用于控制混合动力交通工具的滑行转矩的方法、装置和计算机可读介质与流程

文档序号:13215397阅读:176来源:国知局
技术领域本发明涉及一种用于控制混合动力交通工具的滑行转矩的方法。更确切地说,本发明涉及一种可在进入滑行模式(例如,不压下制动器或油门踏板)时控制滑行转矩以达成燃料效率及驾驶性能的提高的方法。

背景技术:
如图1中所示,用于混合动力交通工具的动力传动系统可被配置成例如包含:彼此串联地布置的发动机10和电动机12、布置在发动机10与电动机12之间以传输或切断发动机动力的发动机离合器13、使电动机动力和发动机动力转移到驱动车轮并输出动力的自动变速器14、连接到发动机的用于传输动力的曲轴皮带轮以便起动发动机并产生动力的混合式起动发电机(HSG)16、控制电动机及动力产生的逆变器18,以及连接到逆变器18以可充电且可放电从而将电力供应到电动机12的高压电池20。用于混合动力交通工具的动力传动系统可被称作变速器安装电动装置(transmissionmountedelectricdevice,TMED)方案并实施驾驶模式,该驾驶模式包含作为仅使用电动机动力的纯电动交通工具模式的电动交通工具(EV)模式、在使用发动机作为主动力时使用电动机作为次动力的混合动力电动交通工具(hybridelectricvehicle,HEV)模式、在交通工具中进行制动、由惯性驾驶交通工具时通过电动机的发电收集交通工具的制动及惯性能量以便将所收集的能量充电于电池中的再生制动(RB)模式、等类似模式。在HEV模式下,混合动力交通工具在发动机离合器锁紧的同时通过发动机和电动机的总输出转矩驱动。在EV模式下,交通工具在放开发动机离合器的同时仅通过电动机的输出转矩驱动。在所述驾驶模式中,EV和HEV驾驶模式可通过表示“踩下油门”和“松开制动”状态的正常模式来达成,而再生制动模式可在“松开油门”和“踩下制动”的状态下达成。除正常模式和再生制动模式外,驾驶模式还可包含表示“油门松开”和“制动松开”的滑行模式。并且,在滑行模式中,视自动变速器的手动换挡而定,制动操作可与滑行操作一起执行。当发动机离合器使发动机与及电动机的速度同步,并且在发动机和电动机接合到彼此时驾驶员执行手动换挡操作时,常规滑行模式由一个方案实现,在该方案中,滑行操作期间的滑行转矩量(例如,制动转矩量)在电动机中被控制。例如,如图2中所示,滑行模式可通过如下方案来实现:在油门踏板释放状态下对于每一换挡级,用于减速的制动转矩都被不同地设定,且制动转矩量可使用电动机来控制。当油门踏板和制动器两者在滑行模式下被释放时,执行滑行驾驶。在此情况下,当驾驶员执行手动换挡时,产生通过控制电动机中滑行转矩量来执行汽油发动机的发动机制动的效应。然而,对于常规滑行模式下的滑行转矩控制,由于滑行转矩量在不考虑高压电池的充电状态(SOC)、电子部件载荷的使用状态、道路坡度状态等的情况下是在每个手动换挡级的电动机中确定,因此燃料效率可根据高压电池的放电及电子部件载荷的电流消耗而减少。此外,由于未考虑道路坡度状态,因此交通工具驾驶性能可能变差。该背景技术章节中所揭示的以上信息仅用于增强对发明背景的理解,因此其可能包含并不形成本国的本领域普通技术人员已知的相关技术的信息。

技术实现要素:
本发明致力于解决与相关技术相关联的上述问题。确切地说,本发明提供一种用于控制混合动力交通工具的滑行转矩的方法,所述方法在滑行模式下通过针对发动机的每一齿轮将以下转矩加到发动机摩擦转矩上从而将滑行转矩量(例如,制动转矩量)施加到所获取的最终滑行转矩:用于保存高压电池(例如,主电池)的充电状态(SOC)的转矩、基于交通工具用电子部件载荷的转矩、以及基于道路坡度的滑行转矩。因此,驾驶性能可通过满足驾驶员的需求转矩而得到改进,且燃料效率可通过以定向充电方式保留高压电池的SOC来类似地得到改进。根据本发明的实施方式,一种用于控制混合动力交通工具的滑行转矩的方法包括:当所述混合动力交通工具进入滑行模式时,通过针对每一手动换挡级将发动机摩擦转矩加到以下转矩上来确定最终滑行转矩:i)用于保存混合动力交通工具的高压电池的充电状态(SOC)的第一校正转矩,ii)根据交通工具用电子部件载荷而定的第二校正转矩,以及iii)基于道路坡度的滑行校正转矩;以及将用于滑行驾驶的滑行转矩量施加到该确定的最终滑行转矩上。用于控制混合动力交通工具的滑行转矩的方法进一步包括:从通过实验构建的位图数据中提取上述第一校正转矩、第二校正转矩及滑行校正转矩。上述第一校正转矩在上述高压电池的上述SOC为低SOC时增加,且在上述高压电池的上述SOC为高SOC时减少。上述第二校正转矩随着上述电子部件载荷增加而增加。上述滑行校正转矩在上坡驾驶期间增加,并在平地驾驶期间减少。此外,根据本发明的实施方式,一种用于控制混合动力交通工具的滑行转矩的装置包含:存储器,其存储程序指令;以及一或多个处理器,其被配置成执行上述被存储的程序指令。上述程序指令在被执行时执行包含以下内容的工序:当上述混合动力交通工具进入滑行模式时,通过针对每一手动换挡级将发动机摩擦转矩加到以下各转矩而确定最终滑行转矩:i)用于保存上述混合动力交通工具的高压电池的充电状态(SOC)的第一校正转矩,ii)根据交通工具用电子部件载荷而定的第二校正转矩,iii)基于道路坡度的滑行校正转矩;以及将用于滑行驾驶的滑行转矩量施加到上述确定的最终滑行转矩。此外,根据本发明的实施方式,一种含有用于控制混合动力交通工具的滑行转矩的程序指令的非暂时性计算机可读介质包含:当上述混合动力交通工具进入滑行模式时,通过针对每一手动换挡级将发动机摩擦转矩加到以下各转矩而确定最终滑行转矩的程序指令:i)用于保存所述混合动力交通工具的高压电池的充电状态(SOC)的第一校正转矩,ii)根据交通工具用电子部件载荷而定的第二校正转矩,iii)基于道路坡度的滑行校正转矩;以及将用于滑行驾驶的滑行转矩量施加到上述确定的最终滑行转矩的程序指令。因此,当混合动力交通工具在HEV模式下被驱动时,在进入表示“油门松开”且“制动松开”(即,油门和制动都不在工作中)的滑行模式时,用于滑行驾驶的滑行转矩(即,制动转矩量)被施加到最终滑行转矩,该最终滑行转矩通过针对每一手动排挡级将用于保存高压电池的SOC的校正转矩(即,“第一校正转矩”)、考虑交通工具用电子部件载荷的校正转矩(即,“第二校正转矩”)和根据道路坡度的滑行转矩加到发动机摩擦转矩而获得,燃料效率通过以定向充电方式保留高压电池的SOC得到改进。此外,驾驶员的所需转矩由于基于道路坡度的滑行转矩的校正而得到满足,从而提高驾驶性能。下文论述本发明的其它方面和优选实施方式。附图说明现参照附图说明的本发明的各种例示性实施方式,详细描述本发明的上述和其他特征,其中下列附图仅以图解的方式给出,因此不限制本发明,其中:图1为说明用于混合动力交通工具的动力传动系统的构造的示意图;图2为说明进入滑行模式时滑行转矩的常规控制实例的图;图3为说明根据本发明的用于控制混合动力交通工具的滑行转矩的方法的概念图;图4为说明根据本发明的在控制混合动力交通工具的滑行转矩时针对每一排挡级的最终滑行转矩的图形;图5为说明根据本发明的用于控制混合动力交通工具的滑行转矩的方法的流程图。附图中阐述的参考标号包含对如下文进一步论述的以下元件的参考:10:发动机12:电动机13:发动机离合器14:自动变速器16:HSG18:逆变器20:电池应理解,附图未必按比例绘制,从而呈现在一定程度上简化了的说明本发明的基本原理的各种优选特征的表示。如本文中所公开的本发明的特定设计特征(包含例如特定尺寸、定向、位置和形状)将部分由特定既定应用和使用环境来确定。在诸图中,在图示的多个图中,参考数字指代本发明的相同或等效部分。具体实施方式在下文中,现将详细参考本发明的各种实施方式,本发明的实例在附图中加以说明并在下文中描述。虽然将结合实施方式说明本发明,但应当理解的是,本说明书并不意图将本发明限制于那些实施方式。相反,本发明意图不仅涵盖所述实施方式,而且还涵盖各种替代方案、修改、等效和其它实施方式,这些内容均可包含在如由所附权利要求书所定义的本发明的精神和范围内。本申请所用的术语仅用于描述具体实施方式的目的,并不意在限制本发明。除非上下文另外明确指出,如本发明所用的单数形式“一种/一个(a/an)”、以及“该”也意在包括复数形式。应当进一步理解,当在本说明书中使用时,术语“包括”和/或“包含”限定所述特征、整体、步骤、操作、要素、和/或部件的存在,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、要素、部件和/或它们的集合。如本文所用的,术语“和/或”包括一个或多个相关的列出项的任意和所有组合。应当理解的是,术语“交通工具”或“交通工具的”或如本申请所用的其他类似的术语一般包括机动交通工具,诸如包括运动型多功能车(SUV)、公交车的客车,卡车,各种商用车,包括各种船艇和船舶的船只,飞机等,并包括混合动力交通工具,电动交通工具,燃料交通工具,充电式混合动力电动交通工具,氢动力交通工具和其它替代燃料的交通工具(例如,来自非石油资源的燃料)。正如本发明中所指代的,混合动力交通工具是指具有两个或多个动力源的交通工具,例如同时为汽油动力和电动力的交通工具。另外,应理解一个或多个以下方法或其方面中可由至少一个控制器执行。术语“控制器”可指代包含存储器和一个或多个处理器的硬件装置。存储器被配置成存储程序指令,且处理器被配置成执行程序指令,从而执行下文进一步描述的一个或多个过程。此外,应当理解的是,以下方法可由包括控制单元的装置来执行,其中在本领域技术中已知通过该装置适合控制混合动力交通工具的滑行转矩。此外,本发明的控制器可被具体化为在计算机可读介质上的非临时性计算机可读介质,该计算机可读介质包含由处理器、控制器等执行的可执行程序指令。计算机可读介质的实例包括但不限于ROM、RAM、压缩盘(CD)-ROMs、磁带、软盘、闪存驱动器、智能卡和光学数据存储装置。计算机可读记录介质还可分布在网络连接的计算机系统中使得计算机可读介质以分布形式被存储和执行,例如通过远程信息处理服务器或控制器局域网(CAN)。如上文所描述,混合动力交通工具的滑行模式在EV和HEV驾驶模式期间以“松开油门”及“松开制动”状态(即,油门和制动皆不在工作(例如,被按下))被执行,且诸如发动机制动的制动在滑行模式期间被达成。本发明特征在于,在滑行驾驶期间(在滑行模式下)的滑行转矩(即,制动转矩量)由最终滑行转矩来控制,其中该最终滑行转矩通过将用于保存SOC的校正转矩(即,“第一校正转矩”),其中SOC表示高压电池的充电量、考虑交通工具用电子部件载荷的校正转矩(即,“第二校正转矩”)和基于道路坡度的滑行校正转矩加到发动机摩擦转矩(即,发动机制动转矩)上而获得。图3为说明根据本发明的用于控制混合动力交通工具的滑行转矩的方法的概念图。图5为说明根据本发明的用于控制混合动力交通工具的滑行转矩的方法的流程图。当混合动力交通工具进入滑行模式时,驾驶员人为地将自动变速器转换到手动模式(例如,运动模式等)以执行类似于手动齿轮的换挡,且因此如图3中所示,对于每一手动换挡级发动机摩擦转矩都改变,且交通工具由发动机摩擦转矩(即,发动机制动转矩)来制动。当然,如图1的动力传动系统图所说明的,布置于发动机10与电动机12之间的发动机离合器13被接合,且其结果,当发动机及电动机动力经由自动变速器14传输到驱动车轮时,在驾驶员执行换挡时发动机摩擦转矩针对每一手动换挡级而改变。在此状况下,基于高压电池的SOC、电子部件载荷的使用、道路坡度情况等的校正转矩被添加到要被施加于用于滑行驾驶的滑行转矩的针对每一手动换挡级的发动机摩擦转矩中。更详细地,在进入滑行模式时的最终滑行转矩被用作滑行驾驶中的制动转矩,该最终滑行转矩通过将用于保存SOC的校正转矩(即,“第一校正转矩”),其中SOC表示高压电池的充电量、考虑交通工具用电子部件载荷的校正转矩(即,“第二校正转矩”)和基于道路坡度的滑行校正转矩加到发动机摩擦转矩(即,发动机制动转矩)上而获得。优选用于保存高压电池的SOC的校正转矩、考虑交通工具用电子部件载荷的校正转矩和基于道路坡度的校正转矩从经由实验构造的位图数据中提取。当从位图数据中提取的用于保存高压电池的SOC的校正转矩、考虑交通工具用电子部件载荷的校正转矩和基于道路坡度的校正转矩被添加到发动机摩擦转矩(即,发动机制动转矩)时,通过将各校正转矩加到发动机摩擦转矩而获取的针对每一排挡级的最终滑行转矩(即,最终制动转矩量)如图4所示来确定。如图3中所示,在高压电池的SOC为低SOC时,作为电动机转矩的用于保存高压电池的SOC的校正转矩增加,且在高压电池的SOC为高SOC时其会减少。即,当高压电池的SOC为低SOC时,用于保存高压电池的SOC的校正转矩(即,电动机转矩)为了定向充电而以增加的水平应用,如果为高SOC时,为了维持电池充电量而将校正转矩(即,电动机转矩)以减少的水平应用。随着电子部件载荷(例如,包含交流电源的辅助装置(AUX)等)增加,作为电动机转矩的考虑交通工具用电子部件载荷的校正转矩为了高压电池中电动机的定向充电而以增加的水平应用。即,由于当作为电子部件载荷的高压电池的SOC量减少,因此作为基于交通工具用电子部件载荷的校正转矩的电动机转矩增加以执行高压电池中的充电操作用以保存高压电池的SOC。作为电动机转矩的基于道路坡度的滑行校正转矩在上坡驾驶期间增加,且在平地驾驶期间减少。因此,在上坡驾驶期间,对于驾驶员的需要转矩,通过连同滑行模式操作增加滑行校正转矩可执行较大量的上坡驾驶。如上文所描述,当混合动力交通工具在HEV模式下驱动时,在以滑行模式操作时,滑行转矩(即,制动转矩量)被施加到最终滑行转矩,该最终滑行转矩通过将用于控制高压电池的SOC的校正转矩和基于交通工具用电子部件载荷的校正转矩加到针对每一手动排挡级的发动机摩擦转矩上而得到,以便通过以充电定向方式保存高压电池的SOC来改进燃料效率。然后,最终滑行转矩可进一步被加上基于道路坡度的滑行转矩,且作为结果,根据道路坡度情形的驾驶员所需要的转矩得到满足,从而改进驾驶性能。已参考本发明的实施方式详细地描述了本发明。然而,本领域的技术人员将了解,可在不脱离本发明的原理和精神的情况下对这些实施方式进行改变,本发明的范围在所附权利要求书及其等效物中进行了定义。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1