166,检测车轴116的转速的转速传感器117、检测结合于齿圈122的旋转轴的转速的转速传感器118、检测结合于行星架123的旋转轴的转速的转速传感器119等。如前面说明的,控制单元190电气上还连接于EFIECU170,通过通信与EFIECU 170之间交换种种信息。从控制单元190向EFIECU170输出发动机150的控制所需的信息,借此可以间接地控制发动机150。相反也可以从EFICU170输入发动机150的转速等信息。
控制单元190还控制离合器160和制动器162的工作。本实施例的混合车辆根据离合器160和制动器162的工作可以把动力系统的构成大体上变更成四种。图2是一览示出这些构成的说明图。
使离合器160和制动器162同时成为工作状态的场合的构成A示于图中的左上方。在这种构成中,齿圈122的旋转被制动器162所制止。在使离合器160结合的状态下,齿圈122与车轴116直接结合。因而,在构成A中车轴116的旋转也被制动器162所制止。也就是说,此一结合状态在车辆行驶状态中不能采用,仅在停车时可以采用。在本实施例中,不使用构成A的结合状态。
使制动器162成为结合状态并使离合器160分离的场合的构成B示于图中的右上方。在这种构成中,与构成A同样,齿圈122的旋转被制动器162所制止。但是,因为离合器160成为分离,故车轴116能够旋转。而且,因为离合器160设在电动机140的上游侧,所以可以把动力从电动机140输出到车轴116。另一方面,通过行星齿轮120的作用,齿圈122的旋转也被制动器162所制止。电动机130所结合的太阳轮121和发动机150所结合的行星架123能够旋转。因而,在构成B中,能够把从发动机150所输出的动力在电动机130中作为电力再生。利用以上,使离合器160分离,并使制动器162结合的构成B成为有作为串联混合车辆的构成。
接着,使制动器162分离并使离合器160结合的构成C示于图中的左下方。在此一状态下,齿圈122能够与车轴116一起旋转。这种构成与前面作为并联混合车辆的例子在图34中说明的构成相同。因而,在本实施例的混合车辆中,使制动器162分离,使离合器160结合的构成C成为有作为并联混合车辆的构成。
最后,使制动器162和离合器160双方分离的场合的构成D示于图中的右下方。在此一状态下,齿圈122能自由旋转。此外,因为离合器160成为分离,故车轴116能够旋转。此外,可以把动力从电动机140输出到车轴116。但是,在此一场合,不能在电动机130中把从发动机150所输出的动力再生。如前所述,行星齿轮具有如果确定了两个旋转轴的旋转状态,则确定了其余旋转轴的旋转状态这样的机械性质。在构成D中,因为使制动器162分离,故齿圈122的旋转状态未被确定。如果考虑从发动机150输出动力,为了进行由电动机130进行的再生而给太阳轮121加载的场合,则因为不能把克服这种负载使太阳轮121旋转的反力加在齿圈122上,故无法进行由电动机130进行的再生。关于这一点,以下与行星齿轮的一般工作一起详细地说明。
行星齿轮120的各齿轮的旋转状态,虽然可以根据机构学上公知的以下计算式(1)求出,但是也可以根据称为共线图的图按几何学求出。
Ns=(1+ρ)/ρ×Nc-Nr/ρ;Nc=ρ/(1+ρ)×Ns+Nr/(1+ρ);Nr=(1+ρ)Nc-ρNs;Tes=Tc×ρ/(1+ρ)=ρTer;Ter=Tc/(1+ρ);ρ=太阳轮齿数/齿圈齿数 (1);式中,
Ns是太阳轮转速;Tes是输出到太阳轮的转矩;Nc是行星架转速;Tc是行星架转矩;Nr是齿圈转速;Ter是输出到齿圈的转矩。
下面基于共线图就行星齿轮120的作用进行说明。图3中示出共线图之一例。纵轴表示各齿轮的转速。横轴以距离的关系来表示各齿轮的齿轮比。在两端取太阳轮121(图中的S)和齿圈122(图中的R),把位置S和位置R之间内分成1∶ρ的位置C取为行星架123的位置。ρ如上所述是太阳轮121的齿数(Zs)对齿圈122的齿数(Zr)之比。在这样定义的位置S、C、R上画出各个齿轮的转速Ns、Ne、Nr。行星齿轮120具有这样画出的三个点必定排列在一条直线上这样的性质。此一直线称为工作共线。如果确定了两个点,则工作共线唯一地确定。因而,通过使用工作共线三个旋转轴当中可以根据两个旋转轴的转速求出其余旋转轴的转速。
此外,在行星齿轮120中,具有把各旋转轴的转矩置换成作用在工作共线上的力来表示时工作共线作为刚体保持平衡这样的性质。作为具体例子,令作用在行星架123上的转矩为Te。此时,如图3中所示,使大小与转矩Te相当的力在位置C处从下向上竖直作用在工作共线上。所作用的方向根据转矩Te的方向来确定。此外,使从齿圈122所输出的转矩Tr在位置R处从上向下竖直作用在工作共线上。图中的Tes、Ter是基于作用在刚体上的力的分配法则把转矩Te分配成等效的两个力者。存在着成为“Tes=ρ/(1+ρ)×Te”“Ter=1/(1+ρ)×Te”的关系。如果考虑在以上的力作用的状态下,工作共线图能作为刚体取平衡的条件,则可以求出应该作用在太阳轮121上的转矩Tm1、应该作用在齿圈轴上的转矩Tm2。转矩Tm1等于转矩Tes,转矩Tm2等于转矩Tr与转矩Ter之差。
考虑图2中的构成D,也就是制动器162成为分离的状态。在此一状态下,齿圈122能自由旋转。在图3的共线图中,成为在与齿圈122相对应的R位置上,一切转矩均未施加。在这种情况下,不能保持把工作共线作为刚体取平衡的状态。因而,在图2中的构成D中,不能进行由电动机130进行的再生。当然,如果蓄电池194的充电状态上有裕度,则把电力供给到电动机140而行驶是可能的。
本实施例的混合车辆,基于行星齿轮120的性质,能够运用的发动机150的转速存在着与车速相对应的限制。例如,考虑在图3的共线图中,齿圈122也就是车轴116以某个转速Nr旋转的场合。也就是说,考虑齿圈122的旋转状态处于用图3中的点Pr来表示的状态的场合。在此一场合,发动机150的转速为Ne时,共线图如已经说明的,由图3中的实线来表示。
另一方面,在齿圈122在点Pr处旋转的场合中,考虑发动机150的转速上升到图3中的点Pe的场合。这种场合的共线图成为如图3中的虚线所示,太阳轮121成为在点Ps处旋转。此时,太阳轮121以非常高的转速旋转。
一般对于齿轮来说能够旋转而不招致损坏的转速存在着上限值。点Ps就太阳轮121而言有可能超过这种上限值。在这种场合,有必要使发动机150的转速低于点Pe。这样一来,本实施例的混合车辆根据齿圈122的转速如图4中所示对发动机150的转速设有限制。在发动机150的转速低的场合,因为太阳轮121有可能高速反转,故发动机150的转速中不仅存在着上限值而且存在着下限值。
(2)运行控制处理下面就本实施例的混合车辆的运行控制处理进行说明。如前面说明的,本实施例的混合车辆可以切换作为串联混合车辆的构成(以下称为串联方式)、作为并联混合车辆的构成(以下称为并联方式),按种种运行方式来行驶。控制单元190内的CPU(以下单称“CPU”)根据车辆的运行状态来判定运行方式,针对各个方式来实行发动机150,电动机130、140和离合器160,制动器162等的控制。这些控制通过CPU周期地实行运行控制处理子程序来进行。
图5是运行控制处理子程序的程序框图。一开始此一处理,CPU就首先实行运行方式切换处理(步骤S100)。运行方式切换处理的子程序示于图6。
在运行方式切换处理子程序中,CPU读入关于车辆运行状态的种种参数(步骤S102)。作为这种参数有挡位、车速、要求转矩、蓄电池剩余容量、发动机运行状态等。挡位由挡位传感器166来检测。车速由车轴的转速传感器117来检测。要求转矩可以基于由加速踏板位置传感器165所检测的加速踏板位置和车速来计算。蓄电池的剩余容量由剩余容量传感器来检测。所谓发动机运行状态是指发动机150当前是否正在运行,可以通过与EFIECU170的通信来检测。
基于这样检测的运行状态,CPU按照预先设定的条件依次判定运行方式。首先判定挡位是否处于R位置,也就是后退位置(步骤S104)。在处于R位置的场合选择串联方式(步骤S130)。
在挡位不是R位置的场合,接着判定由车速和要求转矩确定的行驶状态是否进入串联区域(步骤S106)。所谓串联区域是指混合车辆能够行驶的转矩和车速的组合当中,作为应该按串联方式行驶所设定的区域。本实施例中的设定例示于图7。
图中的曲线LIM表示混合车辆能够行驶的区域。图中带阴影线的区域意味着应该按并联方式行驶的区域,其他区域意味着应该按串联方式行驶的区域。虚线A是下文述及的工作曲线。如图所示,在要求转矩比较小的区域内和车辆正在停车时,设定成运用串联方式。在车速和转矩超过规定值的区域内,按并联方式进行行驶。在本实施例中,这种设定作为图形储存在控制单元190内的ROM中。CPU在步骤S106里基于车速和要求转矩参照这种图形设定混合车辆的运行方式。在判定成处于应该按串联方式运行的区域内的场合,作为运行方式选择串联方式(步骤S130)。
在车辆的行驶状态不在串联区域内的场合,CPU判定是否处于应该进行发动机150的起动和停止的状态(步骤S120)。例如在发动机150停止的场合里在蓄电池194的剩余容量小于规定值时,有必要起动发动机150用电动机130发电而进行蓄电池194的充电。相反在发动机150运行的场合里在蓄电池194的剩余容量超过规定值时,有必要停止发动机150的运行停止电动机130中的发电而防止蓄电池194的过充电。这样一来CPU主要基于蓄电池194的充电状态和发动机150当前的运行状态来判定是否应该进行发动机150的起动和停止。在处于应该进行发动机150的起动和停止的运行状态的场合,选择串联方式(步骤S130)。
本实施例的混合车辆,因为在并联方式中也能够进行发动机150的起动和停止,故不考虑应该进行发动机150的起动和停止的运行状态而设定运行方式也是可能的。但是,因为在并联方式中为了进行发动机150的起动和停止,从电动机130所输出的转矩还经由齿圈122输出到车轴116,故容易产生转矩冲击。虽然原理上控制电动机140来抵销转矩冲击也是可能的,但是跟踪发动机150起动和停止时输出到齿圈122的转矩变动来控制电动机140,完全地抵销转矩冲击是困难的。在本实施例中,在发动机150起动和停止时取为串联方式,借此避免这种转矩冲击的产生。
在不满足以上所示的任何一个判定条件的场合,选择并联方式(步骤S122)。再者,在本实施例中像这样设定运行方式的理由下文述及。
在指定并联方式的场合,根据从前的构成是否是串联方式来判定是否应该进行方式变更(步骤S124)。在从前的构成为串联方式的场合,进行向并联方式的切换(步骤S126)。在从前的构成为并联方式的场合,跳过此一处理。
在指定串联方式的场合,同样根据从前的构成是否是并联方式来判定是否应该进行方式变更(步骤S132),在从前的构成为并联方式的场合, 实行向串联方式的切换(步骤S134)。在从前的构成为串联方式的场合,跳过此一处理。
再者,并联方式与串联方式的切换,在本实施例中,经由图2中的构成D来进行。例如,在进行从并联方式(图2的构成C)向串联方式(图2的构成B)切换的场合,一度使离合器160分离,成为制动器162和离合器160双方分离的状态(构成D)。然后,使制动器162结合而达到串联方式(构成B)。从串联方式(构成B)向并联方式(构成C)切换时也同样,一度使制动器162分离而成为构成D之后,使离合器160结合而达到并联方式(构成C)。
虽然也可以制成同时控制离合器160和制动器162的结合分离者,但是也有通过两者控制的时间分配而瞬间地成为离合器160和制动器162双方结合的状态(构成A)的可能性。如果在行驶中达到这种构成,则有可能产生很大的转矩冲击。在本实施例中,通过像这样经由构成D来切换,对这种冲击防范于未然。
通过以上的处理,运行方式的切换一结束,CPU就返回运行控制处理(图5)。运行方式被设定之后,实行用来从车轴116输出所要求的动力的控制处理。此一控制内容根据是否是发动机150的起动和停止方式而异。因而,CPU判断是否是应该进行发动机150的起动和停止的状态(步骤S200)。此一判断内容,与运行方式切换处理(图6)的步骤S120中的判断相同。在判断成不是应该进行发动机150的起动和停止的状态的场合,作为当通常的行驶状态的场合用来从车轴116输出动力的处理实行转矩控制处理(步骤S300)。在其他场合实行用来一边从车轴116输出动力,一边还进行发动机150的起动和停止的起动·停止控制处理(步骤S400)。
首先,就转矩控制处理的内容进行说明。图8是表示转矩控制处理的内容的程序框图。并联方式和串联方式通过同样的处理来控制。但是,如下文所述,发动机150,电动机130、140的运行点的设定内容因方式的不同而异。当然,也可以根据运行点的设定方法准备各不相同的转矩控制子程序。
此一处理一开始CPU就设定应该从驱动轴,也就是车轴116输出的能量Pd(步骤S302)。此一动力基于由加速踏板位置传感器165所检测的加速踏板踏下量来设定。应该从驱动轴输出的能量Pd用车轴116的目标转速Nd*和转矩Td*之积来表示。虽然在程序框图中省略了图示,但是在设定从驱动轴输出的能量Pd的同时还设定车轴116的目标转速Nd*和目标转矩Td*的组合。
接着,计算充电放电电力Pb和辅机驱动能量Ph(步骤S304、S306)。所谓充电放电电力Pb是指蓄电池194的充电放电所需的能量,在有必要给蓄电池194充电的场合取正值,在有必要放电的场合取负值。所谓辅机驱动能量Ph是用来驱动空调等辅机所需的能量。这样计算的电力的总和成为要求动力Pe(步骤S308)。
再者,在转矩控制子程序中,考虑每单位时间的能量收支来实行发动机150等的控制。因而,在本说明书中,在说到能量的场合全都意味着单位时间的能量。在此一意味下,在本说明书中,机械能量与动力同义,电气能量与电力同义。此外,为了说明容易,取为车轴116与齿圈122之间未设变速机。也就是说,取为车轴116的转速和转矩等于齿圈122的转速和转矩。
接着,CPU基于这样设定的要求动力Pe来设定发动机150的运行点(步骤S310)。所谓运行点,是指发动机150的目标转速Ne和目标转矩Te的组合。发动机150的运行点,按照预定的图形,基本上以发动机150的运行效率为优先来设定。
图9是这种图形的例子。图9把发动机的转速Ne取为横轴,把转矩Te取为纵轴,表示发动机150的运行状态。图中的曲线B表示发动机150能够运行的极限范围。曲线α1至α6表示发动机150的运行效率一定的运行点。运行效率按α1至α6的顺序降低。此外,曲线C1至C3分别表示从发动机150所输出的动力(转速×转矩)一定的线。
发动机150如图9中所示,运行效率根据转速和转矩而大不相同。在从发动机150输出相当于曲线C1的动力的场合,在相当于图9中的A1点的运行点(转速和转矩)处运行发动机150时运行效率最高。同样在输出相当于曲线C2和C3的动力的场合在图9中的A2和A3点处运行时效率最高。如果在每个应该输出的动力中选择运行效率最高的运行点,则得到图9中的曲线A。把它称为工作曲线。再者,此一曲线A与前面图7中所示的曲线A相同。工作曲线A预先通过实验或分析来设定,作为图形储存在控制单元190内的ROM中。
图8的步骤S310里的运行点的设定中,从上述图形读入与要求动力Pe相对应的运行点,借此来设定发动机150的目标转速Ne和目标转矩Te。这样一来,可以设定效率高的运行点。发动机150的运行点的设定在串联方式和并联方式的场合是相同的。
接着CPU设定电动机130、140的转矩和转速的指令值(步骤S312)。这些指令值在串联方式和并联方式中不同。
在串联方式的场合,对车轴116所要求的动力完全由电动机140输出。因而,电动机140的目标转速N2和目标转矩T2与车轴116的目标转速Nd*和目标转矩Td*相一致。如前面说明的,本实施例的混合车辆在挡位处于后退位置的场合成为串联方式。因而,在串联方式中目标转速Nd*有时成为后退方向,也就是负值。即使是在这种场合电动机140的设定值在与车轴116的目标转速Nd*和目标转矩Td*相一致上也没有改变。
另一方面,电动机130的运行点设定成使发动机150的运行状态成为步骤S310中所设定的目标转速Ne、目标转矩Te。也就是说,在前面所示的式(1)中,把值0代入齿圈122的转速Nr,把发动机150的目标转速Ne和目标转矩Te代入行星架123的转速Nc和转矩Tc,求出太阳轮121的转速Ns、转矩Ts,借此电动机130的目标转速N1、转矩T1如下设定。
N1=(1+ρ)/ρ×Ne;T1=Tc×ρ/(1+ρ);在并联方式的场合,设定电动机130、140的目标转速,以便齿圈122的转速Nr与车轴116的目标转速Nd*相一致。电动机140以与车轴116相同的转速旋转。因而电动机140的目标转速N2与车轴116的目标转速Nd*相一致。电动机130的目标转速N1通过在前面所示的式(1)中把车轴116的目标转速Nd*代入齿圈122的转速Nr,把发动机150的目标转速Ne代入行星架123的转速Nc,如下来设定。
N1=(1+ρ)/ρ×Ne-Nd*/ρ;此外,电动机130、140的目标转矩T1、T2分别设定成使输出到车轴116的转矩与要求转矩Td*相一致。如果用前面所示的式(1),则在从发动机150输出转矩Te时,齿圈122的转矩Tr和太阳轮121的转矩Ts分别如下求出。
Ts=Te×ρ/(1+ρ);Tr=Te/(1+ρ);因而,电动机130的目标转矩T1设定成使得施加相当于太阳轮121的转矩Ts的负载,以便能够在目标运行点Te处运行发动机150。具体地说,T1=-Ts。此外,电动机140的目标转矩T2设定成使得补偿从发动机150传递到齿圈122的转矩而得到要求转矩Td*。具体地说为“T2=Td*-Tr”。
通过以上的处理,设定了电动机130、140的运行点。再者,本实施例的混合车辆在各个运行方式中在停止发动机150的状态下行驶也是可能的。在这种场合,可以通过把发动机150的转速Ne、转矩Te取为值0,来设定电动机130、140的运行点。
CPU基于这样设定的转矩指令值和转速指令值来控制电动机130、140,发动机150的运行(步骤S314)。电动机的运行控制处理可以运用作为同步电动机的控制而公知的处理。在本实施例中,实行由所谓比例积分控制进行的控制。也就是说,检测各电动机当前的转速,基于与目标转速的偏差来设定施加于各相的电压值。所施加的电压值由上述偏差的比例项、积分项、累计项来设定。加在各个项的比例系数通过实验等设定成适当的值。这样设定的电压置换成构成驱动电路191、192的晶体管逆变器的切换占空比,通过所谓PWM施加于各电动机。
CPU控制驱动电路190、191的切换,借此如上所述直接控制电动机130、140的运行。与此相反,发动机150的运行现实地是由EFIECU170实施的处理。因而,控制单元190的CPU对EFIECU170输出发动机150运行点的信息,借此间接地控制发动机150的运行。这样一来,本实施例的混合车辆可以从车轴116输出通常行驶时所要求的转速和转矩组成的动力而行驶。
下面,就图5的步骤S400的发动机的起动·停止处理进行说明。图10是起动·停止处理子程序的程序框图。一开始此一处理,CPU就计算来自车轴116的输出能量Pd(步骤S404)。输出能量Pd的计算方法与在转矩控制子程序(图8)的步骤S302~S308里说明的处理相同。
CPU基于这样设定的驱动轴输出能量Pd来设定电动机130、140的运行点(步骤S404)。如前面运行方式切换处理子程序(图6)中所示,本实施例的混合车辆在进行发动机150的起动和停止时取为串联方式。因而,电动机140的目标转速N2、目标转矩T2与车轴116的目标转速Nd*和目标转矩Td*相一致。
另一方面,电动机130的目标转速N1和目标转矩T1设定于用来进行发动机150的起动和停止的运行点。例如,设定电动机130的目标转矩,以便在起动发动机150的场合,发动机150的拖动所需的转矩输出到行星架123。此外,设定电动机130的目标转速N1,以便发动机150的转速按起动时所确定的规定顺序上升。相反在停止发动机150的场合,设定电动机130的目标转矩,以便制动发动机150的旋转所需的转矩输出到行星架123。此外,设定电动机130的目标转速N1,以便停止时的转速按规定的顺序降低。在前面所示的式(1)中,把拖动时的转速、转矩代入行星架123的转速Nc、转矩Tc,借此可以设定电动机130的目标转速和转矩。
再者,根据运行方式切换处理(图6)的内容,设定成在并联方式中进行发动机150的起动和停止也是可能的。在这种场合,把作为在起动和停止发动机150之际的顺序所设定的转速取为发动机150的目标转速Ne,把起动和停止之际应该输出到行星架轴的转矩上带负号的值取为发动机150的目标转矩Te,借此可以按与前面说明的并联方式中的电动机130、140的运行点的设定方法相同的方法来设定各个运行点。
通过以上的处理,设定了进行发动机150的起动和停止之际的运行点。CPU基于这些设定来控制电动机130、140和发动机150的运行(步骤S406)。电动机130、140的控制与前面转矩控制子程序中说明的同样。发动机150的控制也是,在CPU通过与EFIECU170的通信间接地控制发动机150这一点上与转矩控制子程序相同。这里,EFIECU170实行的发动机150的控制内容不同。例如,在起动发动机150的场合,在发动机150的转速通过拖动上升到预定的规定转速的时刻进行喷射燃油、点火的控制。在停止发动机150的场合进行禁止发动机150的燃油喷射的控制。这样一来,本实施例的混合车辆可以一边从车轴116输出由所要求的转速和转矩组成的动力,一边进行发动机150的起动和停止而行驶。
CPU一结束这样转矩控制处理或起动·停止控制处理,就返回到运行控制子程序(图5),接着实行共振控制处理(步骤S500)。
图11是共振控制处理的程序框图。此一处理是用来抑制行星轮120的旋转轴上产生的扭转共振的控制。因为容易产生共振的旋转轴根据运行方式而异,故处理内容根据运行方式来划分。
一开始此一处理CPU就判断是否是串联方式(步骤S502)。这是因为如前面说明的,处理内容根据运行方式而不同的缘故。
在是串联方式的场合,接着检测结合于行星架123的旋转轴(以下称为行星架轴)是否共振(步骤S504)。靠传感器119来检测行星架轴的转速,经由带通滤波器来处理检测结果,借此来检测转速是否进入产生共振的频带区域。行星架轴的共振在发动机150起动和停止时容易产生。
在判断成行星架轴未共振的场合,因为不需要用来抑制共振的处理,故结束共振抑制控制处理。在判断成正在共振的场合,CPU求出共振经过时间(步骤S506)。所谓共振经过时间意味着从行星架轴的转速进入共振频带区域起的经过时间。
接着,CPU基于这样求出的共振经过时间来设定制动器162的油压(步骤S508)。在本实施例中,共振经过时间与制动器162的油压的关系作为表预先设定并储存在控制单元190的ROM中。CPU在步骤S508里参照此一表来设定制动器162的油压。
图12是表示本实施例中的制动器油压的设定例的说明图。设定成在共振经过时间增加的同时,制动器油压从初始值Bi变化到结束值Bf。在本实施例中,如图所示,设定成直到共振经过时间达到t1都维持初始值Bi,然后慢慢降低制动器油压,在时间t2达到结束值Bf。
制动器油压在串联方式中与约束齿圈122的旋转的转矩成比例。这样一来如果降低制动器油压,则约束齿圈122的转矩与油压相对应地减小,成为能够旋转。因而,从前面所示的式(1)可以看出,从电动机130输出到行星架轴的转矩减小。因为行星架轴的共振是随着从电动机130所输出的转矩与发动机150的惯性力相比过大而产生的弹性振动,故通过减小来自电动机130的转矩可以抑制共振。
在本实施例中,根据这种观点把制动器油压降低到能够抑制行星架轴共振的程度。其结束值Bf基于以下条件来设定。第1,值Bf设定成低于输出行星架轴因扭转共振而断裂的最大转矩,也就是与行星架轴的扭转强度相当的转矩的制动器油压Btb。在图12中,虽然初始值Bi超过这种制动器油压Btb,但这是由于并不是在产生共振的瞬间就产生扭转引起的断裂,也可以把初始值Bi设定成低于上述制动器油压Btb。
作为第2条件结束值Bf设定成低于不产生车辆的振动的极限值Bos。在行星架轴上产生共振的场合,因为动力系统固定于车辆,故整个车辆上产生振动。这种振动随着共振的削弱而减小。极限值Bos是通过实验等预先设定的值,意味着车辆的振动抑制到乘员能够允许的程度的极限的上限制动器油压。
作为第3条件,结束值Bf设定成超过能够把发动机150的拖动和停止所需的转矩输出到行星架轴的下限值Bmin。行星架轴的共振在发动机150起动和停止时产生。通过把制动器油压的结束值Bf设定成超过上述下限值Bmin,即使在实行共振抑制控制的场合也可以继续发动机150的起动和停止。因为发动机150起动和停止所需的转矩比较小,故可以不招致行星架轴的断裂或车辆的极端振动地设定结束值Bf。如果像这样按照图12的图形来设定制动器162的油压,则CPU把制动器162的油压降低到该设定值(步骤S510)。
再者,虽然在图12中,在时间t1~t2之间直线地降低制动器162的油压,但是不限于这种设定,也可以使之非线性地变化。此外,也没有单调减少的必要,例如也可以在一度大大降低制动器油压之后,维持稍稍升高的状态。
另一方面,在步骤S502里判断成是并联方式的场合,CPU判定结合于齿圈122的旋转轴(以下称为齿圈轴)是否共振(步骤S512)。共振的判定与行星架轴的场合(步骤S504)同样, 靠传感器118来检测齿圈轴的转速,靠带通滤波器来处理,借此来检测。齿圈轴的共振在急起步和急制动的场合容易产生。
在判断成齿圈轴未共振的场合,因为不需要用来抑制共振的处理,故结束共振抑制控制处理子程序。在判断成正在共振的场合,CPU求出共振经过时间(步骤S514)。所谓共振经过时间意味着从齿圈轴的转速进入共振频带区域起的经过时间。
接着,CPU基于这样求出的共振经过时间来设定离合器160的油压(步骤S516)。在本实施例中,共振经过时间与离合器160的油压的关系作为表预先设定并储存在控制单元190的ROM中。CPU在步骤S516里参照此一表来设定离合器160的油压。
图13是表示本实施例中的离合器油压的设定例的说明图。设定成在共振经过时间增加的同时,离合器油压从初始值Ci变化到结束值Cf。在本实施例中,如图所示,设定成直到共振经过时间达到t3都维持初始值Ci,然后慢慢降低离合器油压,在时间t4达到结束值Cf。
如果降低离合器油压,则施加在齿圈轴上的转矩与油压相对应地减小。因为齿圈轴的共振随着从车轴116施加在齿圈轴上的转矩与发动机150和电动机130的惯性力相比过大而产生弹性振动,故通过减小从车轴116所传递的转矩可以抑制齿圈轴的共振。
在本实施例中,根据这种观点把离合器油压降低到能够抑制齿圈轴共振的程度。其结束值Cf与制动器油压同样,设定成低于传递齿圈轴因扭转共振而断裂的最大转矩,也就是与齿圈轴的扭转强度相当的转矩的离合器油压Ctb,此外,设定成超过可以传递电动机130能够再生制动的转矩的离合器油压Cmin。在车辆制动时,虽然能够使电动机140再生运行而作为电力回收车辆的动能,但是通过把离合器油压设定成超过Cmin,进行电动机130的再生制动也成为可能,可以效率更高地回收动能。如果像这样按照图13的图形来设定离合器160的油压,则CPU把离合器160的油压降低到该设定值(步骤S510)。
再者,因为齿圈轴的共振发生在急起步和急制动时,故在图13中与制动器油压的设定不同,虽然未考虑不发生车辆的振动用的上限值,但是当然也可以考虑这种上限值来设定。
在本实施例中,因为发动机150起动和停止时将选择串联方式来设定,故在并联方式时不实行抑制行星架轴的共振的控制。与此相反,在即使在并联方式中也能进行发动机150的起动和停止地设定运行方式的场合,也可以在并联方式中实行步骤S504~S510中所示的处理。
通过周期地实行以上的处理,本实施例的混合车辆可以把从发动机150所输出的动力转换成想要的转速和转矩从驱动轴输出,进行行驶。此外,还可以进行发动机的起动和停止。进而,还可以抑制行星架轴或齿圈轴上产生的共振。
下面,就车辆的行驶状态与运行方式的关系(图7)的设定方法进行说明。在本实施例中,第1把也包括正在停车而车速和转矩比较低的区域(图7中的区域S1)和后退区域取为串联方式。此外,即使在车速高的部分也把转矩比较小的区域(图7中的区域S2)取为串联方式。
一般来说混合车辆在缓慢起步时靠电动机的动力来起步。这样一来,存在着可以避免在燃油消耗恶化的状态下运行发动机150,此外可以顺利地使车辆起步等优点。本实施例的混合车辆因为也发挥这种优点,故仅利用电动机的动力来起步。在仅利用来自电动机的动力的场合,串联方式的构成更容易控制。在本实施例中,根据这种观点来设定仅利用电动机的动力行驶的区域,也就是图7中的区域S1。此一区域的范围具体地说可以基于从电动机140能够输出的转矩的大小等来设定。
通过把区域S1和倒车区域设定成串联方式,本实施例的混合车辆具有以下所示的种种优点。第1是发动机150起动和停止时的优点。混合车辆起步后,随着加速而起动发动机150,也利用来自发动机150的动力进行行驶。在本实施例中,如前面说明的,在发动机150起动时将成为串联方式地设定,避免转矩冲击。包含从利用电动机140的动力来进行行驶的区域向利用发动机150的动力的区域的过渡区域在内地设定区域S1,借此在发动机150起动时不进行运行方式的切换,而可以起动发动机150。在停止发动机150的运行之际也可以得到同样的优点。
第2是正在停车时进行发动机150的起动和停止的场合中的优点。本实施例的混合车辆即使正在停车也根据蓄电池194的充电状态来驱动或停止发动机150。运行发动机150由电动机130进行发电给蓄电池194充电在串联方式和并联方式双方的构成中都是可能的。但是,在并联方式中在发动机150起动和停止时无法完全抵销输出到车轴116的转矩,存在着产生转矩冲击的可能性。正在停车或以微速行驶的场合,驾驶员和乘员特别敏感地感受到这种转矩冲击。在本实施例中,正在停车或以微速行驶的场合,通过设定成为串联方式的区域S1,可以避免这种转矩冲击,提高混合车辆的乘坐舒适性。
下面,就即使在车速高的部分中也把转矩较小的区域(图7中的区域S2)取为串联方式的理由进行说明。这种区域基于串联方式和并联方式的运行效率来设定。图14是比较地示出两者的运行效率的说明图。这里示出在图7中的某个车速V下,要求转矩变化的场合的运行效率,也就是沿图7中的直线L的运行效率的变化。
如已经用图34~图36说明的,在并联方式中在减速传动行驶时运行效率高,在增速传动行驶时因为产生动力循环,故运行效率降低。所谓减速传动行驶,是把从发动机150所输出的动力转换成转速低转矩大的状态而输出的行驶状态。所谓增速传动行驶是把从发动机150所输出的动力转换成转速高转矩小的状态而输出的行驶状态。因而,在并联方式中,如图14中所示,在要求比较大的转矩的区域中运行效率高,在产生动力循环的转矩Ta以下的区域中运行效率降低。
此外,在并联方式中基于前面说明的转速限制(图4)有时运行效率进一步降低。图15中示出增速传动状态下的共线图的例子。车速,也就是齿圈122的转速显示相当于由图中的点Nr所示的转速的状态。在要求转矩比较小的场合,发动机150的转速由图7的工作曲线A上的点A3来设定。此时,基于前面说明的行星齿轮120的作用,太阳轮121的转速成为相当于图15中的点Ns1的值。太阳轮121以非常高速反转。如上所述在行星齿轮120中存在着机械的转速限制。在图15的旋转状态下,太阳轮121的转速有时超过这种限制值Nlim。
像这样在本实施例的混合车辆中,因为行星齿轮120的转速限制,有时发动机150无法在工作曲线A上的运行点处运行。在上述例子中,为了把太阳轮121的转速抑制到限制值Nlim以下,有必要把发动机150的转速增加到例如由点A4所示的点。也就是说,有必要在图7中的点A4处运行发动机150。如果像这样使发动机150在离开工作曲线A的运行点处运行,则运行效率因此而降低。基于这种原因,在并联方式中,如图14中所示在要求转矩小于Tb的区域中运行效率进一步降低。
另一方面,在串联方式中,不产生基于动力循环或行星齿轮120的转速限制的运行效率的降低。因而,如图14中所示,可以与要求转矩的变化无关地得到比较稳定的运行效率。但是,在串联方式中,一度把从发动机150所输出的动力全都转换成电力之际的损失很大,最高的运行效率低于并联方式。
在本实施例中,像这样根据要求转矩与车速的关系预先求出并联方式和串联方式的运行效率,选择运行效率更高的运行方式。在图14的例子中,在要求转矩超过值Tc的区域中选择并联方式,在要求转矩小于值Tc的区域中选择串联方式。虽然在图7中在要求转矩小于工作曲线A的区域中设定串联方式,但是不一定就维持这种关系。此外,为了抑制并联方式与串联方式的频繁切换,当然也可以设置一定的滞环来进行切换。
如果用以上说明的本实施例的混合车辆,则可以根据车辆的行驶状态分别使用并联方式和串联方式,可以进行发挥两者的特性的运行。因而,可以提高混合车辆的运行效率,此外可以改善乘坐舒适性。
具体地说,第1如前面用图14和图7说明的,本实施例的混合车辆可以根据车速和要求转矩在并联方式和串联方式当中选择运行效率更高的运行方式来进行行驶。因而,与固定成并联方式或串联方式的某一种构成的以往的混合车辆相比,可以与车辆的行驶状态无关地提高运行效率。
第2本实施例的混合车辆,如图6的运行方式切换处理中说明的,以串联方式来进行发动机150的起动和停止。因而,可以几乎不产生转矩冲击地进行发动机150的起动和停止,可以大大提高乘坐舒适性。
第3在本实施例中如图7中所示,正在停车和微速行驶时取为串联方式。因此除了可以避免在这种行驶状态下进行发动机150的起动和停止的场合的转矩冲击之外,还可以不伴随运行方式的切换地进行从仅利用电动机140的动力的行驶状态向利用发动机150的动力的行驶状态的过渡。因而,如果用本实施例的混合车辆,则顺利地过渡行驶状态成为可能。
第4在本实施例中,如在运行方式切换处理(图6)中所示,在后退时取为串联方式。在一边运行发动机150一边后退之际,没有必要抵销来自发动机150的转矩,可以从电动机140输出足够的后退转矩。此外,因为可以与发动机150的运行状态无关地容易地控制电动机140,故可以实现顺利的后退。还有总体的控制处理变得容易而减轻控制单元190的负担这样的优点。
第5在本实施例的混合车辆中,控制离合器160和制动器162的油压,借此可以抑制在行星齿轮120的旋转轴上产生的共振。因而可以抑制基于这种共振而产生的车辆的振动,可以大大提高乘坐舒适性。此外,可以抑制行星齿轮120的磨损或损坏,延长寿命。
本实施例的混合车辆,虽然可以得到上述种种效果,但是上述实施例中所示的种种控制只不过是一个例子。例如,图7中所示的运行方式与行驶状态的关系不限于此,种种的设定是可能的。即使正在停车、微速行驶、正在后退时也可以取为并联方式。在这种场合,在根据蓄电池194的剩余容量判断成需要充电时进行向串联方式的切换而起动发动机150也是可能的。
在本实施例中,作为把来自发动机150的动力分配成机械的动力和电力的机构用行星齿轮120和电动机130。分配动力的机构能够运用其他种种的构成。
作为第1实施例的变形例的混合车辆的构成示于图16。在变形例的混合车辆中,作为动力系统备有发动机150、离合器电动机230、电动机140A。所谓离合器电动机230是指内转子232、外转子233能够同轴周向相对旋转的双转子电动机。离合器电动机230的内转子232结合于发动机150的曲轴156。外转子233结合于车轴116。在车轴116一侧,与第1实施例(图1)同样,结合着电动机140A。
离合器电动机230如已经说明的,作为双转子的同步电动发电机来构成,备有在外周面上有多个永久磁铁的内转子232,和卷绕了形成旋转磁场的三相线圈的外转子233。离合器电动机230通过内转子232上备有的永久磁铁引起的磁场与由外转子233上备有的三相线圈所形成的磁场的相互作用作为两者相对旋转驱动的电动机来工作,根据情况通过它们的相互作用还作为在卷绕在外转子233上的三相线圈的两端产生电动势的发电机来工作。在三相线圈上经由滑环完成电力的交换。
离合器电动机230因为内转子232和外转子233双方能够旋转,故可以把从一方所输入的动力传递到另一方。如果使离合器电动机230作为电动机拖动运行则可以传递在另一方轴上施加转矩的动力,如果作为电动发电机再生运行则可以以电力的形式取出一部分动力而传递剩余的动力。此外,如果既不进行拖动运行也不进行再生运行,则成为不传递动力的状态。此一状态相当于机械上的释放离合器的状态。
变形例的混合车辆与第1实施例(图1)同样在离合器电动机230与电动机140A之间备有离合器160A。此外,在离合器160A的上游侧备有制动器162A。根据离合器160A和制动器162A的结合状态,变形例的混合车辆可以取为种种构成。
图17是表示变形例的混合车辆可以取为的构成的说明图。使离合器160A和制动器162A同时成为工作状态的场合的构成A1示于图中的左上方。此一结合状态相当于第1实施例(图2)的构成A。在这种构成中,外转子233的旋转被制动器162A所制止。在使离合器160A结合的状态下,外转子233与车轴116直接结合。因而,在构成A1中车轴116的旋转也被制动器162A所制止。
使制动器162A成为工作状态并使离合器160A分离的场合的构成B1示于图中的右上方。此一构成相当于第1实施例(图2)的构成B。在这种构成中,与构成A1同样,外转子233的旋转被制动器162A所制止。但是,因为离合器160A成为分离,故车轴116能够旋转。而且,因为离合器160A设在电动机140的上游侧,所以可以把动力从电动机140输出到车轴116。另一方面,通过离合器电动机230的作用,即使外转子233的旋转被制动器162A所制止发动机150也能够旋转。因而,在构成B1中,能够把从发动机150所输出的动力在离合器电动机230中作为电力再生。通过以上,构成B1成为有作为串联混合车辆的构成。
接着,使制动器162A分离并使离合器160A结合的构成C1示于图中的左下方。此一构成相当于第1实施例(图2)的构成C。在此一状态下,外转子233能够与车轴116一起旋转。从发动机150所输出的动力,一部分靠离合器电动机230传递到外转子233一侧,剩余动力作为电力再生。此一电力用于电动机140A的驱动等。因而,构成C1成为有作为并联混合车辆的构成。
就构成C1中转换从发动机150所输出的动力并输出到车轴116的方法进行说明。首先,就减速传动,也就是把从发动机150所输出的动力转换成转速抵转矩大的状态并输出的状态进行说明。根据构成C1的结合状态可以看出,车轴116与外转子233的转速相等。因而,在减速传动行驶时,离合器电动机230的外转子233以低于内转子232的转速旋转。这相当于离合器电动机230相对于从内转子232传递到外转子233的转矩的方向进行反转的状态。因而,在离合器电动机230中可以再生与内转子232与外转子233的滑差相对应的电力。
根据作用·反作用的原理,内转子232与外转子233的转矩相等。因而,传递到离合器电动机230的外转子233一侧的转矩等于发动机150的转矩。在减速传动行驶时,要求大于发动机150输出的转矩的转矩。因而,通过把电力供给到电动机140A进行拖动,输出相当于要求转矩与从发动机150所输出的转矩之差的转矩。在此一电力中,主要利用在离合器电动机230中所再生的电力。因而,在减速传动行驶时,与第1实施例的混合车辆同样,再生从发动机150所输出的动力的一部分的电力从位于上游侧的离合器电动机230供给到位于下游侧的电动机140A。因此,变形例的混合车辆在减速传动时不产生动力循环。
下面就增速传动行驶,也就是把从发动机150所输出的动力转换成转速高转矩小的状态并输出的状态进行说明。在增速传动行驶时,离合器电动机230的外转子233以高于内转子232的转速旋转。这相当于离合器电动机230相对于从内转子232传递到外转子233的转矩的方向进行顺向旋转的状态。因而,离合器电动机230接收与内转子232与外转子233的滑差相对应的电力的供给而被拖动。
在增速传动行驶时,要求小于发动机150输出的转矩的转矩。因而,减小靠电动机140A加载而输出到车轴116的转矩。也就是说,在电动机140A中再生电力。此一电力主要供给离合器电动机230的拖动。因而,在减速传动行驶时,与第1实施例的混合车辆同样,从发动机150所输出的动力的一部分在位于下游侧的电动机140A中再生,供给到位于上游侧的离合器电动机230。因此,变形例的混合车辆在增速传动行驶时产生动力循环,运行效率降低。
最后,使制动器162A和离合器160A双方分离的场合的构成D1示于图中的右下方。此一构成相当于第1实施例(图2)的构成D。在此一状态下,外转子233能自由旋转。因为离合器160A成为分离,故车轴116也能够旋转。但是,在此一场合,不能在离合器电动机230中把从发动机150所输出的动力再生。这是因为虽然为了再生电力,有必要在内转子232与外转子233之间产生相对滑动,但是在构成D1中,因为是外转子233能够自由旋转的状态,故在两个转子间未产生足够的滑差的缘故。在构成D1中,如果是蓄电池194的充电状态中有储备的场合,则能够把电力供给到电动机140A而行驶。
像这样变形例的混合车辆,构成A1~D1分别相当于第1实施例的构成A~D,在运行效率等方面几乎具有同等的性质。因而,如果对运行方式与车辆的行驶状态的关系(图7)进行与变形例的混合车辆的构成相对应的适当的设定,则以与第1实施例同样的形态运用本发明是可能的。结果,如果用变形例的混合车辆,则与第1实施例同样,可以实现发挥并联方式和串联方式的优点的运行,可以谋求运行效率和乘坐舒适性的提高。
(3)第2实施例下面就作为本发明的第2实施例的混合车辆进行说明。图18是表示第2实施例的混合车辆的构成的说明图。在本实施例中也是,作为动力系统从上游侧备有发动机150,电动机130B、140B,三者经由行星齿轮120B结合这一点上与第1实施例相同。此外,在行星齿轮120B与电动机140B之间设有第1离合器160这一点上也是相同的。
在第2实施例中,代替第1实施例的制动器162设有第2离合器161这一点不同。第2离合器161进行行星齿轮120B的齿圈122B和行星架123B的结合和分离。工作由控制单元190来控制。再者,虽然为了避免图面的繁杂而在图18中省略了图示,但是与第1实施例同样分别设有传感器类。
第2实施例的混合车辆,根据第1离合器160和第2离合器161的结合状态可以取为四种构成。图19是表示第2实施例的混合车辆的结合状态的说明图。
使第1离合器160和第2离合器161同时成为工作状态的场合的构成A2示于图中的左上方。在这种构成中,齿圈122B与行星架123B借助于第2离合器161一体旋转。如果考虑共线图的状态则可以看出,在两者一体旋转的场合,电动机130B也以同一转速旋转。此外,在第1离合器结合的状态下,齿圈122B与车轴116直接结合。因而,在构成A2中相当于发动机150、电动机130B、电动机140B和车轴116全都直接结合的状态。以下把此一运行方式称为直接结合方式。这种构成与第1实施例不同,是第2实施例特有的构成。
使第2离合器161成为结合状态并使第1离合器160分离的场合的构成B2示于图中的右上方。在这种构成中,与构成A2同样,齿圈122B与行星架123B靠第2离合器161而一体旋转。此外,电动机130B也以同一转速旋转。因而,相当于发动机150与电动机130B直接结合的状态。另一方面,可以把动力从电动机140B输出到车轴116。通过以上,构成B2成为有作为串联混合车辆的构成。
接着,使第2离合器161分离并使第1离合器160结合的构成C2示于图中的左下方。在此一状态下,行星齿轮120B根据共线图三个齿轮能够分别旋转。此外,齿圈122B能够与车轴116一起旋转。这种构成与前面作为并联混合车辆的例子在图34中说明的构成相同。因而,构成C2成为有作为并联混合车辆的构成。
最后,使第2离合器161和第1离合器160双方分离的场合的构成D2示于图中的右下方。在此一状态下,行星齿轮120B根据共线图三个齿轮能够分别旋转。此外,可以把动力从电动机140B输出到车轴116。但是,在此一场合,不能在电动机130B中把从发动机150所输出的动力再生。在构成D2中,因为使第2离合器161分离,齿圈122B的旋转状态未被确定,故无法在电动机130B中再生电力。
就第2实施例的混合车辆的运行控制子程序进行说明。运行控制子程序的总体流程与第1实施例(图5)相同。也就是说,控制单元190的CPU实现运行方式切换处理(步骤S100),在发动机150起动或停止的场合(步骤S200),实行起动·停止控制处理(步骤S400),在其他场合实行通常的转矩控制处理(步骤S300)。在这些处理之后,CPU实行共振抑制控制处理(步骤S500)。第2实施例的混合车辆重复实行这一系列处理而行驶。
在第2实施例中,上述处理当中运行方式切换处理的内容与第1实施例(图6)不同。图20是与第1实施例的不同之处的程序框图。与第1实施例的运行方式切换处理同样,一开始此一子程序,CPU就读入与车辆的行驶状态有关的诸量(图6的步骤S102),基于挡位是否处于R位置(步骤S104)、行驶状态是否符合串联区域(步骤S106)的条件,设定是否选择串联方式。这种判定与第1实施例同样,基于预先设定的表来进行。
在第2实施例中,在基于这些条件未选择串联方式的场合,CPU接着判定是否行驶状态处于直接结合区域,而且蓄电池194的剩余容量SOC大于规定值Slim(图20的步骤S110)。在满足这些条件的场合,选择直接结合方式(步骤S112),在需要从从前的方式切换的场合,进行向直接结合方式的切换处理(步骤S114、S116)。在根据这些判定未选择串联方式和直接结合方式中的某一种的场合,与第1实施例同样,基于蓄电池194的充电状态来判定是否应该进行发动机150的起动和停止(图6的步骤S120),在没有必要进行发动机150的起动和停止的场合,选择并联方式(步骤S122~S126)。在处于应该进行发动机150的起动和停止的状态的场合,选择串联方式(步骤S130~S134)。
串联区域(图6的S106)和直接结合区域(图20的步骤S110)的判断,与第1实施例同样,基于给出车辆的行驶状态与运行方式的关系的表来进行。第2实施例中的表的例子示于图21。图中加交叉阴影线的区域DC1、DC2是直接结合区域。加斜线阴影线的区域是并联方式的区域。其他区域是串联方式的区域。在本实施例的场合,串联方式的区域与第1实施例相同。
直接结合区域设定于图19中所示的发挥直接结合方式(构成A1)的优点的区域。构成A1如前面说明的,相当于发动机150、电动机130B、电动机140B全都直接结合于车轴的方式。因而,借助于从这三个动力源所输出的转矩,可以输出大于并联方式的转矩。此外,在直接结合方式中,不运行电动机130B、140B,可以把从发动机150所输出的动力直接输出到车轴116。在此一场合,不产生运行电动机130B、140B引起的损失。因而,在工作曲线上的点与车轴116上所要求的动力相一致的场合,如果用直接结合方式,则可以以非常高的运行效率来行驶。在第2实施例中,发挥直接结合方式的这种优点,在要求大转矩的区域DC1或行驶转矩比较大,而且在工作曲线A附近的区域DC2中使用直接结合方式。
在直接结合方式中,拖动电动机130B和电动机140B双方。因而最好是蓄电池194中有足够的储备。因此,在第2实施例中,不仅行驶状态进入直接结合区域的场合,而且仅在蓄电池194的剩余容量SOC大于规定值Slim的场合选择直接结合方式。规定值Slim是作为拖动电动机130B和电动机140B用的足够的剩余容量预先设定的值。
在第2实施例中,并联方式与串联方式的切换由两种路径来进行。一种是与第1实施例相同的路径。也就是说,一度经历第1离合器160、第2离合器161双方成为分离的构成D2的状态进行并联方式与串联方式的切换的路径。另一种是一度经历第1离合器160、第2离合器161成为结合的构成A2的状态进行并联方式与串联方式的切换的路径。例如,在图21中的路径Ps1中在进行并联方式与串联方式的切换的场合,运用前者的路径。在图21中的路径Ps2中在进行并联方式与串联方式的切换的场合,运用后者的路径。
如果通过以上的处理设定运行方式,则CPU与第1实施例同样, 实行转矩控制处理(图6的步骤S300)或者起动·停止控制处理(步骤S400)。各个子程序的内容与第1实施例(图6和图10)相同。但是在电动机130B、电动机140B运行点的设定值上有与第1实施例不同的部分。
并联方式的构成(图19的构成C1)与第1实施例的并联方式(图2的构成C)相同。因而,电动机130B、电动机140B的运行点的设定值,连同转矩控制处理(图6)、起动·停止控制处理子程序(图10)也与第1实施例的场合相同。
串联方式的构成也与第1实施例的串联方式几乎相同。但是,在第1实施例中发动机150与电动机130根据行星齿轮120的齿轮比以不同的转速旋转,与此相反在第2实施例中电动机130B以与发动机150相同的转速旋转,在这一点上不同。因而,在第2实施例中在串联方式中电动机130B的目标转速N1和转矩T1设定成与发动机150的目标转速Ne、转矩Te相同的值。
在直接结合方式的场合,发动机150的运行点的设定方法与第1实施例不同。如前面说明的,在直接结合方式中,发动机150的转速与车轴116的转速相等。因而,在直接结合方式中,把发动机150的转速成为与车轴116的转速相等的工作曲线A上的运行点设定成发动机150的运行点。在这样设定的运行点处的发动机150的转矩与要求转矩相一致的场合,第2实施例的混合车辆以电动机130B、140B的目标转矩为值0,也就是空载的状态来行驶。在直接结合方式中,电动机130B和电动机140B的目标转速N1、N2也成为等于车轴116的转速。
在发动机150的输出小于要求转矩的场合,如以下所示,设定电动机130B和电动机140B的运行点以便补偿不足部分的转矩。电动机130B、140B的目标转矩T1、T2设定成两者的总和等于上述不足部分,也就是从要求转矩减去发动机150的输出转矩的值。电动机130B、140B的转矩的分配考虑两者的运行效率来设定。在第2实施例中,按电动机130B和电动机140B的额定输出之比来分配上述不足部分转矩,设定各个目标转矩T1、T2。如果电动机130B与电动机140B的额定相等,则目标转矩分别为上述不足部分转矩的一半。
直接结合方式中的电动机130B、140B的转矩分配不限于此,种种的设定是可能的。例如,也可以在不足部分转矩比较小的场合仅靠电动机140B输出转矩,在靠电动机140B不能补偿的程度,转矩不足的场合开始拖动电动机130B。
通过以上处理,第2实施例的混合车辆可以输出由所要求的转速和转矩组成的动力而行驶。CPU与第1实施例同样,继这些处理之后实行共振抑制控制处理(图7的步骤S500)。
第2实施例中的共振抑制控制处理是几乎与第1实施例相同的处理(参照图11)。在第1实施例中,在串联方式中发生共振的场合,降低制动器162的油压。在第2实施例中,不是降低制动器162的油压,而是降低第2离合器161的油压。也就是说,如果在第1实施例的共振抑制控制处理(图11)的步骤S508和步骤S510里用第2离合器油压代替制动器油压,则可以实现第2实施例中的共振控制处理。第2离合器161的油压作为与第1实施例的制动器油压同样的表(参照图12)预先设定。此一表可以基于第1实施例中说明的考虑方法来设定。
在第1实施例中,在并联方式中在齿圈轴上发生共振的场合,降低离合器160的油压。在第2实施例中也是在并联方式中发生共振的场合,与第1实施例同样,降低第1离合器160的油压。第1离合器160的油压作为与第1实施例同样的表(参照图13)预先设定。进而,在第2实施例中,在直接结合方式中也进行与并联方式同样的控制处理。也就是说,在齿圈轴上发生共振的场合,降低第1离合器160的油压。因而,在第2实施例中,照原样实行第1实施例中的共振控制处理子程序(图11)的步骤S512~S518,借此可以实现并联方式和直接结合方式中的共振抑制控制。
如果用以上说明的第2实施例的混合车辆,则可以根据行驶状态分别使用并联方式和串联方式进行行驶。因而,与第1实施例同样,可以实现发挥各个方式的优点的运行,可以大大提高混合车辆的运行效率和乘坐舒适性。
此外,在第2实施例中通过取为直接结合方式可以得到更大的优点。第1在直接结合方式中从发动机150,电动机130B、140B全都输出转矩成为可能,超过第1实施例的构成地输出大转矩成为可能。因而,可以扩大混合车辆的行驶区域。第2在直接结合方式中虽然处于比较有限的条件下,但是仅靠从发动机150所输出的动力来进行行驶成为可能。在这种行驶状态下,在电动机130B、140B中不消耗电力。此外,因为也不伴随从发动机150所输出的动力与电力的转换,故不产生伴随这种转换的损失。因而,在这种行驶状态下,可以以非常高的效率来运行混合车辆。
(4)第3实施例下面就作为本发明的第3实施例的混合车辆进行说明。图22是表示第3实施例的混合车辆的构成的说明图。在本实施例中,作为动力系统从上游侧备有发动机150,电动机140C、130C。在第1实施例和第2实施例中不存在直接结合于发动机150的曲轴156的电动机,与此相反,在第3实施例中电动机140C直接结合这一点上不同。
在第3实施例中,发动机150的曲轴156结合于行星齿轮120C的行星架123C,电动机130C结合于太阳轮121C,车轴116结合于齿圈122C。在电动机140C与行星齿轮120C之间设有离合器160C。进而,在离合器160C的下游侧设有制止行星架123C的旋转的制动器162C。离合器160C和制动器162C与第1实施例同样,由控制单元190来控制。再者,虽然为了避免图面的繁杂,在图22中省略了图示,但是分别设有与第1实施例同样的传感器类。
第3实施例的混合车辆根据离合器160C和制动器162C的结合状态可以取为四种构成。图23是表示第3实施例的混合车辆的结合状态的说明图。
使离合器160C和制动器162C同时成为工作状态的场合的构成A3示于图中的左上方。在这种构成中,行星架123C的旋转被制动器162C所制止。在使离合器160C结合的状态下,行星架123C与曲轴156直接结合。因而,在构成A3中曲轴156的旋转也被制动器162C所制止。即使行星架123C的旋转被制止,太阳轮121C和齿圈122C也能够旋转。因而,构成A3是虽然不能利用来自发动机150的动力,但是能够靠来自电动机130C的动力来行驶的状态。
使制动器162C成为工作状态并使离合器160C分离的场合的构成B3示于图中的右上方。在这种构成中,与构成A3同样,行星架123C的旋转被制动器162C所制止。太阳轮121C和齿圈122C能够旋转。因而,能够靠来自电动机130C的动力来行驶。另一方面,因为离合器160C成为分离,故发动机150和电动机140C也为能够自由旋转的状态。因而,可以靠来自发动机150的动力在电动机140C中发电。通过以上,构成B3成为有作为串联混合车辆的构成。以下把此一构成称为串联方式。
使制动器162C分离并使离合器160C结合的构成C3示于图中的左下方。此一构成与前面作为并联混合车辆的例子在图37中说明的构成相同。因而,在第3实施例的混合车辆中,使制动器162C分离,使离合器160C结合的构成C3成为有作为并联混合车辆的构成。以下把此一构成称为并联方式。
最后,使制动器162C和离合器160C双方分离的场合的构成D3示于图中的右下方。在此一状态下,行星齿轮120C的齿轮全都能自由旋转。此外,可以把从发动机150所输出的动力由电动机140C进行再生。但是,在此一构成中,因为行星架123C的旋转状态没有任何约束,故不能把动力从电动机130C输出到车轴116。因而,构成D3是在行驶中可以用于结合状态切换时的过渡的构成。
就第3实施例的混合车辆的运行控制子程序进行说明。运行控制子程序总体的流程与第1实施例(图5)相同。也就是说,控制单元190的CPU实行运行方式切换处理(步骤S100),在发动机150起动或停止的场合(步骤S200)实行起动·停止控制处理(步骤S400),在其他场合实行通常的转矩控制处理(步骤S300)。在这些处理之后,CPU实行共振抑制控制处理(步骤S500)。重复实行这样的一系列处理,第3实施例的混合车辆行驶。
在第3实施例中,在运行方式切换处理中判定串联区域的子程序的内容与第1实施例(图6)不同。在第3实施例中,给出运行方式与行驶状态的关系的表示于图24。图中加阴影线的区域是应该以并联方式行驶的区域,其他区域是应该以串联方式行驶的区域。
与第1实施例同样,在正在停车或以微速行驶的区域中运用串联方式。此外,根据运行方式切换处理(图6)的内容可以看出,在挡位处于R位置的场合,以及进行发动机150起动·停止的场合选择串联方式这一点也与第1实施例相同。在第1实施例中在通常的行驶状态下,在要求比较小的转矩的区域中取为串联方式,与此相反,在第3实施例中在要求比较大的转矩的区域中选择串联方式这一点上不同。
在第3实施例中也是,通常行驶时运行方式的设定与第1实施例同样,通过比较串联方式与并联方式的运行效率,选择运行效率更高的方式来设定。在第1实施例的场合,在并联方式中,如前面用图34~图36说明的,在减速传动行驶时可以不产生循环地输出动力,运行效率提高。因而,在要求大转矩的区域中选择运行效率高的并联方式。
在第3实施例的构成中,如前面用图37~图39说明的,发生与第1实施例的构成相反的现象。也就是说,在把从发动机150所输出的动力转换成高转速小转矩的状态而输出的增速传动行驶时,可以不产生循环而输出动力,运行效率提高。因而,在第3实施例中,与第1实施例相反,在要求小转矩的区域中选择运行效率高的并联方式。
在第3实施例中,并联方式(图23中的构成C3)与串联方式(构成B3)的切换,经由图23的构成D3来进行。例如,在从并联方式(构成C3)切换到串联方式(构成B3)的场合,一度离合器160C分离而取为D3的构成之后,由制动器162C来保持行星架123C。通过以这种路径来进行切换,不停止发动机150的运行而实行从并联方式向串联方式的切换成为可能。在从串联方式向并联方式切换时也是,在串联方式中进行发动机150的起动之后,实行向并联方式的切换成为可能。因而,通过经由构成D3来进行运行方式的切换,不产生伴随发动机150的起动和停止的转矩冲击,顺利地切换运行方式成为可能。
不过,在经由构成D3的切换中,虽说切换运行方式的很短期间但是存在着无法输出动力的时间。在希望回避这种期间的场合,也可以进行经由构成A3的切换。
如果这样实行运行方式的切换处理,则如图7的程序框图中所示,CPU判定是否是应该进行发动机150的起动·停止的状态(步骤S200),在处于这种状态的场合实行起动·停止控制处理(步骤S400),在其他场合实行通常的转矩控制处理(步骤S300)。虽然这些处理的内容分别与第1实施例中所示的处理(图8和图10)相同,但是在第3实施例中,电动机130C、140C的运行点的设定与第1实施例不同。
在串联方式的场合,把车轴上所要求的动力全都输出到电动机130C。因而,电动机130C的目标转速N1和目标转矩T1,可以在针对行星齿轮120C成立的前面所示的关系式(1)中把车轴116的目标转速Nd*和目标转矩Td*代入齿圈122的转速Nr、转矩Tr,把值0代入行星架123C的转速Nc,如下求出。
N1=-Nd*/ρ;Ts=ρTd*;电动机140C与发动机150直接结合。因而,电动机140C的目标转速N2、转矩T2分别与发动机150的目标转速Ne、目标转矩Te相一致。
在并联方式的场合,设定电动机130C、140C的目标转速,以便使齿圈122的转速Nr与车轴116的目标转速Nd*相一致,行星架123C的转速与发动机150的目标转速Ne相一致。电动机140C以与发动机150相同的转速旋转。因而电动机140C的目标转速N2与发动机150的目标转速Ne相一致。电动机130C的目标转速N1通过在前面所示的式(1)中把车轴116的目标转速Nd*代入齿圈122C的转速Nr,把发动机150的目标转速Ne代入行星架123C的转速Nc,如下设定。
N1=(1+ρ)/ρ×Ne-Nd*/ρ;此外,电动机130C、140C的目标转矩T1、T2设定成分别输出到车轴116的转矩与要求转矩Td*相一致。如果在前面所示的式(1)中把车轴116的目标转矩Td*代入齿圈122C的转矩Ter,则可以如下求出太阳轮121C的转矩Tes和行星架123C的转矩Tc。
Tes=ρTd*;Tc=(1+ρ)Td*;因而,电动机130C设定目标转矩T1以便可以把上述转矩输出到太阳轮121C。具体地说,T1=Tes。此外,电动机140C的目标转矩T2设定成调整从发动机150所输出的转矩Te并把上述转矩输出到行星架123C。具体地说,为“T2=Tc-Td*”。在本实施例中,在把来自发动机150的转矩转换成高转速小转矩而输出的增速传动状态下因为运用并联方式,所以电动机140C的目标转矩T2主要为负值。也就是说,电动机140C主要进行再生运行。
在发动机的起动·停止控制处理中,成为串联方式。因而,电动机140C的目标转速N2、目标转矩T2,设定于进行发动机150的起动和停止的运行点。电动机130C的运行点与上述串联方式中的设定相同。
通过以上的处理,第3实施例的混合车辆可以输出由所要求的转速和转矩组成的动力而行驶。CPU与第1实施例同样,继这些控制处理之后实行共振抑制控制处理(图7的步骤S500)。
图25是第3实施例中的共振抑制控制处理的程序框图。在第3实施例中,由位于行星齿轮120C的上游侧的电动机140C来进行发动机150的起动和停止。因而,在发动机150起动和停止时,几乎没有在行星齿轮120C的旋转轴上发生共振的可能性。因而,在第3实施例中,实行抑制在结合于车轴116的齿圈轴上产生的共振的控制。
如图25中所示,一开始共振抑制控制处理,CPU就判定齿圈轴是否共振(步骤S530)。此一判定与第1实施例的共振抑制控制处理(图11的步骤S512)同样,用带通滤波器来处理齿圈轴转速的检测结果,判定是否进入共振频带区域。
在齿圈轴未共振的场合,不进行任何处理而结束共振抑制控制处理。在齿圈轴共振的场合,检测共振经过时间(步骤S532),根据经过时间来设定行星架轴的保持力(步骤S534)。保持力与第1实施例同样,作为与经过时间相对应的表预先设定。
但是,在第3实施例中,根据运行方式设定保持力的对象不同。在串联方式(图23的构成B3)中,约束行星架轴的旋转的是制动器162C。因而,在串联方式中降低制动器162C的油压。在并联方式(图23的构成C3)中,行星架轴通过靠离合器160C结合于发动机150和电动机140C而约束旋转。因而,在并联方式中,降低离合器160C的油压。在第3实施例中个别地准备根据共振经过时间给出各个油压的表,根据运行方式分别使用两者。各个表可以基于与第1实施例中给出离合器160的油压的表(图13)同样的考虑来设定。
如果这样设定行星架轴的保持力,则CPU根据运行方式来控制离合器160C或制动器162C,减小保持力(步骤S536)。
如果用以上说明的第3实施例的混合车辆,则可以根据行驶状态分别使用并联方式和串联方式而行驶。因而,与第1实施例同样,可以实现发挥各个方式的优点的运行,可以大大提高混合车辆的运行效率和乘坐舒适性。
此外,在第3实施例中在转矩比较小的区域中运用并联方式(参照图24)。如前面用图14说明的,在未产生动力循环的行驶状态下,并联方式可以比串联方式实现更高的运行效率。因而,第3实施例的构成可以有效地运用于往往以比较小的转矩来行驶的混合车辆。
在第3实施例中也与第1实施例同样,可以构成变形例。图26是表示作为第3实施例的变形例的混合车辆的构成的说明图。在第3实施例中,作为动力的分配机构而把行星齿轮120C和电动机130C组合使用。在变形例中,在用离合器电动机230D作动力分配机构这一点上不同。离合器电动机230D的内转子232D结合于发动机150的曲轴156和电动机140D。外转子233D结合于车轴116。
变形例的混合车辆在离合器电动机230D与电动机140D之间备有离合器160D。此外,在离合器160D的下游侧备有制动器162D。根据离合器160D和制动器162D的结合状态,变形例的混合车辆可以取为种种构成。
图27是表示变形例的混合车辆可以取为的构成的说明图。使离合器160D和制动器162D同时成为工作状态的场合的构成A4示于图中的左上方。此一结合状态相当于第3实施例(图23)的构成A3。在这种构成中,内转子232D的旋转被制动器162D所制止,在使离合器160D结合的状态下,内转子232D与曲轴156、电动机140D直接结合。因而,在构成A4中发动机150和电动机140D不能运行。
使制动器162D成为工作状态并使离合器160D分离的场合的构成B4示于图中的右上方。此一构成相当于第3实施例(图23)的构成B3。在这种构成中,与构成A4同样,内转子232D的旋转被制动器162D所制止。但是,因为离合器160D成为分离,故可以靠来自发动机150的动力来驱动电动机140D而发电。此外,因为内转子232D的旋转被制动器162D所制止,故可以把动力从离合器电动机230D输出到车轴116。通过以上,构成B4成为有作为串联混合车辆的构成。
接着,使制动器162D分离并使离合器160D结合的构成C4示于图中的左下方。此一构成相当于第3实施例(图23)的构成C3。在此一状态下,外转子233D能够与车轴116一起旋转。从发动机150所输出的动力一部分在电动机140D中被再生。剩余的动力拖动离合器电动机230D,借此调整转速而输出到车轴116。用来拖动离合器电动机230D的电力主要使用在电动机140D中所再生的电力。因而,构成C4成为有作为并联混合车辆的构成。
就在构成C4中,转换从发动机150所输出的动力而输出到车轴116的方法进行说明。在减速传动行驶时,离合器电动机230D的外转子233D以低于内转子232D的转速来旋转。此时,在离合器电动机230D中可以再生与内转子232D与外转子233D的滑差相对应的电力。另一方面,为了从车轴116输出超过从发动机150所输出的转矩的转矩,电动机140D被拖动。电动机140D的拖动所需的电力由在离合器电动机230D中所再生的电力来供给。因而,在减速传动行驶时,与第3实施例的混合车辆同样,把从发动机150所输出的动力的一部分再生的电力从位于下游侧的离合器电动机230D向位于上游侧的电动机140D供给。因此,变形例的混合车辆在减速传动时产生动力循环,运行效率降低。
在增速传动行驶时,离合器电动机230D的外转子233D以高于内转子232D的转速来旋转。因而,离合器电动机230D接收与内转子232D与外转子233D的滑差相对应的电力供给而被拖动。另一方面,在增速传动行驶时,靠电动机140D来加载,从车轴116输出小于从发动机150所输出的转矩的转矩。也就是说,在电动机140D中再生电力。此一电力主要供给离合器电动机230D的拖动。因而,在增速传动行驶时,与第3实施例的混合车辆同样,从发动机150所输出的动力的一部分在位于上游侧的电动机140D中被再生,供给到位于下游侧的离合器电动机230D。因此,变形例的混合车辆在增速传动时不产生动力循环。
最后,使制动器162D和离合器160D双方分离的场合的构成D4示于图中的右下方。此一构成相当于第3实施例(图23)的构成D3。在此一状态下,外转子233D能自由旋转。此外,发动机150和电动机140D也能自由旋转。但是,在此一场合,因为内转子232D的旋转未受约束,故不能把动力从离合器电动机230D输出到车轴116。
这样一来变形例的混合车辆,构成A4~D4分别相当于第3实施例的构成A3~D3,在运行效率方面具有几乎同等的性质。因而,如果根据变形例的混合车辆的构成适当设定运行方式与车辆的行驶状态的关系,则能够以与第3实施例同样的形态运用本发明。结果,即使变形例的混合车辆也与第3实施例同样,可以实现发挥并联方式和串联方式的优点的运行,可以谋求运行效率和乘坐舒适性的提高。
(5)第4实施例下面就作为本发明的第4实施例的混合车辆进行说明。图28是表示第4实施例的混合车辆的构成的说明图。在本实施例中也是,作为动力系统从上游侧备有发动机150,和电动机140E、130E,在发动机150与电动机140E直接结合这一点,和电动机130E经由行星齿轮120E机械地结合这一点上与第3实施例相同。此外,在行星齿轮120E与电动机140E之间设置第1离合器160E这一点上也是同样的。
在第4实施例中,代替第3实施例的制动器162C设有第2离合器161E这一点不同。第2离合器161E进行行星齿轮120E的齿圈122E和行星架123E的结合和分离。工作由控制单元190来控制。再者,虽然为了避免图面的繁杂而在图28中省略了图示,但是分别设有与第1实施例同样的传感器类。
第4实施例的混合车辆,根据第1离合器160E和第2离合器161E的结合状态可以取为四种构成。图29是表示第4实施例的混合车辆的结合状态的说明图。
使第1离合器160E和第2离合器161E同时成为工作状态的场合的构成A2示于图中的左上方。在这种构成中,齿圈122E与行星架123E借助于第2离合器161E一体旋转。在两者一体旋转的场合,电动机130E也以同一转速旋转。此外,在第1离合器160E结合的状态下,发动机150的曲轴156与车轴116直接结合。因而,在构成A5中相当于发动机150、电动机130E、电动机140E和车轴116全都直接结合的状态。以下把此一运行方式称为直接结合方式。
使第2离合器161E成为工作状态并使第1离合器160E分离的场合的构成B5示于图中的右上方。在这种构成中,与构成A5同样,齿圈122E和行星架123E借助于第2离合器161E一体旋转,电动机130E也以同一转速旋转。因而,相当于车轴116与电动机130E直接结合的状态,可以把来自电动机130E的动力输出到车轴116。另一方面,发动机150和电动机140E能够自由旋转,可以把从发动机150所输出的动力在电动机140E中作为电力再生。因而,构成B5成为有作为串联混合车辆的构成。
接着,使第2离合器161E分离并使第1离合器160E结合的构成C5示于图中的左下方。此一构成,相当于第3实施例的构成C3。因而,构成C5成为有作为并联混合车辆的构成。
最后,使第2离合器161E和第1离合器160E双方分离的场合的构成D5示于图中的右下方。在此一状态下,行星齿轮120E根据共线图三个齿轮能够分别旋转。此外,能够把来自发动机150的动力由电动机E作为电力再生。但是,在此一场合,因为行星架123E的旋转没有约束,故不能把动力从电动机130E输出到车轴116。此一构成相当于第3实施例的构成D3。
就第4实施例的混合车辆的运行控制子程序进行说明。运行控制子程序总体的流程与第1实施例(图5)相同。也就是说,控制单元190的CPU实现运行方式切换处理(步骤S100),在发动机150起动或停止的场合(步骤S200),实行起动·停止控制处理(步骤S400),在其他场合实行通常的转矩控制处理(步骤S300)。在这些处理之后,CPU实行共振抑制控制处理(步骤S500)。第4实施例的混合车辆重复实行这一系列处理而行驶。
第4实施例的运行方式切换处理的内容与第2实施例(图6、图20)相同。首先,基于挡位和行驶状态来判定是否选择串联方式(图6的步骤S102~S106)。在基于这些条件未选择串联方式的场合,如果行驶状态处于直接结合区域,而且蓄电池194的剩余容量SOC大于规定值Slim,则选择直接结合方式(图20的步骤S112)。在根据这些判定未选择串联方式和直接结合方式中的某一种的场合,在判断成应该进行发动机150的起动和停止的场合选择串联方式,在其他场合选择并联方式(图6的步骤S120~S134)。
串联区域和直接结合区域的判断,与至此为止的实施例同样,基于给出车辆的行驶状态与运行方式的关系的表来进行。第4实施例中的表的例子示于图30。图中加交叉阴影线的区域DC1、DC2是直接结合区域。加斜线阴影线的区域是并联方式的区域。其他区域是串联方式的区域。在本实施例的场合,直接结合方式的区域与第2实施例相同。串联方式的区域与第3实施例相同。
并联方式与串联方式的切换与第2实施例同样,由两种路径来进行。一种是一度经历第1离合器160E、第2离合器161E双方成为分离的构成D5的状态进行并联方式与串联方式的切换的路径。另一种是一度经历第1离合器160E、第2离合器161E双方成为结合的构成A5的状态进行并联方式与串联方式的切换的路径。两者的路径与第2实施例(图2)同样,根据车辆的行驶状态在图30的表中描绘什么样的轨迹而分别使用。
如果通过以上的处理设定运行方式,则CPU与第1实施例同样,实行转矩控制处理(图5的步骤S300)或者起动·停止控制处理(步骤S400)。各个子程序的内容与第1实施例(图8和图10)相同。但是在电动机130E、电动机140E运行点的设定值上有与第1实施例不同的部分。
并联方式的构成与第3实施例相同。因而,电动机130E、电动机140E的运行点的设定值,连同转矩控制处理(图8)、起动·停止控制子程序(图10)也与第3实施例的场合相同。
串联方式的构成也与第3实施例的串联方式几乎相同。但是,在第3实施例中车轴116与电动机130C根据行星齿轮120C的齿轮比以不同的转速旋转,与此相反在第4实施例中电动机130E以与车轴116相同的转速旋转,在这一点上不同。因而,在第4实施例中在串联方式中电动机130E的目标转速N1和转矩T1设定成与车轴116的目标转速Nd*、转矩Td*相同的值。
在直接结合方式的场合,发动机的运行点与第2实施例同样,设定成发动机150的转速与车轴116的转速相等的工作曲线A上的点。在这样设定的运行点处的发动机150的转矩与要求转矩相一致的场合,第4实施例的混合车辆以电动机130E、140E的目标转矩为值0,也就是空载的状态来行驶。
在发动机150的输出小于要求转矩的场合,设定电动机130E和电动机140E的运行点以便补偿不足部分的转矩。两者的分配与第2实施例的场合同样,基于两个电动机的额定输出之比来来设定。当然,在第4实施例中,直接结合方式中的电动机130E、140E的转矩分配不限于此,种种的设定是可能的。
通过以上处理,第4实施例的混合车辆可以输出由所要求的转速和转矩组成的动力而行驶。CPU与第1实施例同样,继这些控制处理之后实行共振抑制控制处理(图5的步骤S500)。
第4实施例中的共振抑制控制处理是与第3实施例相同的处理(参照图25)。在第3实施例中,在齿圈轴上发生共振的场合,降低离合器160D或制动器162D的油压。在第4实施例中,不是降低制动器162D的油压,而是降低第2离合器161E的油压。第2离合器161E的油压由与第3实施例的制动器油压同样的表预先设定。
在第3实施例中,在并联方式中在齿圈轴上发生共振的场合,降低离合器160D的油压。在第4实施例中也是在并联方式中发生共振的场合,与第1实施例同样,降低第1离合器160E的油压。在第4实施例中,在直接结合方式中也与并联方式同样降低第1离合器160E的油压。
如果用以上说明的第4实施例的混合车辆,则可以根据行驶状态分别使用并联方式和串联方式进行行驶。因而,与第1实施例同样,可以实现发挥各个方式的优点的运行,可以大大提高混合车辆的运行效率和乘坐舒适性。
此外,在第4实施例中通过取为直接结合方式可以得到与第2实施例同样的优点。也就是说,从发动机150,电动机130E、140E全都输出转矩,借此可以扩大混合车辆的行驶区域。此外,可以以非常高的效率来运行混合车辆。
(6)第5实施例下面就作为本发明的第5实施例的混合车辆进行说明。第5实施例的混合车辆的构成示于图31。此一构成与第1实施例的混合车辆(图1)几乎相同。根据离合器160和制动器162的切换,在取得图2中所述的种种构成这一点上也相同。在第5实施例中,作为把关于车辆行驶路径的信息送到控制单元190用的装置,备有路径信息传感器200、道路数据库201,这一点上与第1实施例的混合车辆不同。
道路数据库201主要是储存电子化的道路地图的数据库,是以硬盘或种种CD-ROM和其他媒体为主体来构成的。在道路数据库201中不仅储存着关于各道路的位置,而且储存着关于高低的信息。此外,还储存着驾驶员预先输入的目的地和路径。
所谓路径信息传感器200是用来取得混合车辆的位置的检测,和关于行驶的预定路径的所谓道路状况的传感器。混合车辆位置的检测,可以用例如来自人造卫星的电磁波来检测经度、纬度的传感器。也可以取为备有惯性传感器、加速度传感器等,根据车辆的行驶经纬来计算当前的位置者。道路状况的检测可以通过用接收机来接收以电磁波来发送的这些信息来进行。
第5实施例的混合车辆在运行控制子程序(图5)中运行方式切换处理的内容与第1实施例不同。第5实施例中的运行方式切换处理的内容示于图32。在此一子程序中,CPU首先进行关于车辆的行驶状态的种种参数连同路径信息的读入(步骤S102)。作为所输入的路径信息,预定的行驶路径包括关于上坡路或下坡路等高低差的信息,是否是所谓山路那样弯路多的道路这样的信息,是通常的道路还是高速汽车国道这样的关于道路类别的信息,以及所谓塞车信息等。
接着,CPU在路径信息应该优先的场合(步骤S103)基于该路径信息来进行运行方式的设定和切换(步骤S136)。在其他场合与第1实施例同样(参照图6)根据车辆的行驶状态来进行运行方式的设定和切换。
在第5实施例中,作为路径信息应该优先的场合预先设定种种场合。用图33就这种设定进行说明。图33是表示第5实施例的混合车辆的行驶区域中的各行驶方式的分别使用的说明图。
作为第1个例子,在预定的行驶路径中包括上坡路,在检测到车辆接近于上坡路近前的规定范围的场合,设定成优先使用并联方式。如前面图14中说明的,并联方式可以实现比串联方式更高的运行效率。此外,还有起因于电动机130的额定值的充电效率之差。在本实施例中,作为电动机130使用额定值比较小的电动机。因而,发电能力的上限值也比较小。在这种情况下,即使从发动机150输出相当于行驶所需的动力和蓄电池194的充电所需的动力的总和的动力,有时也不能在电动机130中再生其全部。结果,在串联方式中,在蓄电池194的充电未超过电动机130的额定值的范围内产生慢慢进行的必要。另一方面,在并联方式中,把从发动机150所输出的动力的一部分以机械动力的形态输出到车轴116。因而,可以使应该在电动机130中再生的电力当中行驶所需的电力,也就是供给到电动机140的电力比较小。结果,在并联方式中,可以把供给到蓄电池194的充电的电力取得大些。
由于这些理由,通过优先使用并联方式,可以进行适合于准备电力消耗量增加的上坡路而预先给蓄电池194充电的运行。再者,优先进行并联方式的运行可以用种种形态来实施。在步骤S136中,在基于该路径信息来进行运行方式的设定和切换的场合,在预定的行驶路径中包括上坡路,在检测到车辆接近于上坡路近前的规定范围时,也可以与车辆的行驶状态无关地设定成并联方式。此外,在给出运行方式的子程序(图33)中,也可以把串联方式与并联方式的边界BL向并联方式的区域扩张的方向(图中箭头Ar2的方向)变更。
作为第2个例子,例如在路径上存在着不连续的弯路或拐角,在检测到车辆接近于该弯路近前的规定范围时,优先使用串联方式地设定运行方式。行驶在这种弯路或拐弯时车辆的行驶状态的轨迹示于图33的曲线C1。这样一来,车辆一度减速之后,再加速。如果用通常的设定,则在弯路等行驶时成为按串联方式、并联方式、串联方式的顺序频繁地进行切换。频繁切换损及车辆的乘坐舒适性,并且在切换时因为在转矩的输出等中容易发生时间迟延,故损及行驶在弯路之际车辆的响应性。在本实施例的混合车辆中在作为路径信息检测到这种路径的场合,把运行方式设定成串联方式。因而,可以避免伴随频繁切换的上述弊害。当然,也可以把给出运行方式的表(图33)的边界BL向串联方式的区域扩张的方向(图中箭头Ar1的方向)变更。
作为第3个例子,例如在路径上存在着连续的弯路或拐角,在检测到车辆接近于该弯路近前的规定范围时,优先使用并联方式地设定运行方式。行驶在这种弯路或拐弯时车辆的行驶状态的轨迹示于图33的曲线C2。在连续弯路等行驶时,车辆往往在速度比较抵、转矩比较大的区域中行驶。因而,在检测到这种路径的场合,把运行方式设定成并联方式,借此可以避免频繁切换。当然,也可以把给出运行方式的表(图33)的边界BL向并联方式的区域扩张的方向(图中箭头Ar2的方向)变更。
作为第4个例子,例如在检测到车辆处于上坡路上时,在起步时用并联方式。在上坡路上起步时的行驶状态示于图33中的曲线C3。在这种起步中,要求大于通常的起步的转矩。因而,如果像通常那样以串联方式开始起步,则紧接其后向并联方式的切换成为必要。在要求大转矩的行驶状态下,最好是不进行运行方式的切换而连续地输出转矩。在上坡路上起步时通过以并联方式起步,避免上述切换,连续地输出转矩成为可能。再者,在以并联方式起步时,虽然也可以从一开始就利用发动机150的动力,但是也可以仅利用电动机140的动力来起步。
作为第5个例子,根据车辆行驶中的路径的坡度来变更运行方式(图33)的边界BL,优先使用某一种运行方式。例如,在上坡路上因为要求比较大的转矩,故往往在并联方式的区域中行驶。因而,根据上坡路的坡度把边界BL向并联方式扩张一侧(图33中的箭头Ar2一侧)变更,借此可以抑制行驶中的频繁切换。反之,在下坡路上因为不要求那么大的转矩,故往往在串联方式的区域中行驶。因而,根据其坡度把边界BL向串联方式扩张一侧(图33中的箭头Ar1一侧)变更,借此可以抑制行驶中的频繁切换。
再者,虽然在图33中未画出,但是在急下坡路上还有转矩为负的区域,也就是一边施加制动力一边行驶的场合。在这种场合,虽然进行用电动机140的再生制动,但是如果坡度更急,则最好是还并用电动机130的再生制动和发动机150的发动机制动。电动机130的再生制动和发动机制动在并联方式中成为可能。因而,在检测到非常急的下坡坡度的场合,也可以把运行方式切换成优先使用并联方式。
基于路径信息的运行方式的设定,其他种种的设定是可能的。例如,在路径中包括高速路的场合,与检测到上坡路的场合同样,可以进行优先使用并联方式的切换。在高速行驶时与上坡路的行驶同样,因为电力消耗增加,故预先选择适合于蓄电池194充电的运行方式。
此外,作为别的例子,例如在检测到预定的行驶路径塞车信息的场合,接近于其近前的规定范围之后,可以设定成优先使用串联方式。塞车时,因为通常重复进行停车、起步、低速行驶,所以通过预先设定成串联方式,可以抑制切换的频度,实现顺利的运行。以路径信息优先地切换运行方式的处理不限于此,更多的设定是可能的。例如,也可以根据路径是否是市区来设定运行方式。
如果用以上说明的第5实施例的混合车辆,则可以不仅基于车辆的行驶状态,而且基于路径信息来设定适当的运行方式。因而,可以更适当地分别使用并联方式和串联方式的优点,可以更加提高混合车辆的运行效率和乘坐舒适性。
在第5实施例中,说明了在具有与第1实施例相同的构成的混合车辆中附加路径信息传感器200和道路数据库201的构成。不限于此,当然也可以制成在其他实施例和变形例中分别附加路径信息传感器200和道路数据库201的构成。
虽然以上就本发明的实施形态进行了说明,但是本发明决不限定于这些实施形态,当然在不脱离本发明的精神的范围内可以用其他种种的形态来实施。例如,虽然在本实施例的混合车辆中作为发动机用汽油发动机150,但是可以用柴油发动机和成为其他动力源的装置。此外,虽然在本实施例中作为电动机全都用三相同步电动机,但是也可以用感应电动机和其他交流电动机和直流电动机。此外,虽然在本实施例中,CPU通过实行软件来实现种种控制处理,但是也可以用硬件来实现这种控制处理。当然,本发明不限于实施例这类混合车辆,也可以运用于例如船舶、飞机、加工机械等种种动力输出装置。
工业实用性本发明实现能够切换并联混合和串联混合的动力输出装置,可以为了实现在宽范围内运行效率高的混合式动力输出装置而有效地使用。
权利要求
1.一种动力输出装置,是至少备有发动机和两个电动机,从驱动轴输出动力的动力输出装置,其中备有在把该发动机的输出的至少一部分以机械动力的形式传递到前述驱动轴,同时能够把前述电动机的至少一方作为动力源来使用的并联结合状态,与靠前述至少一方的电动机把该发动机的输出转换成电力而靠另一方的电动机再转换成机械动力输出到驱动轴的串联结合状态之间,能够切换前述发动机和电动机的结合状态的切换机构。
2.权利要求1所述的动力输出装置,其中前述电动机当中的一个是有至少两个旋转轴,能作为能够调整通过接受电力而在两个旋转轴之间传递的动力的大小的动力调整装置发挥功能的电动机,该动力调整装置和另一个电动机串联地配备于前述发动机的输出轴与驱动轴之间,前述切换机构是备有进行前述动力调整装置与电动机的结合和分离的结合机构和保持前述动力调整装置的某个旋转轴,借此能够实现在进行前述分离的场合的前述动力调整装置中的电力与动力的转换的保持机构的机构。
3.权利要求2所述的动力输出装置,其中前述动力调整装置是具有能够相对旋转的两个转子的双转子电动机。
4.权利要求2所述的动力输出装置,其中前述动力调整装置是包括有着三个旋转轴的行星齿轮,和结合于该旋转轴之一的电动发电机的装置。
5.权利要求4所述的动力输出装置,其中前述保持机构是把前述行星齿轮的其余两个旋转轴相互结合的机构。
6.权利要求2所述的动力输出装置,其中前述保持机构是在前述动力调整装置上所备有的旋转轴当中,约束结合于前述结合机构的旋转轴的旋转的机构。
7.一种混合车辆,是至少备有发动机和两个电动机,能够从驱动轴输出动力而行走的混合车辆,其中备有能够在把该发动机的输出的至少一部分以机械动力的形式传递到前述驱动轴,同时能够把前述电动机的至少一方作为动力源来使用的并联结合状态,与靠前述至少一方的电动机把该发动机的输出转换成电力而靠另一方的电动机再转换成机械动力输出到驱动轴的串联结合状态之间,切换前述发动机和电动机的结合状态的切换机构。
8.权利要求7所述的混合车辆,其中前述电动机当中的一个是有至少两个旋转轴,能作为能够调整通过接受电力而在两个旋转轴之间传递的动力的大小的动力调整装置发挥功能的,该动力调整装置和另一个电动机串联地配备于前述发动机的输出轴与驱动轴之间,前述切换机构是备有进行前述动力调整装置与电动机的结合和分离的结合机构和保持前述动力调整装置的某个旋转轴,借此能够实现在进行前述分离的场合的前述动力调整装置中的电力与动力的转换的保持机构的机构。
9.权利要求8所述的混合车辆,其中前述动力调整装置是具有能够相对旋转的两个转子的双转子电动机。
10.权利要求8所述的混合车辆,其中前述动力调整装置是包括有着三个旋转轴的行星齿轮,和结合于该旋转轴之一的电动发电机的装置。
11.权利要求10所述的混合车辆,其中前述保持机构是把前述行星齿轮的其余两个旋转轴相互结合的机构。
12.权利要求8所述的混合车辆,其中前述保持机构是在前述动力调整装置上所备有的旋转轴当中,约束结合于前述结合机构的旋转轴的旋转的机构。
13.权利要求7所述的混合车辆,其中备有检测与该车辆的运行状态有关的规定参数的检测机构,以及根据该检测结果控制前述切换机构而切换前述结合状态的控制机构。
14.权利要求13所述的混合车辆,其中前述控制机构是针对车辆的运行状态把运行效率高的结合状态按与前述参数的关系储存起来的存储机构,以及基于前述检测机构的检测结果参照前述存储机构来实现前述结合状态的切换的机构。
15.权利要求13所述的混合车辆,其中前述检测机构是检测挡位是否处于后退位置的检测机构,前述控制机构是在检测到处于后退位置的场合,实现前述串联结合状态的机构。
16.权利要求13所述的混合车辆,其中前述检测机构是检测是否正在停车的机构,前述控制机构是在检测到正在停车的场合,实现前述串联结合状态的机构。
17.权利要求13所述的混合车辆,其中前述检测机构是检测是否处于应该进行前述发动机的倒拖的运行状态的机构,前述控制机构是在检测到处于该运行状态的场合,实现前述串联结合状态的机构。
18.权利要求13所述的混合车辆,其中前述检测机构是检测是否处于应该停止前述发动机的倒拖的运行状态的机构,前述控制机构是在检测到处于该运行状态的场合,实现前述串联结合状态的机构。
19.权利要求8所述的混合车辆,其中前述动力调整装置是包括有着三个旋转轴的行星齿轮和结合于该旋转轴之一的电动发电机的装置,前述保持机构是把前述行星齿轮的其余两个旋转轴相互结合的机构,并且前述检测机构是检测应该从前述驱动轴输出的要求转矩的机构,前述控制机构是在要求转矩超过规定值时把前述结合机构和前述保持机构双方取为结合状态的机构。
20.权利要求8所述的混合车辆,其中备有针对前述发动机的输出轴和前述驱动轴中的至少一方检测是否产生共振的共振检测机构,以及抑制该产生共振的轴的转矩的共振抑制控制机构。
21.权利要求20所述的混合车辆,其中前述共振抑制控制机构是把前述产生共振的轴的转矩抑制到该轴的扭转强度以下的机构。
22.权利要求20所述的混合车辆,其中前述共振抑制控制机构是把前述产生共振的轴的转矩抑制到车辆上不产生共振的转矩的机构。
23.权利要求20所述的混合车辆,其中前述动力调整装置结合于前述发动机一侧,前述共振检测机构是在前述结合机构分离状态、前述保持机构保持状态下,检测前述发动机的输出轴上是否产生共振的机构,前述共振抑制控制机构是在检测到该共振的场合降低前述保持机构的保持力的机构。
24.权利要求23所述的混合车辆,其中前述共振检测机构是在前述发动机倒拖的场合检测前述共振的机构,前述共振抑制控制机构是在能倒拖前述发动机的转矩能够附加于前述输出轴的范围内降低前述保持机构的保持力的机构。
25.权利要求20所述的混合车辆,其中前述共振检测机构是在前述结合机构为结合状态的场合检测前述驱动轴上是否产生共振的机构,前述共振抑制控制机构是在检测到该共振的场合降低前述结合机构的结合力的机构。
26.权利要求25所述的混合车辆,其中前述共振检测机构是在该混合车辆制动时检测前述共振的机构,前述共振抑制控制机构是在能够传递超过前述动力调整装置和前述电动机当中结合于靠近发动机一侧者产生的最大再生转矩的转矩的范围内降低前述结合机构的结合力的机构。
27.权利要求7所述的混合车辆,其中作为该车辆行走者备有针对预先设定的路径的状态,输入关于车辆的行走状态的规定信息的路径信息输入机构,前述控制机构是也考虑该路径信息而进行前述切换的机构。
28.一种混合车辆的控制方法,是作为从驱动轴输出动力的动力源至少备有发动机和电动机,备有能够在把该发动机的输出的至少一部分以机械动力的形式输出到前述驱动轴的并联结合状态,与一度把该发动机的输出转换成电力再从前述驱动轴输出的串联结合状态之间,切换它们的结合状态的切换机构的混合车辆的控制方法,其中包括(a)检测与该车辆的运行状态有关的规定参数的过程,以及(b)针对该检测结果和结合状态基于预先设定的关系来控制前述切换机构而切换结合状态的过程。
全文摘要
一种动力输出装置,其中一个发动机(150)、一个电动机(130)、一个电动机(140)和一个车轴(116)分别连接于行星齿轮(120)的行星架(123)、太阳轮(121)、和齿圈(122),在行星齿轮(120)与电动机(140)之间设置一个离合器(160)以便它们两者可以分离和结合,设置一个制动器(162)以便当离合器(160)分离时固定该齿圈(122),借此当离合器(160)结合时实现并联混合车辆的构成,而当离合器(160)分离而齿圈(122)被制动器(162)固定时实现串联混合车辆的构成,而且根据车辆的行驶状态来切换这些方式,致使可以发挥每种方式的优点而进行行驶。
文档编号B60W10/10GK1336879SQ00802763
公开日2002年2月20日 申请日期2000年1月12日 优先权日1999年1月13日
发明者畑祐志, 松井英昭, 茨木隆次 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1