一种复合材料车用能量吸收部件及其加工方法与流程

文档序号:12443978阅读:329来源:国知局
一种复合材料车用能量吸收部件及其加工方法与流程

本发明涉及汽车能量吸收部件,特别是涉及一种复合材料车用能量吸收部件及其加工方法。



背景技术:

当今社会车辆已经走进千家万户,不可避免地大量的交通事故危机司乘人员的安全。为了减少车辆受到冲击时外部冲击力对人身的伤害,大部分汽车在纵梁和防撞钢梁之间应用了可以吸收来自外界冲击能量的装置,即能量吸收部件。直至现在各大汽车厂商的能量吸收部件仍主要采用金属制,并被广泛应用于汽车上,但该种材料主要靠塑性变形吸收能量导致其能量吸收性能差。近几年,性能优异且轻量的复合材料的兴起启发了汽车领域,复合材料制品的能量吸收部件得以应用于汽车上,但仍主要是赛车和价格昂贵跑车的专属。这主要是因为高强度高模量的复合材料价格较高,由其制成的能量吸收部件价格是金属制能量吸收部件的数倍,制约了复合材料能量吸收部件的推广。因此,需要开发一种低成本高性能的复合材料能量吸收部件。



技术实现要素:

本发明的目的是提供一种复合材料车用能量吸收部件及其加工方法,以解决上述现有技术存在的问题,以降低复合材料能量吸收部件的成本。

为实现上述目的,本发明提供了如下方案:本发明提供了一种复合材料车用能量吸收部件,该部件为管状结构,包括从内至外依次缠绕的第一碳纤维层、玻璃纤维层和第二碳纤维层,所述玻璃纤维层的体积与第一碳纤维层和第二碳纤维层的体积之和比大于1。

进一步地,所述管状结构一端设有45°倒角,另一端为平面。

优选的,所述玻璃纤维层替换为玄武岩纤维层。

优选的,所述第一碳纤维层和第二碳纤维层均为两层,所述玻璃纤维层为七层。

优选的,所述玻璃纤维层的体积与第一碳纤维层和第二碳纤维层的体积之和比为7:4。

优选的,所述管状结构为圆管,所述圆管管壁厚度与圆管内径比为1:17.8~1:20。

本发明还提供了一种复合材料车用能量吸收部件的加工方法,包括如下步骤:

步骤1:将碳纤维织物预浸料和玻璃纤维织物预浸料裁剪为预设尺寸;

步骤2:将碳纤维织物预浸料缠绕到已缠绕有脱模布的钢材芯轴上;

步骤3:将玻璃纤维织物预浸料缠绕到钢材芯轴上的碳纤维织物预浸料上;

步骤4:将碳纤维织物预浸料缠绕到钢材芯轴上的玻璃纤维织物预浸料上;

步骤5:将热收缩带缠绕到钢材芯轴最外层的碳纤维织物预浸料上;

步骤6:将缠绕好热收缩带的钢材芯轴置于温度120℃~140℃烘箱中固化1h~2h,然后关闭烘箱电源使之在烘箱中缓慢冷却;

步骤7:温度降至50℃以下时,进行脱模处理,并剥去热收缩带,获得管状的复合材料车用能量吸收部件。

进一步地,步骤7之后还包括将管状的复合材料车用能量吸收部件的一端打磨出倒角。

优选的,步骤2中碳纤维织物预浸料缠绕两层,步骤3中玻璃纤维织物预浸料缠绕七层,步骤4中碳纤维织物预浸料缠绕两层。

进一步地,步骤2至步骤4在缠绕时加压。

本发明相对于现有技术取得了以下技术效果:本发明公开的复合材料车用能量吸收部件通过使用碳纤维层-玻璃纤维层-碳纤维层的复和形式,这种复合形式使得能量吸收部件在轴向被压溃时,具有较高模量及强度的外层碳纤维层束缚玻璃纤维层,抑制玻璃纤维层分层,同时玻璃纤维层完全碎裂成碎片,纤维增强复合材料能够最大程度的破坏,从而吸收来自外界冲击的能量。

碳纤维材料各方面性能均优于玻璃纤维材料,但碳纤维材料成本远远高于玻璃纤维。本发明通过使玻璃纤维层的体积与第一碳纤维层和第二碳纤维层的体积之和比大于1,不仅保证了能量吸收部件在承受压缩或冲击时高效的吸收能量,而且从实际生产角度出发应用玻璃纤维复合材料作为主体材料降低了能量吸收部件的生产成本。此外,本发明公开的复合材料车用能量吸收部件与金属制能量吸收部件相比,具有质量轻、比能量吸收值高的优点。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明公开的实施例立体结构示意图;

图2为本发明公开的实施例剖视示意图;

图3为本发明公开的实施例A部的局部放大图;

图4为本发明公开的实施例加工流程图;

图5为本发明公开的实施例的静态压缩测试的位移载荷曲线图;

其中,1为第一碳纤维层,2为玻璃纤维层,3为第二碳纤维层。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种复合材料车用能量吸收部件及其加工方法,以解决上述现有技术存在的问题,以降低复合材料能量吸收部件的成本。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

实施例1:如图1-3所示,本实施例公开了一种复合材料车用能量吸收部件,该部件为圆管状结构,管壁厚度为1.8±0.1mm,圆管内径为34mm。包括从内至外依次缠绕的两层第一碳纤维层1、七层玻璃纤维层2和两层第二碳纤维层3。所述玻璃纤维层2的体积与第一碳纤维层1和第二碳纤维层3的体积之和比约为7:4。所述管状结构一端设有45°倒角,另一端为平面。

本实施例的复合材料车用能量吸收部件的加工方法,包括如下步骤:

步骤1:将碳纤维织物预浸料和玻璃纤维织物预浸料裁剪为预设尺寸;

步骤2:将碳纤维织物预浸料缠绕到已缠绕有脱模布的钢材芯轴上,并加压且缠绕两层;

步骤3:将玻璃纤维织物预浸料缠绕到钢材芯轴上的碳纤维织物预浸料上,并加压且缠绕七层;

步骤4:将碳纤维织物预浸料缠绕到钢材芯轴上的玻璃纤维织物预浸料上,并加压且缠绕两层;

步骤5:将热收缩带缠绕到钢材芯轴最外层的碳纤维织物预浸料上;

步骤6:将缠绕好热收缩带的钢材芯轴置于温度140℃烘箱中固化1h,然后关闭烘箱电源使之在烘箱中缓慢冷却;

步骤7:温度降至50℃时进行脱模处理,并剥去热收缩带,获得管状的复合材料车用能量吸收部件;

步骤8:将管状的复合材料车用能量吸收部件的一端打磨出倒角。

目前比能量吸收值Es作为业界较为认可的标准已得到广泛应用,同时也成为了评价汽车能量吸收性的重要指标。Es为单位质量的材料所能吸收的能量值,其计算公式如下所示:

其中,Es为比能量吸收值,P为载荷,S为位移,Sb为压缩距离,A为编织管件的截面积,L为编织管的压缩位移,ρ为材料的密度。

利用INSTRON 4206万能试验机对实施例1中的复合材料车用能量吸收部件进行静态压缩实验,获得的静态压缩测试的位移载荷曲线图如图5所示。

从图5可以观察得出以下结论:本实施例1的复合材料车用能量吸收部件在初始压缩阶段载荷和位移成比例线性增长,载荷逐渐达到最大值渐进稳定的破坏,上升至峰值后保持稳定,且并无大幅度降低,比能量吸收值高达110kJ/kg。

实施例1的复合材料车用能量吸收部件的破坏模式正是应用于能量吸收部件的理想破坏模式。

本发明公开的复合材料车用能量吸收部件通过使用碳纤维层-玻璃纤维层-碳纤维层的复和形式,这种复合形式使得能量吸收部件在轴向被压溃时,具有较高模量及强度的第一碳纤维层1和第二碳纤维层3束缚玻璃纤维层2,抑制玻璃纤维层2分层,同时玻璃纤维层2完全碎裂成碎片,使本实施例的复合材料车用能量吸收部件能够最大程度的破坏,从而吸收来自外界冲击的能量。

碳纤维材料各方面性能均优于玻璃纤维材料,但碳纤维材料成本远远高于玻璃纤维。本发明通过使玻璃纤维层2的体积与第一碳纤维层1和第二碳纤维层3的体积之和比约为7:4,能够实现材料的最大利用效率,不仅保证了能量吸收部件在承受压缩或冲击时高效的吸收能量,而且从实际生产角度出发,应用玻璃纤维复合材料作为主体材料,降低了能量吸收部件的生产成本。管状结构的一端打磨出45°的倒角作为冲击破坏时的引导机制引导管件破坏。在承受冲击时,倒角最先破坏引发渐进破坏机制,进而整个管件能够渐进稳定的破坏。本发明公开的复合材料车用能量吸收部件与金属制能量吸收部件相比,具有质量轻、比能量吸收值高的优点。

实施例2,作为对实施例1的进一步改进,所述玻璃纤维层2替换为玄武岩纤维层,固化温度采用120℃,时间为2h;待温度降至40℃时进行脱模处理。本实施例的比能量吸收值不低于110kJ/kg。

本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1