游泳和潜水辅助装置的制作方法

文档序号:13038742阅读:230来源:国知局
游泳和潜水辅助装置的制作方法

本发明涉及一种游泳和潜水辅助装置,该游泳和潜水辅助装置具有供使用者躺或站的船体,该船体具有流动通道,流动通道布置在船体中并且容纳由电动马达驱动的螺旋桨,该螺旋桨具有安装在螺旋桨的基部上的径向向外指向的螺旋桨叶片,其中电动马达具有刚性布置的马达定子以及在空间上邻近马达定子设置的旋转转子。

这种类型的游泳和潜水辅助装置从de102004049615b4得知。该游泳和潜水辅助装置具有在使用者将其上身的一部分平躺在水上载具的船体(vehiclehull)的上侧时该使用者可以抓握的手柄布置。其中容纳有螺旋桨的流动通道布置在船体内。螺旋桨由电动马达驱动,电动马达经由蓄电池供电。为此,螺旋桨经由驱动轴连接到电动马达。电动马达被保持在延伸到螺旋桨的容纳壳体中。驱动轴经由密封盒从壳体引导到螺旋桨。因此被设计为不透水的容纳壳体可以与电动马达一起布置在被水灌流的游泳和潜水辅助装置的船体中的腔室中,并且因此将其废热排放到流经的水中。为此提供如下设置:将螺旋桨、电动马达和相关联的控制装置设计为水下驱动单元并且布置在流动通道中。

在这种布置中,通过冷却实现的紧凑设计和良好效率的优点与电动马达布置在流动通道中并因此基本上影响水的流动的缺点相对。这特别适用于大功率电动马达,大功率电动马达提供用于使游泳和潜水辅助装置快速加速的高转矩,并且必须经由驱动轴将所述转矩传递到螺旋桨,该驱动轴具有相对小的直径,并且因此在力传输区域中具有短的杠杆臂。因此,流动通道的尺寸必须设定得足够大以补偿由电动马达引起的遮挡(shadowing)。游泳和潜水辅助装置的尺寸由此受到影响。

因此,在de102013100544a1中提出一种水上载具,其中螺旋桨布置在流动通道中。在水上载具的船体中设置灌流室,所述灌流室在漂浮和潜水操作期间经由水穿过开口填充有水。电动马达和相关联的蓄电池被布置在灌流室中,并且因此被有效地冷却而不影响流动通道中的流动。从电动马达到螺旋桨的能量传递通过在套管中引导的驱动轴进行,该套管被从灌流室引导到流动通道中。因此,电动马达从流动通道的流动区域移除;然而,其仍然通过与灌流室中的水的导热接触来冷却。

在该布置中不利的是,由必然延伸的驱动轴引起的水上载具的额外重量严重影响运输(特别是运动装置在水之外的运输)。驱动轴的增加的质量惯性影响驱动的动力,其必须通过相应更大功率的电动马达来补偿,其缺点是能量消耗增加。由于因被引导通过流动通道的驱动轴所造成的降低效率的流动通道中流动的干扰,以及由于在驱动轴被引导到流动通道的区域中流动通道的原本平滑的壁的中断,而出现了另外的缺点。

本发明的目的是提供一种在高动力驱动下具有低自重的游泳和潜水辅助装置。

本发明解决的问题在于,将电动马达的转子直接或间接地耦接到至少一个螺旋桨叶片的至少一个外端,并且将马达定子至少在多个区段上围绕转子周向布置。因此,转子在相对于其旋转轴线具有相当大的距离的大圆形路径上移动。因此,实现了传递到螺旋桨的高转矩。由于高转矩可以实现螺旋桨的旋转速度的快速变化,这允许游泳和潜水辅助装置的高动力驱动。

相应地,在本发明的特别优选的实施例变型中可以提供,将螺旋桨叶片的至少一部分的外端连接到螺旋桨环,且将转子布置在螺旋桨环上,和/或将螺旋桨叶片的至少一部分的外端连接到环形转子壳体,且将转子布置在转子壳体中。因此,经由多个螺旋桨叶片传送驱动力,通过这种方式,显著减少各个螺旋桨叶片的机械负荷。因此,可以将非常高的驱动力传送到螺旋桨。转子的离心力传递到螺旋桨环或转子壳体。影响螺旋桨环或转子壳体的沿直径相对的区域的牵引力彼此抵消,使得螺旋桨叶片不受拉伸负荷。这增加了螺旋桨叶片的预期寿命。螺旋桨环可以构成转子壳体的内部基座。当使用转子壳体时,在水中使转子被保护。

将螺旋桨环和/或转子壳体在螺旋桨上模制成一体可实现简单且廉价的生产。因此,螺旋桨可以与螺旋桨环或转子壳体在一个加工过程中一起制造。

转子具有布置在转子的转动方向上的多个永磁体,和/或马达定子具有布置在转子移动的圆形路径的周向上的多个电磁体,可以实现电动马达的简单且安全的设计。由于具有永磁体的转子的设计,不需要将电传送到转子。因此,消除了对旋转部件的防水的电供应。通过使用多个永磁体和电磁体实现高数量的极对。因此,获得具有高转矩的电动马达。

有利地,提供具有定子叶片的流动定子在水的流动方向上布置在螺旋桨的下游,流动定子经由定子叶片直接或间接地附接到流动通道的壁,和/或用于容纳马达定子的定子壳体与定子叶片的至少一部分的外端直接或间接地连接。定子叶片以这样的方式定向,即将水的旋转移动转换成线性移动。通过这种方式,可获得在水旋转时所储存的能量以驱动游泳和潜水辅助装置。通过将流动定子安装在流动通道上,该流动定子固定地定位在流动通道中。因此,即使在流动通道中的水的高流动速度下,流动定子也不改变其位置。该定子优选地布置在转子移动的圆形路径的周向上。由此,将固定地布置该定子。通过连接到流动定子的定子壳体,可以容易地满足这两个要求。

将电动马达的定子壳体在流动定子上模制成一体可实现简单且廉价的生产。因此,流动定子和电动马达的定子壳体可以在一个加工过程中生产。

为了实现游泳和潜水辅助装置的期望驱动,必须使对应体积的水加速到足够的速度。为此需要足够大的流动横截面。为了能够实现足够大的流动横截面,可以提供的是,将转子和/或马达定子布置在流动通道的侧向凹槽中。因此,电动马达被布置在流动通道中引导的水的主流的外部。因此,与电动马达布置在流动通道内的设计相比,流动通道的横截面可以减小。由于流动通道占据相当大比例的船体,因此整个游泳和潜水辅助装置可以更紧凑地设计,而不会降低驱动功率。

通过将螺旋桨轴向地固定在布置在流动通道内的可旋转安装的轴上,可以实现螺旋桨的简单且稳固的安装。

对应于本发明的优选实施例,可以提供的是,轴被设计为中空轴,和/或轴由碳纤维增强塑料材料制成。通过将轴实施为中空轴,可以实现重量减轻,而轴的稳定性和刚性没有显著的损失。相对于由金属制成的轴,碳纤维增强塑料材料(cfrp)具有显著较低的密度,同时具有非常高的刚性。因此,由cfrp制成的较轻的轴可用于可旋转地安装螺旋桨并将推进力从螺旋桨传递到游泳和潜水辅助装置的船体。因此,游泳和潜水辅助装置可以在水外更容易地携带。由较低的质量引起的马达轴的较低的惯性导致游泳和潜水辅助装置的动力在电动马达提供的相同功率下增加,这表示使用游泳和潜水辅助装置作为水上运动装置的基本优点。这特别适用,因为所使用的电动马达的可安装的输出和相关联的能量存储装置的存储容量在可携带的水上运动装置中受到很大的限制。

优选提供的是,具有基座和施加到其上的定心杆的定心装置在流动通道中流动的水的流动方向上布置在螺旋桨的上游,并且定心装置经由定心杆直接或间接附接到流动通道的壁。螺旋桨可以可旋转地附接在固定保持的定心装置上。由此,定心杆以这样的方式被成形为流线型,即它们向流经的水提供低流动阻力。

较大力作用在螺旋桨上,由于水在流动通道中紊乱流动,其也作用在横向于旋转轴线的螺旋桨上。为了能够安全地拦截这些力并且仍然允许螺旋桨的平稳旋转,可以提供的是,其中安装有轴的轴承分别布置在定心装置和流动定子上。通过双面安装可以防止轴的振动和弯曲。通过这种方式,牢固地附接螺旋桨的径向位置。这允许在转子和安装在转子径向外部的定子之间仅提供小的间隙。由于这些措施,获得了具有高效率的电动马达。可以安全地防止转子和定子之间或转子壳体与定子壳体之间的碰撞。

为了能够永久地且平稳地安装轴,可以提供的是,第一轴承壳体被设计在定心装置的基座内,前轴承保持在第一轴承壳体中,并且利用可移除的流入盖将第一轴承壳体相对于流动通道封闭为不透水的。因此,使前轴承免受湿气。在必要的维修的情况下,通过移除流入盖可以容易地触及前轴承。

可实现轴的永久平稳安装还在于,额外的轴承壳体被设计在流动定子的定子基座内,后轴承被保持在额外的轴承壳体中,并且利用可移除的轴承支撑环将额外的轴承壳体封闭为不透水的。因此,使后轴承免受湿气。在必要的维修的情况下,通过移除轴承支撑环可以容易地触及后轴承。

游泳和潜水辅助装置起水上运动装置的作用。为此,其必须被设计为使得使用者在该装置上不使自己受伤。为了防止使用者伸手触及运行的螺旋桨,可以提供的是,其上模制有接触保护杆的接触保护装置布置在背向螺旋桨的流动定子的侧面上,接触保护杆直接或间接附接到流动通道的壁,并且优选地接触保护装置的基体连接到流动定子。由此,接触保护杆被设计为使得它们尽可能少地影响水的流动;然而,防止伸手触及流动通道。如果接触保护装置的基体连接到流动通道,则另外可以相对于流动通道支撑该接触保护装置的基体。这导致轴的后轴承的位置的进一步稳定,并因此导致螺旋桨的径向位置的进一步稳定。

对应于本发明的特别优选的实施例变型,可以提供的是,至少由具有转子壳体和定子壳体的电动马达、定心装置、流入盖、流动定子以及具有轴和轴承的螺旋桨形成水下驱动单元。水下驱动单元可以预先组装成模块并安装在流动通道中。通过这种方式,大大简化了游泳和潜水辅助装置的组装,这降低了制造成本。

接下来将基于附图中所描绘的实施例更详细地说明本发明。如图所示:

图1游泳和潜水辅助装置的从后面观看的立体侧视图,

图2图1所示的游泳和潜水辅助装置从下面观看的立体图,

图3游泳和潜水辅助装置的流动通道的区域描绘为打开的侧向剖面图示,

图4具有同样以横截面描绘的水下驱动单元的游泳和潜水辅助装置的侧向剖面图,

图5图4所示的螺旋桨的区域的剖面图的截面图,

图6图4所示的前轴承区域的剖面图的截面图,以及

图7图4所示的后轴承区域的剖面图的截面图。

图1以从后面观看的立体侧视图示出了游泳和潜水辅助装置10。游泳和潜水辅助装置10具有船体11。船体11由上部11.6和下部11.4组合而成。上部11.6配备有布置在船体11的两侧的两个手柄16。使用者可以握住这两个手柄16,并且使用附接到手柄16的操作元件16.1来控制游泳和潜水辅助装置10。具体地,在这里可以改变游泳和潜水辅助装置10的发动机输出。握住手柄16的使用者在上部11.6上将其上身平躺在位于显示器13后面的区域中的接触表面11.3上。将保持器11.7附接到接触表面11.3以用于固定皮带系统,使用者可以通过该皮带系统将自己系在游泳和潜水辅助装置10上。用于充电插座(其被示为位于盖的后面)的盖12布置在接触表面11.3的前面。容纳在船体11中的蓄电池可以经由充电插座充电。

携带把手11.2布置在船体11的侧面上,通过该携带把手11.2可以将游泳和潜水辅助装置10携带到水外。

可移除的保护盖14固定在显示器13上游的船体11上且在行进方向上位于两个手柄16之间。保护盖14与游泳和潜水辅助装置10的组装部分(未示出)重叠。通风开口15.1侧向设置在保护盖15中,所述通风开口15.1连接到设置在船体11中并在图3中示出的灌流室17。

水入口开口15.2设置在船头11.1的区域中,水可以通过该水入口开口流入灌流室17中。为此,灌流室17可以经由保护盖14的通风开口15.1通风。游泳和潜水辅助装置10的浮力由填充有水的灌流室17调节,使得保持预定的浮力,由此使得漂浮操作和潜水操作两者都是可能的。由板条覆盖的水出口开口15.3布置在游泳和潜水辅助装置10的船尾11.5上,并且同样连接到灌流室17。一旦游泳和潜水辅助装置10被放置在水中,水穿过水入口开口15.2和水出口开口15.3,灌流室17就灌满水。一旦游泳和潜水辅助装置10转变为行进模式,就在灌流室17中产生流动。由此,水通过水入口开口15.2进入灌流室17。水流动通过灌流室17,并且由此冲刷保持在灌流室17中的电气部件(例如,用于驱动游泳和潜水辅助装置10所需的蓄电池)。由此,水接收电气部件的耗散能量并冷却所述电气部件。在流动通过灌流室17之后,水通过水出口开口15.3离开该灌流室17,所述水出口开口15.3被对称地布置在流动通道20的喷射排出口26的两侧。接触保护装置70被布置在流动通道20的端侧,并且防止使用者触及流动通道20。

图2以从下面观看的透视图示出了图1所示的游泳和潜水辅助装置10。

图1所示的水入口开口在船体11的船头11.1处是可见的。侧向灌流开口17.1设置在船体11的下部11.4上的侧面上。额外的下部灌流开口17.2被引入下部11.4的前部区域中,并且由模制在船体11上的肋形件覆盖。将流动通道20的左流入开口21.1和右流入开口21.2布置在下部11.4的中心。流入开口21.1、21.2通过引导元件22.1彼此分离。将保护杆22.2、22.3布置在入口开口21.1、21.2的区域中。

类似于水入口开口15.2,灌流开口17.1、17.2连接到图3所示的灌流室17。如果将游泳和潜水辅助装置10放置在水中,则水流动通过灌流开口17.1、17.2和水入口开口15.2进入灌流室17,并且因此调节游泳和潜水辅助装置10的期望浮力。如果将游泳和潜水辅助装置10从水中移出,则水可以通过灌流开口17.1、17.2和水入口开口15.2离开灌流室17而从灌流室17排出,游泳和潜水辅助装置10通过上述方式失去显著重量并且因此可易于携带。

水由图3所示的且布置在流动通道20中的螺旋桨50经入口开口21.1、21.2吸入,并且通过流动通道20加速到达图1所示的喷射排出口26。因此,执行对游泳和潜水辅助装置的推进。引导元件22.1和保护杆22.2、22.3防止大的异物被吸入,或者防止使用者触及运行的螺旋桨50。另外,引导元件22.1和布置在其前面的肋形件在游泳和潜水辅助装置10的行进模式下具有稳定作用。

图3以侧向剖面图示出游泳和潜水辅助装置10描绘为打开的流动通道20的区域。由此,剖面趋于游泳和潜水辅助装置10的右侧,并且在行进方向上平行于游泳和潜水辅助装置10的中心纵向平面。

从游泳和潜水辅助装置10的下侧到船尾的以曲线在船体11内引导流动通道20。流动通道20在行进方向上朝向流入开口21.1、21.2,由左前流动通道半壳23和右前流动通道半壳24而形成。流动通道半壳23、24彼此精确地接合并通过连接元件连接。因此,前通道部分形成有平滑的表面。灌流室17的一部分,其也部分地围绕在游泳和潜水辅助装置10的后部区域中的流动通道20周围的空间,在行进方向上被示为在流动通道20的前面。

将水下驱动单元布置在流动通道20中,所述水下驱动单元包括螺旋桨50,其具有分配的电动马达110;定心装置40,其在流动方向上被布置在螺旋桨50的上游,具有以插入方式安装在定心装置40上的流入盖30;流动定子60,其在流动方向上被布置在螺旋桨50的下游;以及后面的接触保护装置70,其具有附接的端盖80。

接触保护装置70被布置在喷射排出管25的区域中。在流动方向上喷射排出管25被布置在流动定子60的下游。这在流动定子60和喷射排出口26之间形成流动通道20。

在喷射排出口26周向上的保持环19和连接环18形成从喷射排出管25到船体11的连接。

螺旋桨50具有基部52,在该基部上模制径向向外突出的螺旋桨叶片54。螺旋桨叶片54相对于基部52倾斜地排列,使得在本实施例中螺旋桨50的向右旋转中,它们从流入开口21.1、21.2吸入水并将水从喷射排出口26排出。

为了驱动螺旋桨50,电动马达110的转子112连接至与该螺旋桨。为此,将转子112直接耦接到螺旋桨50的螺旋桨叶片54的外端。在螺旋桨50的旋转期间,转子112在围绕螺旋桨50的圆形路径上移动。电动马达110的马达定子111被布置在该圆形路径的周向上。

在马达定子111和转子112之间产生驱动力。在螺旋桨叶片54的端部处由转子112执行驱动力到螺旋桨50的传递。因此,以大半径执行(其中产生高转矩)力传输。意味着,以电动马达110的给定输出实现螺旋桨50的非常快的旋转速度变化,并且因此实现游泳和潜水辅助装置10的速度变化。

马达定子111和转子112被布置在流动通道20的流动通道横截面的侧面,流动通道横截面由流动通道半壳23、24,螺旋桨叶片的圆形路径的外径以及喷射排出管25确定。因此,电动马达110不位于在流动通道20中加速的水的主流动区域中,因此不对可用的流动横截面产生负面影响,并且因此不对水的流动产生负面影响。因此,与通常在设置在流动通道20中的驱动轴上作用的电动马达110的布置相比,在通过流动通道20的具有相同的体积流量的情况下,流动通道20可以被设计成具有较小的直径。通过这种方式,游泳和潜水辅助装置10的整个设计可以被更加紧凑地配置。

定心装置40具有流线型基座41,径向向外定向的定心杆42连接到该流线型基座,所述定心杆同样被设计成流线型。使用定心杆42将定心装置40附接到流动通道半壳23、24。流入盖30相反于流动方向安装在定心装置40的基座41上。流入盖30同样具有流线型的流入表面31,其逐渐过渡到基座41的表面。基座41朝向螺旋桨50的直径适合于螺旋桨50的基部52的直径。由于流入盖30、定心装置40的基座41和螺旋桨50的基部52的这种形状,对于流动通过流动通道20的水实现低流动阻力。

流动定子60具有定子基座61,在该定子基座61上布置径向向外指向的定子叶片65。定子叶片65在端侧上直接连接到流动通道20。流动定子60因此被固定地布置在流动通道20中。

定子叶片65被设计成沿水的流动方向弯曲。面向螺旋桨50的定子叶片65的端部与螺旋桨50的转动方向相反以预定角度弯曲。相对的,背向螺旋桨50的定子叶片65的端部大致平行于螺旋桨50的旋转轴线延伸。水以螺旋形路径离开螺旋桨50。由于定子叶片65的形状,流动定子60反作用于流动通过流动通道18的水的旋转,使得水在流动定子60的下游基本上没有旋转的情况下流到喷射排出口26。水的旋转能量由此被转换为线性移动能量,并且因此起着驱动游泳和潜水辅助装置10的作用。

定子基座61的直径优选地至少大约为螺旋桨50的基部52的直径。因此,在水从螺旋桨50到流动定子60的过渡处实现较低的流动阻力。

接触保护装置70经由径向布置的接触保护杆72连接到流动通道20的喷射排出管25。因此,将接触保护装置70固定地定位在流动通道20中。接触保护杆72被设计成流线型。接触保护杆在其内端处连接到接触保护装置70的基体71。基体71具有流线型轮廓。基体71朝向流动定子60的直径至少大约为流动定子60的定子基座61的直径。因此,在水从流动定子60到接触保护装置70的过渡处实现较低的流动阻力。基体71的直径朝向喷射排出口26逐渐减小。外表面由此优选地以一定距离遵循喷射排出管25的表面的路线。基体71和喷射排出管25的表面之间的距离界定流经的水的流动横截面。通过基体71和喷射排出管25的形状选择流动横截面,使得通过足够大的横截面允许较高的体积流量;然而,同时通过最小可能的横截面施加水朝向喷射排出口26的高流动速度。

接触保护装置70的基体71通过端盖80在端侧终止。盖开口81被引入端盖80中。来自被设计为中空主体的基体71的水可以通过盖开口81流出。

图4以侧向剖面图示出了具有同样以横截面描绘的水下驱动单元的游泳和潜水辅助装置10。

与图3所示的图示相比,图4中的剖面沿游泳和潜水辅助装置的中心纵向平面延伸,使得水下驱动单元的部件也以剖面示出。

将螺旋桨50固定到轴90,如在图5中更详细地描述的。将第一轴承壳体45附接到定心装置40。轴90可旋转地安装在第一轴承壳体45中。这在图6中被详细地示出。将第二轴承壳体63附接到流动定子60。轴90可旋转地安装在第二轴承壳体63中。第二轴承壳体在图7中被放大示出。

接触保护装置70的基体71被设计为中空主体。水可以通过端盖80的盖开口81流入和流出基体71,端盖80同样被设计为中空主体。

如图所示的左前流动通道半壳23具有沿流动通道20的中心纵向平面的左接合轮廓23.1以及安装孔眼23.2。如图3所示的右前流动通道半壳24被附接成使其边缘固定在左引导轮廓23.1中,并且两个流动通道半壳24通过合适的固定装置刚性地连接,优选地利用被引导通过安装孔眼23.2的螺纹件进行刚性地连接。密封材料可以被插入到左接合轮廓23.1中。

图5示出了在螺旋桨50的区域中的图4所示的剖面图的一部分。

轴90被实施为中空轴。轴90有利地由碳纤维增强塑料(carbonfibrereinforcedplastic,cfrp)制成。轴被分为中心区域91、与水的流动方向相反进行定向的前轴轴承部分93、以及与前轴轴承部分93沿直径相对的后轴轴承部分94。

使用前轴承101将轴90安装在前轴轴承部分93中。前轴承101被设计为带角滚珠轴承。通过锁紧螺母100将前轴承101保持在定心装置40的第一轴承壳体45内,如参考图6更详细地描述的。

使用后轴承104将轴90安装在后轴轴承部分94中。后轴承104被设计为带槽滚珠轴承。

使用在轴90的中心区域91中的内筒51将螺旋桨附接到轴90。内筒51优选地粘合到轴90。螺旋桨支柱53被模制在内筒51上。螺旋桨支柱53部分地横向于轴90的中心纵向轴线定向且部分地平行于轴90的中心纵向轴线定向。螺旋桨支柱53在其外端处连接到螺旋桨50的基部52。螺旋桨支柱优选地在基部52上模制成一体。螺旋桨支柱53因此在内筒51和螺旋桨50的基部52之间形成刚性连接。轮毂区域被设计为内筒51和基部52之间的腔体。轮毂区域由横向于轴90的中心纵向轴线定向的螺旋桨支柱53分成面向定心装置40的前室和面向流动定子60的后室。将通路(未示出)引入这些横向延伸的螺旋桨支柱53中。当螺旋桨50旋转时,通过所述通路将水从前室传送到后室。

前连接内肩部52.1在基部52上形成,形成在其面向定心装置40的边缘上,并且后连接内肩部52.2形成在沿直径相对的边缘上。螺旋桨叶片54被固定在基部52的外圆周上。螺旋桨叶片54优选地在基部52上模制成一体。螺旋桨叶片54在其外端处经由连接区域54.1以距基部52的周向距离连接到螺旋桨环55。螺旋桨环55因此围绕轴90的旋转轴线旋转对称地布置。转子壳体前壁56在螺旋桨环55上被模制成径向向外指向。内筒51、螺旋桨支柱53、基部52、螺旋桨叶片54、螺旋桨环55和转子壳体前壁56优选地被制造为一体。

流动定子60的定子基座61经由连接元件62连接到第二轴承壳体63。在所示的实施例中,连接元件62被设计为漏斗状。连接元件62具有贯穿开口(未示出),水可以通过该贯穿开口从轮毂区域的后室逸出到接触保护装置70的基部71的内室中。前连接外肩部61.1形成在朝向螺旋桨50定向的定子基座61上。前连接外肩部61.1以微小的距离与螺旋桨50的基部52的后连接内肩部重叠。为此,定子基座61具有与螺旋桨50的基部52至少大致相同的外径。后连接外肩部61.2在定子基座61上被模制成与前连接外肩部61.1沿直径相对。将定子叶片65固定到定子基座61。由此,定子叶片65优选地与定子基座61模制成一体。定子叶片65相对于定子基座61径向定向,如在图3中已经示出。定子叶片65在其外端处连接到定子外环66。定子外环66被布置在螺旋桨50的旋转轴线的周向上。定子外环66在螺旋桨环55的边缘前面较短的距离处终止于面向螺旋桨50的边缘。后壳体壁67被模制在定子外环66的外表面上。所示图示中的剖面延伸穿过壳体壁67的加强区域,其中引入螺纹孔67.1以容纳螺纹件116。具有螺纹孔67.1的此类加强区域沿壳体壁67间隔开设置。壳体壁67在中间被设计为薄壁的。以径向距离与螺旋桨环55重叠的壳体盖68被模制在壳体壁67上。用于接收螺纹件116的螺纹容置部68.1被引入壳体盖68的前面。

第二轴承壳体63、连接元件62、定子基座61、定子叶片65、定子外环66、后壳体壁67和壳体盖68优选地被设计为一体。

通过螺纹件116将喷射排出管25固定在壳体壁67上。为此,径向定向的凸缘25.1被模制在喷射排出管25上,其中用于引导螺纹件116的钻孔被精确地引入到壳体壁67的螺纹孔67.1中。

接触保护装置70的基体71具有结合到其面向流动定子60的端部上的阶梯形定子连接区域71.1。定子连接区域71.1被插入到定子基座61的后连接外肩部61.2中以产生周向插接连接。将第四密封环123设置在定子连接区域71.1和后连接外肩部61.2之间。第四密封环123将基体71的内部与流动通道20密封。

定心装置40在流动方向上被布置在螺旋桨50的上游。定心装置40的旋转对称基座41在其向螺旋桨50的基部52的过渡区域处具有与基部52相同的外径。这使得对流经的水的低流动阻力。基座41的外径沿凹曲线朝向流入盖30逐渐变小。基座41具有朝向螺旋桨50的连接肩部41.1。连接肩部41.1以微小的径向距离与螺旋桨50的基部52的后连接内肩部52.2重叠。定心杆42被附接成相对于基座41径向定向。由此,定心杆42优选地在基座41上被模制成一体。定心杆42在切向于基座41延伸的延伸部中被设计为细长的。因此,定心杆42以低流动阻力抵抗流经的水。定心杆42在处于其轴向定向时与基座41的长度的一半重叠。定心杆42与流入水相对的前缘在水的流动方向上朝向基座以增加的径向距离向下倾斜。该措施还减小了流经的水的流动阻力。将定心外环43固定在定心杆42的外端上。定心外环43优选地连接到定心杆42作为一体。径向向外定向的前壳体壁44固定在定心外环43上,具体地被模制成一体。前壳体壁44在其外径上延伸到壳体盖68并接触所述壳体盖的前面。组装钻孔44.1设置在壳体壁44中。组装钻孔44.1布置成与壳体盖68的螺纹容置部68.1一致。壳体壁44和壳体盖68使用螺纹件116刚性地连接,螺纹件被引导穿过组装钻孔44.1并被螺纹连接在螺纹容置部68.1中。

在定心外环43的外表面上模制止动凸耳43.1。在本实施例中,止动凸耳43.1被设计成在定心外环43上模制的周向小珠。然而,半球形止动凸耳43.1也可以围绕定心外环43间隔开设置。定心装置40使其定心外环43插入到由流动通道半壳23、24形成的流动通道20中。由此将定心外环43插入到流动通道20中,直到流动通道半壳23、24在端侧接触前壳体壁44或直接布置在该前壳体壁44前面。在该位置中,止动凸耳43.1卡合到结合到流动通道半壳23、24中的周向止动容置部。因此,定心装置40刚性地锚定在流动通道20中。

向内指向的第一轴承壳体45被模制在定心装置40的基座41上。第一轴承壳体45经由第一密封区域45.1附接到基座41的与水流相反指向的端部。第一轴承壳体45具有罐形轮廓,其中在罐边沿上进行与基座41的连接。第一轴承壳体45布置在由在水的流动方向上定向的基座41形成的腔体中。第一轴承壳体45和基座41之间的中间空间由密封化合物47填充。因此,没有水可聚集在该区域中。流入盖30在第一密封区域45.1中安装在基座41上。

电动马达110的马达壳体117由壳体盖68、后壳体壁67和前壳体壁44形成。马达壳体117由定子外环66、螺旋桨环55和定心外环43朝向流动通道20界定。因此,马达壳体117径向地布置在由流动通道20的直径预定的在流动通道20中流动的水的流动横截面外部。马达壳体117的径向向外的区域被定子壳体盖113.1分离。分离区域形成定子壳体113。电动马达110的马达定子111布置在定子壳体113中。马达定子111由预定数量的电磁体形成。这些电磁体沿环形定子壳体113以预定的规则或不规则间隔113布置。至少一个线圈111.1被分配给每个电磁体。定子壳体113的腔体优选用密封化合物密封。因此,马达定子111被嵌入密封化合物中。

转子壳体114由螺旋桨环55、转子壳体前壁56和转子壳体盖114.1形成在马达壳体117的内部。转子壳体盖114.1径向向外地布置成与螺旋桨环55间隔开。一方面,转子壳体盖114.1接触转子壳体前壁56。电动马达110的转子112安装在转子壳体114内。转子114由预定数量的永磁体112.1形成。这些永磁体112.1沿环形转子壳体114以预定的规则或不规则间隔113布置。转子114和/或永磁体112.1被嵌入引入转子壳体114的密封化合物中。因此,转子114和/或永磁体112.1连接到转子壳体114。转子壳体盖114.1同样用密封化合物固定。在定子壳体盖113.1和转子壳体盖114.1之间形成气隙115。

电动马达110在设计上对应于环形马达或转矩马达。由此,电动马达110被设计为内部转子。由于转子112被布置在距电动马达110的旋转轴线一大的径向距离处,因此可通过该设计实现高转矩并将高转矩传递到螺旋桨50。此外,转矩可以通过具有对应数量的电磁体和永磁体112.1的高数量的极对增加。因此,可以实现螺旋桨50的旋转速度的快速变化,并且因此实现游泳和潜水辅助装置10的速度的快速和动态变化。

马达壳体117优选地位于由流动通道20和螺旋桨叶片54的直径确定的水的流动横截面外部。因此,具有已经描述的优点的电动马达110不会减小可用的流动横截面。

马达壳体117不相对于流动通道20密封。在螺旋桨环55和定子外环66或定心外环43之间分别形成间隙,水可通过该间隙流入马达壳体117中。马达定子111和转子112相对于流入的水密封在定子壳体113或转子壳体114的内部。来自电动马达110的废热被流经的水有效地除去。这导致电动马达110的高效率。具体地,通过分别提供的密封化合物使马达定子111和/或转子112免受水渗透。密封化合物同样形成具有良好导热性能的热桥,使得来自电动马达110的废热可以有效地排放到周围的水中。

轴90有利地安装在螺旋桨50的两侧。因此,可以安全地吸收由流经的水传递到螺旋桨50的高侧向力。可以防止轴90的弯曲或轴90和螺旋桨50的振动。因此,可以恒定地保持在马达定子111和转子112之间形成的气隙115。这导致非常平稳的运行。此外,驱动力不受气隙115的波动宽度的影响。安全地防止了转子壳体114与定子壳体113的碰撞。

由于轴90被设计为中空轴,因此可以节省重量,而基本上不影响轴90的刚度。较小的重量是如本发明的游泳和潜水辅助装置的可携带水上运动装置的重要优点。重量进一步减少,这是因为轴包含碳纤维增强塑料(cfrp)。

与用于制造轴90的常规材料(例如钢)相比,cfrp提供显著减少的重量同时具有高刚性的优点,与钢相比,由cfrp制造的轴90具有显著较少的振动倾向,这导致改善的同心运行和较低噪音。此外,较小的重量和减少的振动导致轴承101、104上的负荷减小,通过所述轴承可以将轴90安装成可围绕其中心纵向轴线旋转,通过这种方式,减少轴承101、104的磨损,并且因此增加其使用寿命。与由钢制成的轴90相比,由cfrp制成的轴90的惯性质量显著减小,通过这种方式,在轴90以及因此螺旋桨50的旋转速度的期望变化下出现较高动力。同时,用于使轴90与螺旋桨50加速的能量消耗降低,这导致蓄电池动力的游泳和潜水辅助装置10的操作时间延长。

为了增加轴90的刚性,可以将其设计为多层。其中碳纤维网片在塑料基质内以碳纤维的不同取向布置的内层,之后是具有定向的碳纤维的层。这些碳纤维优选被设计为在纤维方向上具有非常高的弹性模量(例如大于400,000n/mm2)的高模量碳纤维。在本实施例中,高模量碳纤维在轴90的纵向延伸方向上基本上定向,以便增加轴90的刚性和抗弯强度。可替代地或另外地,也可以提供具有横向于轴90的纵向延伸部布置的高模量碳纤维的cfrp层。在这种布置中,额外的碳纤维增加了轴90的扭转强度。

轴90的表面分多个区段进行剥离、研磨或抛光。由于这些后期制造步骤,获得了轴90精确的旋转对称轮廓,这导致良好的同心运行。表面上的裂纹被去除,并且因此防止或至少减少在裂纹端部处形成机械负荷的切口应力。轴90的故障概率由此降低并且其耐久性增加。为了防止在后处理中碳纤维被损坏,轴具有不包含碳纤维的外部修整塑料层。

由于部分地横向于轴90的中心纵向轴线且部分地平行于轴90的中心纵向轴线定向的螺旋桨支柱53,在内筒51和螺旋桨50的基部52之间实现刚性和重载连接。

内筒51、螺旋桨支柱53、基部52、螺旋桨叶片54、螺旋桨环55和转子壳体前壁56优选地呈现为一体部件。这可以由例如塑料材料制造。因此,可以在一个制造步骤中廉价地制造具有相关联部件的螺旋桨50。

可替代地,具有相关联部件(即,内筒51、螺旋桨支柱53、基部52、螺旋桨叶片54、螺旋桨环55和转子壳体前壁56)的螺旋桨50可以完全地或部分地由金属制造。

定心装置40和流动定子60刚性地连接到流动通道20。因此,前轴承壳体45和第二轴承壳体63的位置以及因此轴90的轴承101、104的位置被刚性地预定和固定。因此,确保螺旋桨50在流动通道20内的正确定位。由于定心装置40、螺旋桨50和流动定子60以及在流动定子60中形成的且包括定子壳体113和转子壳体114的马达壳体117之间的刚性连接,水下驱动单元的可移动部分彼此刚性地相对定向。因此,可以补偿影响经常在游泳和潜水辅助装置10的常规操作中发生的振动和冲击。具体地,可以提供在可移动部件和固定部件之间的小间距i。具体地,转子112和马达定子111之间的气隙115可以设计得较窄,这导致电动马达110的高力传输和高效率。

图6示出了在前轴承区域中的图4所示的剖面图的一部分。

前轴承区域由第一轴承壳体45围绕。第一轴承壳体45在定心装置40的基座41上被模制成一体。从朝向流入盖30定向的第一密封区域45.1开始,圆柱形引导部分45.3跟随进入基座41的内部空间。相对于圆柱形部分45.3具有略微减小的直径的前轴承支撑件46连接到圆柱形部分45.3。第二密封区域45.2通过随后的第一轴承壳体45的直径的额外减小而形成。径向向内指向的第一邻接件48被模制在第二密封区域45.2上。

轴90使其前轴轴承部分93从第二密封区域45.2的一侧插入到第一轴承壳体45中。螺旋桨50的内筒51所接触的螺旋桨止动件92被模制在轴90的周向上。轴90的前轴轴承部分93的直径在端侧减小。将轴承座95固定在该直径减小的部分上。轴承座95由金属制成,并且特别是通过粘合连接到轴90。轴承座95具有朝向轴90径向向外突出的轴承止动件95.1。

前轴承101被推动到轴承座95上。前轴承101被设计为带角滚珠轴承。前轴承101使其内座圈接触轴承座95的轴承止动件95.1。前轴承101的外座圈使其外表面接触第一轴承壳体45的前轴承支撑件46。前轴承101的外座圈由附接在第一轴承壳体45的圆柱形部分内的锁紧螺母100保持。为此,外座圈与在锁紧螺母100上模制的第一外座圈反转轴承101.1接触。

前径向密封区域102形成在第一轴承壳体45的第二密封区域45.2中。为此,将前径向轴密封环102.1布置在第二密封区域45.2和轴90的前轴轴承部分93之间。前径向轴密封环102.1通过轴承壳体45的向内指向的第一邻接件48保持朝向螺旋桨50。前径向轴密封环102.1通过第一固定环102.2保持为沿直径相对。第一固定环102.2被夹紧在第一轴承壳体45中的沟槽中。

流入盖30具有指向轴承壳体45的连接件32。密封环容纳部33结合到连接件32中。密封环120、121被插入到密封环容纳部33中。具有连接件32的流入盖30被插入到定心装置40的第一密封区域45.1中。由此,密封环120、121防止来自流动通道20的水渗透到流入盖30和第一轴承壳体45的内部空间中。

轴90被安装成能够在其前轴承安装部分93上经由前轴承101容易地旋转。前轴承101由具有轴承止动件95.1的轴承座95、具有第一外座圈反转轴承100.1的锁紧螺母100和前轴承支撑件46牢固地保持。由此,锁紧螺母100允许设定轴向保持前轴承101的游隙。前轴承101的区域通过前径向轴密封环朝向轴90密封。在流入盖30的一侧,定心装置40的第一密封区域45.1和流入盖30的连接件32之间的密封由布置在其中的密封环120、121进行。因此,使前轴承101免受湿气的侵入。此外,轴90和前轴承101中的腔体填充有油脂,并且因此另外使所述腔体免受湿气。

通过螺旋桨50的内筒51将水的反作用力经由螺旋桨50传递到轴90。轴90将该力经由轴承座95传递到前轴承101的内座圈。该力经由前轴承101内的被设计为带角滚珠轴承的滚珠轴承传递到前轴承101的外座圈。从那里,经由锁紧螺母100对定心装置40进行力输入,并且从那里,对游泳和潜水辅助装置10的流动通道20和船体11进行力输入。

由金属制成的轴承座95防止由cfrp制成的轴90的表面被所传递的较大的力损坏。

图7示出了在后轴承区域中的图4所示的剖面图的一部分。

第二轴承壳体63被模制在流动定子60的连接元件62上。从面向游泳和潜水辅助装置10的船尾11.5的端部开始,第二轴承壳体63由第四密封区域63.2、后轴承支撑件64、第三密封区域63.2和第二邻接件63.3形成。

第四密封区域63.2和后轴承支撑件64形成在轴90的旋转轴线的径向周向上的第二轴承壳体63的区域。为此,第三密封区域63.1的直径减小。在第三密封区域63.1的端部上模制径向向内定向的第二邻接件63.3。

轴90使其后轴轴承部分94通过第三密封区域63.1插入到第二轴承壳体63中。将后径向轴密封环103.1布置在第三密封区域63.1和轴90之间。后径向轴密封环103.1由轴承壳体63的径向突出的第二邻接件63.3朝向螺旋桨50保持在其轴向位置中,并且由第二固定环106保持为沿直径相对。后径向密封区域103由径向轴密封环103.1、轴90和第三密封区域63.1形成。

将后轴承104布置在后轴轴承部分94和第二轴承壳体63的后轴承支撑件64之间。由此,后轴承104使其内座圈接触后轴轴承部分94,并且使其外座圈接触后轴承支撑件64。后轴承104被设计为单排带槽滚珠轴承。后轴承104由后轴承支撑环105朝向游泳和潜水辅助装置10的船尾11.5轴向地保持。为此,在后轴承支撑环105上模制朝向后轴承104定向的第二外座圈反转轴承105.1。后轴承104的外座圈接触该外座圈反转轴承105.1。

后轴承支撑环105的外周由与第二轴承壳体63的第四密封区域63.2的内表面接触的环形定位部分105.2形成。将两个密封环124、125布置在环形定位部分105.2和第四密封区域63.2之间。密封环124、125被插入到沟槽中,沟槽结合到第四密封区域63.2中。后轴承支撑环105被插入到第四密封区域63.2中。将第三固定环107设置成与后轴承支撑环105连接。因此,将后轴承支撑环105保持在其适当位置。

通过后径向轴密封环103.1防止水沿轴90渗透到第二轴承壳体63中。第二轴承壳体63同样由后轴承支撑环105和周向密封环124、125密封。因此,使后轴承104免受湿气。此外,轴和后轴承104的区域中的腔体填充有润滑脂,并且因此使所述腔体免受湿气。

为了组装,将轴90插入到第二轴承壳体63中,使用第二固定环106安装和固定后径向轴密封环103.1。最后,安装后轴承104,并且插入后轴承支撑环。最初,第三固定环107被夹紧在所提供的沟槽中。因此,轴承区域更容易组装。由于所插入的后轴承支撑环105,可以容易地触及后轴承104和后径向轴密封环103.1以达到维修目的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1