用于控制混合电动车辆转矩降低的装置和方法与流程

文档序号:12482513阅读:317来源:国知局
用于控制混合电动车辆转矩降低的装置和方法与流程

本公开一般涉及控制混合动力电动车辆扭矩降低的装置和方法。更具体地,本公开涉及用于控制混合电动车辆转矩降低的装置和方法,该混合电动车辆维持根据发动机操作点的发动机扭矩,并当牵引控制系统(TCS)的所需扭矩产生时利用电动机扭矩执行扭矩降低。



背景技术:

一般来说,混合动力电动车辆是由燃料燃烧产生扭矩的发动机和从电池产生扭矩的电动电动机来驱动。混合电力动力车辆可包括控制混合动力电动车发动机工作的混合动力控制单元(HCU)、控制发动机工作的发动机控制单元(EUC)、控制驱动电动机工作的电动机控制单元(MCU)、控制传动装置工作的传动装置控制单元(TCU)和管理电池状态的电池管理系统(BMS)。

其中,牵引控制系统(TCS)是安全系统,其用于阻止车轮打滑,并在启动或加速时通过控制刹车与发动机来改进驱动稳定性。TCS安装在混合电力动力车辆上,并在启动和加速时,当车轮打滑时,请求扭矩降低。

传统上,如果当TCS请求扭矩降低时产生TCS所需扭矩,则混合动力电动车辆减少发动机扭矩。接着,如果所述减少的发动机扭矩不能满足所述TCS的所需扭矩,混合动力电动车辆减少电动机扭矩来满足TCS的所需扭矩。然而,在使用所述电动机扭矩满足TCS的所需扭矩的情形中,电池和充电状态被耗尽。结果,所述电动机的动力性能退化。而且,在结束TCS的工作后,驾驶员的所需扭矩不能被满足,因此所述混合动力电动车辆不能顺利再次启动。

上述本发明背景技术公开的信息仅是为了强化本发明的技术背景的理解,且因此,背景技术可包含一些不构成本领域技术人员已知的现有技术的信息。



技术实现要素:

本发明试图提供用于控制混合动力电动车辆的扭矩降低的装置和方法,该混合动力电动车辆具有如下优点,其可维持根据发动机操作点的发动机扭矩,且当TCS所需扭矩产生时,使用电动机扭矩执行扭矩降低。

混合动力电动车辆包括作为动力源的电动机和发动机,本发明的实施例提供了在混合动力电动车辆中控制扭矩降低的方法,其包括确定牵引控制系统(TCS)是否正在运行;当所述TCS正在运行时,计算TCS所需扭矩;根据所述TCS所需扭矩来确定发动机操作点;维持根据所述发动机操作点的发动机扭矩;将所述TCS所需扭矩和根据发动机操作点的发动机扭矩的差与电动机的充电极限扭矩进行比较;以及基于比较结果使用电动机扭矩和发动机扭矩执行扭矩降低。

当所述电动机的充电极限扭矩大于或等于TCS所需扭矩和根据发动机操作点的发动机扭矩的差时,仅使用所述电动机扭矩执行扭矩降低。

当所述电动机的充电极限扭矩小于TCS所需扭矩和根据发动机操作点的发动机扭矩的差时,执行扭矩降低的步骤增加所述发动机扭矩。使用所述电动机的充电极限扭矩和所述增加的发动机扭矩执行所述扭矩降低。

当所述TCS正在运行时,根据所述TCS所需扭矩确定所述发动机操作点以维持车辆电池的充电状态。

维持根据所述发动机操作点的发动机扭矩的步骤降低所述发动机扭矩,且增加根据电池的充电状态的补偿扭矩。

此外,根据本发明的实施例,一种用于控制混合动力电动车辆扭矩降低的装置,所述混合动力电动车辆包括作为动力源的发动机和电动机,所述装置包括:行车信息探测器,其探测所述车辆的运行状态和所述车辆驾驶者的需求信息;

牵引控制系统(TCS),其阻止所述车辆的车轮打滑;以及

控制器,其基于来自驱动信息探测器的信号控制所述发动机和电动机的输出扭矩,当所述TCS正在运行时,根据TCS所需扭矩确定发动机操作点,维持根据所述发动机操作点的发动机扭矩,将所述TCS 所需扭矩和根据发动机操作点的发动机扭矩的差与电动机的充电极限扭矩进行比较,且基于比较结果使用电动机扭矩和发动机扭矩来执行扭矩降低。

当所述电动机的充电极限扭矩大于或等于TCS所需扭矩和根据发动机操作点的发动机扭矩的差时,所述控制器仅使用所述电动机扭矩执行扭矩降低。

当所述电动机的充电极限扭矩小于TCS所需扭矩和根据发动机操作点的发动机扭矩的差时,所述控制器增加所述发动机扭矩。

控制器使用所述电动机的充电极限扭矩和所述增加的发动机扭矩执行扭矩降低。

当所述TCS正在运行时,所述控制器根据所述TCS所需扭矩确定所述发动机操作点以维持所述车辆的电池的充电状态。。

控制器通过降低所述发动机扭矩和增加根据所述电池的充电状态的补偿扭矩,维持根据所述发动机操作点的发动机扭矩。

此外,依照本发明实施例,在包含电动机和发动机作为动力源的混合动力电动车辆中,包含控制扭矩降低程序指令的非暂时性计算机可读介质包括:确定牵引控制系统(TCS)是否正在运行的程序指令;当所述TCS正在运行时,计算TCS所需扭矩的程序指令;根据TCS所需扭矩来确定发动机操作点的程序指令;维持根据发动机操作点的发动机扭矩的程序指令;将所述TCS所需扭矩和根据发动机操作点的发动机扭矩的差与电动机的充电极限扭矩进行比较的程序指令;以及基于比较结果使用电动机扭矩和发动机扭矩执行扭矩降低的程序指令。

如前所述,根据本发明实施例,在TCS运行时电池充电状态可被维持,因此由于电池充电状态耗尽而驾驶员所需扭矩不被满足的问题能被避免。另外,通过确定发动机操作点,发动机效率被改善,因此混合动力电动车辆的燃料效率和电动机性能被改善。于是,即使TCS频繁工作在冬天的有雪路面或结冰路面,混合动力电动车辆的驱动性能和稳定性能被改善。

附图说明

图1是根据本公开实施例用于混合动力电动车辆控制扭矩降低的 方法应用于其中的混合系统的原理图。

图2是根据本公开实施例用于控制混合动力电动车辆的扭矩降低的装置的方框图。

图3是根据本公开实施例用于控制混合动力电动车辆扭矩降低的方法的流程图。

图4是根据传统技术控制混合动力电动车辆扭矩降低的方法应用于扭矩降低总量的示图。

图5是根据本公开实施例的控制混合动力电动车辆扭矩方法应用于扭矩降低总量的示图。

具体实施方式

在下述详细说明中,仅简单地通过示例示出和描述本公开某些特定实施例。因本领域技术人员会明白,具体实施例可以不同方式改进,且都没有偏离本发明精神或范围。进一步,贯穿整个说明书,相似的标识号表示相似要素。

本公开使用的术语仅为了说明特定实施例的目的,而非为了限制本公开。贯穿本说明书和权利要求书,除非明确不同地表述,词“包括”及其多种变体,例如“包含”、“包括的”被理解为含有所述要素,但不排除任何其它要素。进一步,除非上下文另外明确指示,单数形式“一个/种”和“该”同样包括复数形式。

应当理解,本发明使用的术语“车辆”、“车辆的”或其它类似术语包括机动车辆,所述机动车辆通常包括混合动力车辆、插电式混合动力电动车辆及其它替代燃料车辆(如,从非石油资源衍生的燃料)。这里所指的混合动力电动车辆是有两种或以上动力源的车辆,例如由汽油和电力两者驱动的车辆。

此外,应当理解,如下方法中的一种或多种或其中的方面可被至少一个控制器执行。术语“控制器”可指包括存储器和处理器的硬件元件。存储器经配置以存储程序指令,而处理器被特别程序化以执行程序指令,从而执行一个或多个下述的过程。而且,应当理解,下述方法可被包括控制器的装置结合一个或多个其它组件执行,这可被本领 域技术人员理解。

此外,本公开控制器可实施为在计算机可读介质上的非暂时性计算机可读介质,其含有由处理器、控制器等执行的可执行程序。计算机可读介质的例子包括但不限于ROM、RAM、光盘(CD)-ROM,磁带、软磁碟、闪存盘、智能卡和光数据存储元件。计算机可读记录介质也可分布到连接网络耦合计算机系统中,因此计算机可读介质以分布的方式存储和执行,如,由远程服务器或控制器局域网(CAN)执行。

下面参考附图详细说明本公开的实施例。

图1是根据本公开实施例用于混合动力电动车辆控制扭矩降低的方法应用于其中的混合系统的原理图。

图1所示的混合系统是为了更好的理解和易于说明而示出。所以,根据本公开示例性的实施例,用于控制发动机启动同时换挡混合动力电动车辆的方法可不仅可应用于图1所示的混合系统,而且也用于所有其它混合系统。

如图1所示,根据本公开实施例,用于混合动力电动车辆控制扭矩降低的方法应用于其中的混合系统包括混合控制单元(HCU)10、电子控制单元(ECU)12、电动机控制单元(MCU)14、传动装置控制单元(TCU)16、发动机20、发动机离合器22、电动机24、传动装置26和电池28。

HCU 10控制其它控制器的工作,所述控制器在混合动力电动车辆整个工作中互相交换信息,因而HCU 10通过与其它控制器配合控制发动机20和电动机24的扭矩输出。

ECU 12根据发动机20的状态控制其整个工作,例如驾驶员的所需扭矩、冷却剂温度以及发动机扭矩。

MCU 14根据驾驶员的所需扭矩、混合动力电动车辆的驱动模式及电池28的充电状态控制电动机24的整个工作。

TCU 16控制传动装置26的整个工作,例如取决于发动机20和电动机24的输出扭矩以及再生制动总量的传动装置26的速率比。

发动机20接通后作为动力源输出动力。

发动机离合器22设置在发动机20和电动机24之间以接收HCU 10 的控制信号,并根据混合动力电动车辆驱动模式选择性地连接发动机20和电动机24.

电动机24由通过逆变器从电池28施加的3相交流电压来操作以以产生扭矩,并作为动力发生器工作,且在滑行模式(coast-down)下向电池28提供再生能量。

传动装置26将由发动机离合器22的接合与释放确定的发动机20的输出扭矩和电动机24的输出扭矩的总和提供为输入扭矩,并根据车辆速度和驱动状态选择任一档位以输出驱动力到驱动轮,且维持驱动。

电池28由多个单元电芯构成,且存储高电压以向电动机24提供电压,例如400到450V的直流电。

图2是根据本公开实施例用于控制混合动力电动车辆的扭矩降低的装置的方框图。

如图2所示,根据本公开实施例用于控制混合动力电动车辆扭矩降低的装置包括驱动信息探测器30,牵引控制系统(TCS)35,控制器11,发动机20和电动机24。

根据本公开实施例,用于控制混合动力电动车辆扭矩降低方法中的过程可由于每个控制器,整合或细分执行。因此,为便于说明,在本说明书和权利要求书中,在混合动力电动车辆中提供的许多控制器都被称作控制器11。

应用本公开实施例的混合动力电动车辆包括至少一个发动机20和至少一个电动机24。另外,混合动力电动车辆提供驱动模式,其中发动机20和电动机24作为动力源分别或同时工作。为此,发动机离合器设置在发动机20和电动机24间,以选择性地连接发动机20或电动机24。

驱动信息探测器30探测混合动力电动车辆的运行状态和驾驶员的命令信息,并包括车辆速度传感器31,电动机速度传感器32,发动机速度传感器33以及加速踏板位置传感器(APS)34。

车辆速度传感器31探测车辆的速度,并传输相应信号到控制器11。

电动机速度传感器32探测电动机24的旋转速度,并传输相应信号到控制器11。

发动机速度传感器33探测发动机20的旋转速度,并传输相应信 号到控制器11。

加速踏板位置传感器34连续地探测加速踏板的位置值,并传输监视信号到控制器11。当加速踏板被完全踏下时,加速踏板位置值可以是100%,且当加速踏板一点没有被踏下时,加速踏板位置值可以是0。

安装在进气管上的节流阀位置传感器(TPS)可代替加速踏板位置传感器34使用。所以,为本公开的目的,加速踏板位置传感器34应包括节流阀位置传感器,且加速踏板位置值应该理解为节流阀的开放值。

TCS 35是安全系统,当车辆在有雪的路面或结冰路面上启动或加速时,其被配置以控制驱动扭矩以阻止车轮打滑。因此,当因混合动力电动车辆在光滑路面出发或加速而车轮打滑发生时,TCS 35通过输出所需扭矩请求扭矩降低。

当TCS在运行时控制器11根据TCS的所需扭矩确定发动机操作点,维持根据发动机操作点的发动机扭矩,且使用基于TCS所需扭矩与根据发动机操作点的发动机扭矩的差的电机扭矩和发动机扭矩执行扭矩降低。控制器将所述TCS所需扭矩和根据发动机操作点的发动机扭矩的差与电动机的充电极限扭矩进行比较,且当电动机的充电极限扭矩大于或等于所述差时控制器通过仅使用电动机扭矩执行扭矩降低。

另一方面,当电动机的充电极限扭矩小于差时,控制器可增加发动机扭矩。为此目的,控制器11可作为至少一个由预定程序工作的处理器被实施,且预定程序可被程序化以便执行根据本公开实施例用于控制混合动力电动车辆扭矩降低的方法的每一步。

在此描述的不同实施例可在记录介质里实施,该介质可被计算机或类似元件通过使用例如软件、硬件或软硬件结合来读取。

根据硬件实现,在此描述的实施例可通过使用下述项中的至少一个来实施:专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理元件(DSPD)、可编程逻辑元件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器以及设计执行任一其它功能的电器元件。根据软件实现,例如当前实施例描述的步骤和功能的实施例可被不同的软件模块实施。软件模块的每个可执行一个 或多个本公开描述的功能和工作。软件代码可通过以合适程序语言编写的软件应用实施。

在下文中,根据本公开实施例用于控制混合动力电动车辆扭矩降低的方法以图3到图5详细说明。

图3是根据本公开实施例用于控制混合动力电动车辆扭矩降低的方法的流程图。

如图3所示,根据本公开实施例用于控制混合动力电动车辆扭矩降低的方法以控制器11在步骤S100确定TCS 35是否在工作开始。

当在步骤S100TCS 35在运行时,控制器11在步骤S110计算TCS所需扭矩。

当TCS所需扭矩在步骤S110被计算出,控制器11在步骤S120根据TCS所需扭矩确定发动机操作点。根据TCS所需扭矩的发动机操作点可被确定为当TCS在运行时维持电池充电状态的值。

当根据TCS所需扭矩的发动机操作点在步骤S120被确定时,控制器11在步骤S130维持根据发动机操作点的发动机扭矩。在此,控制器11降低发动机扭矩,并根据电池充电状态增加补偿扭矩。

根据电池充电状态的补偿扭矩可通过预定的示图确定。例如,如果电池充电状态是20%,则补偿扭矩确定为15Nm,如果电池充电状态是40%,则补偿扭矩确定为10Nm,如果电池充电状态是60%,则补偿扭矩确定为5Nm,而如果电池充电状态是90%,则补偿扭矩确定为0Nm。

然后,控制器11在步骤S140将所述TCS所需扭矩和根据发动机操作点的发动机扭矩的差与电动机的充电极限扭矩进行比较。如果在步骤S140电动机的充电极限扭矩大于或等于TCS所需扭矩和根据发动机操作点的发动机扭矩的差,这意味着仅用电动机扭矩能满足TCS所需扭矩。因此,控制器11将电动机扭矩确定为TCS所需扭矩与根据发动机操作点的发动机扭矩的差,且在步骤S150通过仅使用电动机扭矩执行扭矩降低。

另一方面,如果在步骤S140电动机的充电极限扭矩小于TCS所需扭矩与根据发动机操作点的发动机扭矩的差,这意味着仅通过电动机扭矩不能满足TCS所需扭矩,因电动机有充电限制。所以,控制器 11确定电动机扭矩为电动机最大输出扭矩的电动机的充电极限扭矩,增加发动机扭矩,且在步骤S160执行扭矩降低。

图4是根据传统技术控制混合动力电动车辆扭矩降低的方法应用于扭矩降低总量的示图。图5是根据本公开实施例的控制混合动力电动车辆扭矩方法应用于扭矩降低总量的示图。

如图4所示,当TCS所需扭矩产生时,根据传统技术用于控制混合动力电动车辆扭矩降低的方法首先如No.2减少发动机扭矩。然后,如果发动机扭矩不满足TCS所需扭矩,则传统方法如No.3降低电动机扭矩。就是说,在发动机扭矩变成0后继续使用电动机,电池充电状态被耗尽。因此,当混合动力电动车辆在完成TCS的工作后再次启动时驾驶员的所需扭矩不能被满足的问题如No.5产生。

相反,如图5所示,根据本公开用于控制混合动力电动车辆扭矩降低的方法可同时降低电动机扭矩和发动机扭矩,如No.1和No.2。因此,维持根据发动机操作点的发动机扭矩,且发动机扭矩和电动机扭矩满足TCS所需扭矩,如此电池的充电状态能维持。

如上所述,根据本公开实施例,在TCS的工作期间电池充电状态可维持,如此由于电池充电状态耗尽驾驶员所需扭矩不能满足的问题能被阻止。另外,通过确定发动机操作点改善发动机效率,因此混合动力电动车辆的燃料效率和动力性能改进。

虽然已经结合当前被认为是实用实施例的实例描述了本公开,但应当理解本公开并不仅限于本发明所公开的实施例。相反,本公开旨在涵盖包括在随附权利要求限定的不同修改和等效结构。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1