混合动力系统的控制系统的制作方法

文档序号:3989070阅读:125来源:国知局
专利名称:混合动力系统的控制系统的制作方法
技术领域
本发明一般涉及车辆动力系统,更具体地,涉及车辆混合推进系统的控制系统。

背景技术
已知各种用于管理混合车辆中的各种原动机(最常见的是内燃机和电机)的输入和输出扭矩的混合式动力系统架构。串联混合架构的一般特征在于驱动发电机的内燃机,而发电机又向电传动系统和电池组供电。串联混合架构中的内燃机在机械上未与传动系统直接相连。发电机也工作于电动回转模式,以便为内燃机提供启动功能,电传动系统也通过运行于发电机模式为电池组再充电来回收车辆的制动能量。并联混合架构的一般特征在于在机械上与传动系统直接连接的内燃机和电机。传动系统通常包括换档变速器来为宽范围的运行提供优选的齿轮比。
一种混合动力系统架构包含双模式组合分离(compound-split)机电变速器,该变速器使用输入组件接收来自原动机功率源的功率,并使用输出组件将来自变速器的功率传送到车辆传动系统。原动机功率源通常包括内燃机和至少一个与能量存储装置相连的电机。设置了用于管理能量存储装置和电机之间的电能交换的控制单元。该控制单元也管理第一和第二电机之间的电能交换。
需要具有某种控制架构的混合动力控制系统,其中,该架构可用于选择最优工作模式和最优工作点,并可用于将该动力系统的运行控制为该最优工作模式和最优工作点。


发明内容
因此,本发明的一个目的是提供一种能优化从所有推进系统组件传来的功率的混合动力控制系统。
因此,根据本发明,提供了一种包括控制系统、变速器和扭矩产生装置的车辆推进系统。扭矩产生装置包括内燃机和至少一个电机。各扭矩产生装置用于为变速器提供运动扭矩。上述控制系统用于控制内燃机、电机和变速器,并用于监视驾驶员输入以及内燃机、电机和变速器的工作状况。上述变速器包含的双模式组合分离机电装置具有旋转输入组件、连接到传动系统的旋转输出组件和至少三个可选择的用于将运动扭矩从上述扭矩产生装置之一传递到旋转输出组件的扭矩传递装置。变速器的工作模式中包括模式运行,在该模式运行中,根据电机的运行,可以控制输入组件和输出组件之间的速率比。变速器的工作模式中包括固定比运行,在这些固定比运行中,根据上述扭矩传递装置的至少其中之一的驱动(actuation),可以将变速器控制为输入组件和输出组件之间的多个固定速率比之一。控制系统用于根据驾驶员输入和内燃机、电机和变速器的工作状况控制内燃机、电机和变速器的运行。控制变速器的运行包括通过控制上述至少三个可选择的扭矩传递装置的驱动而将变速器控制为上述模式运行或固定比运行之一。
本发明的一个方面包括在车辆运行期间有选择的将变速器的运行控制为固定比运行。
本发明的另一个方面包括,扭矩产生装置具有两个或三个使用扭矩传递装置将运动扭矩传送到变速器的电机。
在阅读和理解以下关于实施例的详细说明之后,本领域的技术人员将清楚地认识本发明的这些和其他方面。



本发明可呈现出某些局部以及局部的安排的形式,将在作为本说明书的一部分的附图中详细说明本发明的优选实施例,其中 图1是根据本发明的示范性的动力系统的简图; 图2是根据本发明的示范性的控制架构与动力系统的简图; 图3是根据本发明的流程图。

具体实施例方式 现在参考附图,其中,各图用于说明而非限制本发明的目的。图1和图2示出了一种系统,该系统包括内燃机14、变速器10、控制系统和已根据本发明的实施例建造的传动系统。
在2005年6月23日出版的、专利申请出版号为U.S.2005/0137042A1的、题为“具有四个固定比的双模式组合分离混合机电变速器(Two-Mode,Compound-Split,Hybrid Electro-Mechanical Transmission having Four Fixed Ratios)”的共同转让的美国专利申请中详细公开了示范性的变速器10的机械方面的细节,此处通过引用将其包含于本文之中。图1示出了体现本发明概念的、用附图标记10表示的示范性的双模式组合分离混合机电变速器。混合变速器10具有的输入组件本质上是直接由内燃机14驱动的轴。瞬时扭矩阻尼器20设置在内燃机14的输出轴18和混合变速器10的输入组件12之间。瞬时扭矩阻尼器20最好包括扭矩传递装置77,扭矩传递装置77具有分别用78和79表示的阻尼机构和弹簧的特性。瞬时扭矩阻尼器20使得内燃机14可以有选择地与混合变速器10进行啮合,但是,必须懂得,扭矩传递装置77不用于改变或控制混合变速器10的工作模式。扭矩传递装置77最好包括液压摩擦离合器(用离合器C5表示)。
内燃机14可以是多种形式的内燃机(如火花点火内燃机或压缩点火内燃机)中的任何一种,它适于在工作速率范围内(从空转时的每分钟600转(RPM)或接近每分钟600转至6000RPM)为变速器10提供功率输出。不考虑内燃机14连接到变速器10的输入组件12的方式,输入组件12连接到变速器10中的行星齿轮组24。
现在参考图1,混合变速器10最好使用三个行星齿轮组24、26和28。第一行星齿轮组24具有通常设计成环形齿轮的外齿轮组件30,该组件包围着通常设计成太阳齿轮的内齿轮组件32。多个行星齿轮组件34以可旋转的方式装配在齿轮架36上,使得各行星齿轮组件34与外齿轮组件30和内齿轮组件32均啮合。
第二组行星齿轮组26也具有通常设计成环形齿轮的外齿轮组件38,该组件包围着通常设计成太阳齿轮的内齿轮组件40。多个行星齿轮组件42以可旋转的方式装配在齿轮架44上,使得各行星齿轮组件42与外齿轮组件38和内齿轮组件40均啮合。
第三组行星齿轮组28也具有通常设计成环形齿轮的外齿轮组件46,该组件包围着通常设计成太阳齿轮的内齿轮组件48。多个行星齿轮组件50以可旋转方式装配在齿轮架52上,使得各行星齿轮组件50与外齿轮组件46和内齿轮组件48均啮合。
环形齿轮/太阳齿轮的齿数比通常是根据有经验的专业人员的设计考虑确定的,它不属于本发明的内容。例如,在一个实施例中,行星齿轮组24的环形齿轮/太阳齿轮的齿数比为65/33;行星齿轮组26的环形齿轮/太阳齿轮的齿数比为65/33;且行星齿轮组28的环形齿轮/太阳齿轮的齿数比为94/34。
三个行星齿轮组24、26和28中的各齿轮组均包含简单的行星齿轮组。另外,第一和第二行星齿轮组24和26是组合的,因为第一行星齿轮组24的内齿轮组件32通过轴毂齿轮(hub plate gear)54与第二行星齿轮组26的外齿轮部分38连接。相互连接的第一行星齿轮组24的内齿轮组件32和第二行星齿轮组26的外齿轮组件38继续连接到包含发动机/发电机的第一电机56(也称为“发动机A”)。
行星齿轮组24和26进行了进一步的组合,因为第一行星齿轮组24的齿轮架36通过轴60与第二行星齿轮组26的齿轮架44相连接。这样,第一行星齿轮组24和第二行星齿轮组26各自的齿轮架36和44便连接在一起。轴60也可以通过扭矩传递装置62有选择地连接到第三行星齿轮组28的齿轮架52。以下将更为详细地说明,扭矩传递装置62用于协助选择混合变速器10的工作模式。第三行星齿轮组28的齿轮架52直接连接到变速器输出组件64。
在本文所述的实施例中,混合变速器10用于陆地车辆,且输出组件64连接到包括变速箱90或其他扭矩传递装置的传动系统,该系统为一个或多个车轴92或半轴(未示出)提供扭矩输出。而车轴92在驱动组件96处终止。驱动组件96可以是车辆的前轮或后轮,或是履带式车辆的驱动齿轮。驱动组件96具有与之相关的某种形式的轮闸94。各驱动组件均具有的速率参数NWHL包括各个车轮96的转速,通常可以用轮速传感器来测量这些转速。
第二行星齿轮组26的内齿轮组件40通过包围轴60的套轴66连接到第三行星齿轮组28的内齿轮组件48。第三行星齿轮组28的外齿轮组件46通过扭矩传递装置70有选择的连接到用变速器箱68表示的地。以下将说明,扭矩传递装置70也用于协助选择混合变速器10的工作模式。轴套66也继续连接到包括发动机/发电机的第二电机72(也称为“发动机B”)。
所有行星齿轮组24、26和28以及两个电机56和72均围绕轴向设置的轴60以同轴方式设置。电机56和72均为环形结构,这使得它们能包围三个行星齿轮组24、26和28,从而行星齿轮组24、26和28朝发动机/发电机56和72内部沿径向设置。这种结构确保变速器10的整个封套(即外围尺寸)最小。
扭矩传递装置73有选择地将太阳齿轮40与变速器箱68表示的地相连。作为锁定离合器,通过有选择地将太阳齿轮40与齿轮架44连接在一起,扭矩传递装置75 将行星齿轮组24、26,发动机56、72和输入锁定,使它们作为一组进行旋转。扭矩传递装置62、70、73、75均为摩擦离合器,分别称为离合器C1 70、离合器C2 62、离合器C3 73和离合器C4 75。每个离合器最好是液压驱动的(从泵接收加压的液压油)。液压驱动是通过公知的液压油路实现的,本文未对其进行详细说明。
作为燃料或电能存储装置(ESD)74中存储的电势的能量转换的结果,混合变速器10从多个扭矩产生装置(包括内燃机14、发动机/发电机56和72)接收输入运动扭矩。ESD 74通常包括一个或多个电池。可以用能存储电能和分发电能的其他电能和电化学能量存储装置来代替电池,而不至于更改本发明的概念。最好根据再生要求、与典型道路坡度和温度相关的应用问题以及推进要求(如排气量、功率支援和电动范围)等因素来确定ESD 74的规模。ESD 74是通过直流导线或传输导线连接到变速器功率变换器模块(TPIM)19的高压直流电源。TPIM 19是结合图2所述的控制系统的元件。TPIM 19通过传输导线29与第一电机56联系。类似的,TPIM 19通过传输导线31与第二电机72联系。根据ESD 74是否被充电或放电,电流可以流入或流出ESD 74。TPIM 19包括一对功率变换器及其各自的发动机控制器,发动机控制器用于接收发动机控制命令和控制变换器状态,以提供发动机驱动或再生功能。
在运动扭矩产生模式下,各自的变换器接收来自直流导线的电流,并通过传输导线29和31向各自的发动机提供AC电流。在电能再生控制模式下,各自的变换器通过传输导线29和31接收来自电机的AC电流,并向DC导线27提供电流。去往和来自转换器的净DC电流决定了电能存储装置74的充电或放电工作模式。发动机A 56和发动机B 72最好包含三相AC电机,且转换器最好包含互补的三相电力电子装置。
再次参考图1,从输入组件12起,可以提供驱动齿轮80。如图所示,驱动齿轮80将输入组件12与第一行星齿轮组24的外齿轮组件30以固定方式连接在一起。从而,驱动齿轮80通过行星齿轮组24和/或26从内燃机14和/或发动机/发电机56和/或72中接收功率。驱动齿轮80与惰轮82啮合,而惰轮82又与固定到轴86的一端的传递齿轮84啮合。轴86的另一端可固定到液压/变速器油泵和/或功率输出(“PTO”)单元(单独表示或作为一个整体用88表示),并包含附加的负载。
现在参考图2中所示的控制系统的示意框图,该系统包括分布式控制器架构。以下所述的元件包含整个车辆控制架构的子集,并用于提供本文所述的动力系统的协同系统控制。该控制系统用于合成相关信息和输入,并执行算法来控制各种执行器,以实现各种控制目标(包括燃料经济性、排气量、性能、驾驶性能和对包括ESD 74的电池与电机56、72在内的硬件的保护之类的参数)。分布式控制器架构包括内燃机控制模块(“ECM”)23、变速器控制模块(“TCM”)17、电池组控制模块(“BPCM”)21和变速器功率变换器模块(“TPIM”)19。混合控制模块(“HCP”)5提供对上述控制器的综合控制和它们之间的协调。用户界面(“UI”)13连接到多个装置,车辆驾驶员通常通过该界面来控制或操纵包括变速器10在内的动力系统的运行。至UI13的示范的车辆驾驶员输入装置包括加速踏板、制动踏板、变速器齿轮选择器和车辆速率巡行控制。上述的各个控制器通过局域网(“LAN”)总线6与其他控制器、传感器和制动器进行通信。LAN总线6允许在各控制器之间以有组织的方式传送控制参数和命令。使用的具体通信协议视具体应用而定。例如,一种通信协议是汽车工程师协会标准J1939。也可以使用LAN总线技术和用于在上述控制器与其他提供防抱死制动、牵引控制和车辆稳定性之类功能的控制器之间提供稳健的消息收发与多控制器接口连接的合适协议。
HCP 5提供了对混合动力系统的综合控制,它用于协调ECM 23、TCM 17、TPIM 19和BPCM 21的操作。根据来自UI 13和动力系统的各种输入信号,HCP 5生成了各种命令,包括内燃机扭矩命令TE_CMD,用于混合变速器10的各个离合器C1、C2、C3和C4的离合器扭矩命令TCL_N,分别用于电机A和B的发动机扭矩命令TA_CMD和TB_CMD。
ECM 23连接到内燃机14,并用于通过多条彼此分立的线(在图中示出为聚集线35)获取来自各个传感器的数据和控制内燃机14的各个执行器。ECM 23从HCP 5接收内燃机扭矩命令TE_CMD,并生成希望的车轴扭矩TAXLE_DES和发送到HCP 5的实际内燃机扭矩TE。为简明起见,所示的ECM 23一般具有通过聚集线35与内燃机14联系的双向接口。由ECM 23感测的各种其它参数包括内燃机冷却剂温度、到达轴18从而通往变速器10的内燃机输入速率(NE)、歧管压力、环境气温和环境气压。可以由ECM 23控制的各执行器包含喷油嘴、点火模块和节气门控制模块。
TCM17连接到变速器10,它用于从各个传感器获取数据和向变速器提供命令信号。为简明起见,所示的TCM 23一般具有通过聚集线41与变速器10联系的双向接口。从TCM 17至HCP 15的输入包括各离合器C1、C2、C3和C4的离合器扭矩TCL_N以及输出轴64的转速NO。为了控制的目的,可以用其他执行器和传感器来提供从TCM至HCP的附加信息。
BPCM 21与一个或多个用于监视ESD 74的电流和电压参数的传感器存在信号联系,以便将与电池状态有关的信息提供给HCP5。这些信息包括电池充电状态Bat_SOC和其他电池状态(包括电压VBAT、可用功率PBAT_MIN和PBAT_MAX)。
变速器功率变换器模块(TPIM)19包括一对功率变换器和发动机控制处理器22、33,其中,上述发动机控制处理器配置成接收发动机控制命令和控制变换器状态,以提供发动机驱动和再生功能。TPIM19根据来自HCP 5(由经过UI 13的驾驶员输入和系统工作参数驱动)的输入为发动机A和发动机B产生表示为TA_CMD和TB_CMD的扭矩命令。发动机A和发动机B的预定扭矩命令TA_CMD和TB_CMD是由包括TPIM 19的控制系统执行的,以将发动机A和发动机B控制为发动机扭矩TA和TB。发动机A和发动机B各自的发动机速率信号NA和NB是由TPIM 19从发动机相位信息或常规旋转传感器中得出的。TPIM 19确定了发动机速度NA和NB,并将它们传送至HCP 5。电能存储装置74是通过DC导线27连接到TPIM 19的高压DC电源。根据ESD 74是否充电或放电,电流可以流入或流出TPIM。
上述各个控制器最好是通用功能数字计算机,这些计算机一般包括微处理器或中央处理单元、只读存储器(ROM)、随机存取存储器(RAM)、电可编程只读存储器(EPROM)、高速时钟、模数转换(A/D)和数模转换(D/A)电路、输入/输出电路和装置(I/O)以及适当的信号调整和缓冲电路。各控制器均包含一组控制算法,这些算法包括存储在ROM中的常驻程序指令和校准值(calibration),且通过执行这些算法来提供各个计算机的各自的功能。最好使用上述LAN 6来实现各个计算机之间的信息传递。
通常在预置循环内执行各控制器中的用于控制和状态估计的算法,使得各算法至少在每个周期中执行一次。存储在非易失性存储器装置中的算法由中央处理单元之一来执行,并用于通过使用预置的校准值监视来自感测装置的输入和执行控制与诊断程序来控制各装置的运行。通常在固定的时间间隔处(如在内燃机与车辆运行期间,每隔3.125、6.25、12.5、25和100毫秒)进行上述循环。或者,可以响应某一事件的发生来执行这些算法。
响应由UI 13捕获的驾驶员输入,起监管作用的HCP控制器5和一个或多个其他控制器确定所需的变速器输出扭矩TO。正确控制和操纵混合变速器10的有选择地运行的部件,以便对驾驶员命令进行响应。例如,在图1和图2所示的示范性实施例中,当驾驶员选择向前的驾驶范围且操控加速踏板或制动踏板时,HCP5确定变速器的输出扭矩,而这对车辆如何和何时加速或减速产生了影响。车辆的最终加速度受到了道路负载、道路坡度和车辆质量等其他因素的影响。HCP5监视扭矩产生装置的参数状态,并确定到达所希望的扭矩输出所需的变速器输出。在HCP5的引导下,变速器10运行在从慢到快的输出速度范围内,以满足驾驶员的要求。
双模式组合分离机电混合变速器包括通过变速器10中的两组不同齿轮系接收输出功率的输出组件64,并运行于若干变速器工作模式,现在,结合图1和表1对这些模式进行了描述。
表1 表中所述的各种变速器工作模式指明了各种工作模式中离合器C1、C2、C3、C4中的哪些离合器发生啮合或被驱动。另外,在各种变速器工作模式中,发动机A 56或发动机B 72(分别用MA和MB表示)可作为电动机运行,或者,发动机A56可作为发电机运行。当驱动扭矩传递装置70以将第三行星齿轮组28的外齿轮组件46“接地”时,选择了称为模式I的第一模式或齿轮系。当释放扭矩传递装置70并同时驱动扭矩传递装置62来将轴60连接到第三行星齿轮组28的齿轮架52时,选择了称为模式II的第二模式或齿轮系。本发明范围之外的其他因素对电机56、72何时作为发动机和发电机运行产生了影响,本文未对此展开讨论。
图2所示的控制系统用于提供各工作模式(模式I,II)中的轴64的一系列变速器输出速率(从相对较慢至相对较快)NO。两种模式的组合和各模式中的从慢到快的输出速率范围使得变速器10能将车辆从静止状态推进到公路速度,并满足上述的各种其他要求。此外,该控制系统对变速器10的运行进行协调,以实现各模式之间的同步切换。
模式I和模式II是指变速器功能由一个离合器(即离合器C1或离合器C2)以及发动机/发电机56与72的受控速率和扭矩进行控制的情形。以下描述了某些工作模式,在这些模式中,通过应用附加的离合器(即C1、C2、C3或C4)实现了固定速率比。该离合器可以是上表中所示的C3 73或C4 75。
当利用该附加的离合器时,便实现了变速器输入与输出速率之间的固定速率比NI/NO。发动机/发电机56、72的旋转取决于由离合运动(clutching)定义的机构的内部旋转,并与在轴12处确定或测量的输入速率NI成比例。电机56,72作为发动机或发电机工作。它们完全独立于内燃机而输出功率流,从而使得它们同时作为电动机、同时作为发电机或以其他组合方式运行。当工作于固定比运行G1时,上述情形使得,通过接受来自能量存储装置74的功率,由来自内燃机的功率和来自电动机A和电动机B的功率通过行星齿轮组28提供了从变速器输出的、轴64处的运动功率。
在模式I或模式II运行期间,通过启用或停用上述附加离合器之一,可以将变速器的工作模式在固定比运行和模式运行之间切换。由控制系统执行的算法来确定动力系统工作于固定比运行或模式运行,且这一方面不属于本发明的内容。
各工作模式可能在运行速率比方面发生重叠,且模式的选择再次地取决于驾驶员的输入和车辆对该输入的响应。当离合器C1 70和C4 75啮合(即G1)时,范围1基本上落在模式I内。当离合器C2 62和C1 70啮合(即G2)时,范围2落在模式I和模式II内。当离合器C2 62和C4 75(即G3)啮合时,第三固定速率比范围主要落在模式II内;当离合器C2 62和C3 73啮合(即G4)时,第四固定速率比范围落在模式II内。应当注意,模式I和模式II的运行范围通常在很大程度上发生重叠。
由于机械和系统限制的原因,上述的示范性动力系统的输出受到了约束。由于轴18处测得的内燃机输出速率NE、轴12处测得的变速器输入速率NI和电机A与B的速率(表示为+/-NA,+/-NB)的限制的缘故,轴64处测得的变速器输出速率NO受到了限制。类似地,由于内燃机输入扭矩TE、瞬时阻尼器20后的轴12处测得的内燃机输入扭矩TI、发动机A 56与B 72的扭矩限制(TA_MAX、TA_MIN、TB_MAX、TB_MIN)的缘故,变速器64的输出扭矩TO受到了限制。
现在参考图3,以下详细描述了使用结合图2所述的控制系统的结合图1所述的车辆推进系统。该控制系统提供了一种综合系统控制结构,后者将包括内燃机14、电机56与72和变速器的扭矩传递离合器C1、C2、C3、C4在内的传动系统的运行控制为选定的变送器工作模式(该模式为传动系统提供了最优工作点)。
在分布式控制器架构的控制器之一中执行了车辆推进的综合控制架构。上述的包括内燃机和电机在内的扭矩产生装置各用于向变速器提供运动扭矩。控制系统根据驾驶员输入来控制内燃机、电机和变速器。变速器包括的双模式组合分离机电装置具有旋转输入组件12、连接到传动系统90、92的旋转输出组件64和用于将运动扭矩从上述扭矩产生装置之一传递到旋转输出组件64的至少三个可选的扭矩传递装置62、70、73、75。变速器具有的工作模式包括模式运行(模式I或模式II),在该运行中,可以根据上述电机的运行来控制上述输入组件和上述输出组件的速率比。变速器的工作模式包括固定比运行(G1、G2、G3、G4),在这些固定比运行中,可以根据上述扭矩传递装置(C1、C2、C3、C4)中的至少其中之一的驱动来将所述变速器控制为上述输入组件(即NI)和上述输出组件(即NO)之间的多个固定速率比之一。根据驾驶员输入和车辆的工作参数,通过控制上述至少三个可选的扭矩传递装置的驱动,控制系统将变速器控制为模式运行和固定比运行中的一种工作模式。
再次参考图3,动力系统控制目标用表示燃料经济性、排气量和车辆性能的参数进行定义。监视了驾驶员输入(通常包括关于车轴扭矩的要求,这些要求最好包括车辆速率、加速和制动方面的要求)。确定了动力系统的约束,这些约束通常包括内燃机扭矩(TE)、发动机扭矩TA和TB、来自变速器的硬件限制、驱动的离合器扭矩限制TCL_N、从ESD传递到电动机的可用电能(通常用可用功率PBAT_MIN和PBAT_MAX表示)。
为选择动力系统将要达到的工作点,控制器用工作参数NE、TE、TA、TB为各变速器工作模式(即模式I、模式II、G1、G2、G3、G4)评估所有可能的动力系统工作点。为每个工作模式(模式I、模式II、G1、G2、G3、G4)确定一个最优工作点。控制器最好从为上述每个工作模式确定的最优工作点中选出最好的工作点,即最优点。
或者,为选择动力系统将要达到的工作点,控制器用工作参数NE、TE、TA、TB评估所有可能的动力系统工作点。从而,选择了最优工作点和相应的变速器工作模式(模式I、模式II、G1、G2、G3、G4中的一个)。
或者,控制器用工作参数NE、TE、TA、TB为特定的变速器工作模式(如模式I、模式II、G1、G2、G3、G4)评估所有可能的动力系统工作点。并为该特定工作模式确定最优工作点。
控制器执行命令,并控制变速器运行于欲达到最优或选定的工作点的特定工作模式,并进一步命令和控制动力系统运行于该最优或选定的工作点。
控制动力系统最好包括 a.使用TPIM 19,通过ESD 74和各个发动机之间的电能传递来控制发动机A和B与变速器之间的扭矩传递; b.控制内燃机14的运行,包括节气门控制和内燃机加燃油; c.驱动变速器扭矩传递离合器C1、C2、C3和C4中的至少一个离合器,以便运行于特定的变速器工作模式(如模式I、模式II、G1、G2、G3、G4)来实现发动机A和B、内燃机、变速器10的输出轴64之间的扭矩传递。
最优工作点包括在模式运行(模式I和模式II)中之一运行,其中,可以根据电机的运行来控制输入组件12和输出组件64之间的速率比。或者,同样可以接受的是,最优工作点包括运行于固定比运行(G1、G2、G3、G4)中的一种,其中,可以根据扭矩传递装置C1、C2、C3和C4中的至少其中之一的驱动来将变速器控制为输入组件12与输出组件64之间的多个固定速率比之一。
已结合优选实施例及其修改描述了本发明。在阅读和理解本说明书后,其他人可以得到另外的修改和变更形式。希望包括所有落在本发明的范围内的这类修改和变更。
权利要求
1.一种车辆推进系统,包括
包含内燃机和至少一个电机在内的多个扭矩产生装置;所述各装置用于向变速器提供运动扭矩;以及
控制系统,用于监视驾驶员输入和所述内燃机、电机和变速器的工作状况;
变速器,包括
双模式组合分离机电装置,该装置具有旋转输入组件、连接到传动系统的旋转输出组件和至少三个可选择的用于将运动扭矩从所述扭矩产生装置之一传递到所述旋转输出组件的扭矩传递装置;
所述变速器具有的工作模式中包括模式运行,在该运行中,可以根据所述电机的运行来控制所述输入组件和所述输出组件之间的速率比;
所述变速器具有的多个工作模式中包括固定比运行,在这些固定比运行中,可以根据所述扭矩传递装置中的至少其中之一的驱动来将所述变速器控制为多个固定速率比之一;以及
所述控制系统根据所述驾驶员输入和所述内燃机、所述电机和所述变速器的运行状况来控制所述内燃机、所述电机和所述变速器的运行;
所述控制系统通过控制所述可选择的扭矩传递装置的驱动将所述变速器控制为包括所述模式运行和所述固定比运行的所述工作模式之一。
全文摘要
一种包括内燃机的车辆推进系统,该内燃机具有内燃机输出、机电变速器和控制系统。该内燃机输出以某一速率比耦合到变速器输出,该速率比通过多个在电气上可变的或固定的工作模式之一建立。通过依照优选的最佳工作成本的控制来对在各个工作模式之间进行选择和控制进行管理。
文档编号B60K6/54GK101125547SQ20061015622
公开日2008年2月20日 申请日期2006年12月22日 优先权日2005年12月23日
发明者A·G·霍尔姆斯, G·A·哈巴德, A·H·希普, W·R·考托恩 申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1