纤维基陶瓷基底及其制造方法

文档序号:4445652阅读:220来源:国知局
专利名称:纤维基陶瓷基底及其制造方法
技术领域
本发明大体而言涉及适用于隔热、过滤及/或高温化学反应处理的纤维基陶瓷基 底(fiber-based ceramic substrate),例如催化主体。本发明更具体而言涉及一种铝硅酸 盐纤维基陶瓷基底及其制造方法。
背景技术
纤维基陶瓷基底通常用于高温过程,例如废气过滤、隔热、及在化学反应器中用作 催化主体。纤维基陶瓷基底提供高工作温度能力,具有高强度和化学惰性。可形成能在极 高温度下保持结构完整性的刚性结构,以满足拟定应用的处理要求。形成基底材料组合物 的基础的陶瓷纤维可通过各种工艺由若干种材料制成。例如,可将陶瓷材料从溶胶_凝胶 拉成纤维、或将陶瓷材料熔纺成纤维。 表现出高强度且具有化学稳定性和热稳定性的纤维基陶瓷基底通常是由高性能、 耐高温且因而昂贵的陶瓷纤维制成。例如,多晶莫来石纤维非常稳定,在超过1700°C的温度 下仍保持机械完整性。由于在将这些高性能材料制成纤维时所用的工艺以及由于在配制这 些纤维时所用的原料的纯度和等级,这些高性能材料需要明显更高的制造成本。由低成本 材料(例如玻璃质铝硅酸盐)制造的纤维基基底还不具有高性能,因为这种材料当暴露于 高工作温度时会发生反玻璃化(de-vitrify)并结晶成较低强度且可能有害的形式。
综上所述,需要一种纤维基陶瓷基底,其可利用具有优异的耐化学性和耐热性的 低成本纤维所制成。

发明内容
本发明提供一种陶瓷基底,其利用低成本的铝硅酸盐纤维作为主要原料,以得到 具有化学稳定性和热稳定性的刚性多孔基底。 大体而言,本发明的特征在于一种利用混合成塑性混合物的低成本铝硅酸盐纤维 及添加剂以及流体来制造纤维基陶瓷基底的方法,所述铝硅酸盐纤维具有约15重量%至 约72重量%范围内的氧化铝含量,所述添加剂包含无机粘合剂和有机粘合剂。将所述塑性 混合物形成坯体基底(green substrate),再将所述坯体基底加热以移除有机粘合剂,并烧 结铝硅酸盐纤维和无机粘合剂以形成与稳定的非晶玻璃粘合的莫来石的原位结构。通过这 种方式,可在材料成本和加工成本实质降低的情况下,性能特性类似于或超过高性能材料 的性能特性的材料。 所述方法的特征可在于下列各方面中的一个或多个方面。在一些实施方式中,无 机粘合剂包含二氧化铈。同样,无机粘合剂可包含各种类型的粘土粘合剂,例如硅酸镁铝 (veegum)或膨润土 (bentonite)。粘土无机粘合剂具有氧化钙及/或氧化镁的各种组合物。 在一些实施方式中,无机粘合剂可以是玻璃粉末(glass frit)。在一些实施方式中,无机粘 合剂可以是纤维。 在一些实施方式中,可选择无机粘合剂,以减小所得结构的热膨胀系数(coefficient ofthermal expansion ;CTE)。例如,在使用氧化钛作为无机粘合剂时,会 形成非晶玻璃粘合的多晶结构,所述多晶结构所具有的热膨胀系数低于原始的铝硅酸盐纤 维。 在一些实施方式中,通过浇铸工艺(casting process)形成坯体基底,例如真空 浇铸板(vacuum cast board)。在其它实施方式中,通过挤出(extrusion)而形成蜂窝状 (honeycomb)基底。在一些实施方式中,可与添加剂一起包含造孔剂(poreformer),以提高 最终基底的孔隙率。 本发明的这些特征和其它特征将通过阅读下文说明而变得明显,并可通过随附权 利要求书中具体指出的手段和组合来实现。


附图构成本说明书的一部分,且包含本发明的实例性实施例,其可以各种形式实施。
图1为根据本发明的一种制造纤维基陶瓷基底的方法的流程图; 图2为根据背景技术的氧化铝和二氧化硅的化合物的二元相图(binary
phasediagram); 图3为根据背景技术的氧化铝、二氧化硅和氧化钙的化合物的三元相图(ternary phase diagram); 图4为本发明的方法中的固化步骤的流程图; 图5为根据本发明的纤维基陶瓷基底的电子显微镜扫描图像的表示形式;以及
图6为本发明一实例性实施例的X射线衍射分析,其绘示基底内的结晶相的组合 物。
具体实施例方式
本文提供对本发明的实例的详细说明。然而,应理解,本发明可以各种形式进行举 例说明。因此,本文所揭露的具体细节不应被视为限制性的,而是应被视为代表性说明,用 于向所属领域的技术人员讲授如何以实际上任何详细的系统、结构或方式来利用本发明。
陶瓷纤维基基底材料是用于高温隔热、过滤和在其中进行催化反应。这些材料可 以各种形式中的任何一种形式用于高温应用中,例如用于催化转换器、N0x吸附器、DeNox 过滤器、多功能过滤器、熔融金属输送机构及过滤器、回热器芯体(regenerator cores)、化 学工艺、固定床反应器(fixed-bed reactors)、氢化脱硫(hydrodesulfurization)、氢化裂 解(hydrocracking)或氢化处理(hrdrotreating)、以及发动机废气过滤。
由纤维的显微结构提供的高孔隙率和高的有效表面积能以低的质量提供优异的 强度,并且能经受宽范围的和骤然的温度变化而不会表现出热震或机械劣化。陶瓷纤维也 可用于制造高温刚性隔热板(例如真空浇铸板),用于对燃烧室进行衬垫和用于要求耐冲 击的高温环境。浇铸工艺也可用于来自陶瓷纤维的刚性结构,例如窑具(kiln furniture) 和定位瓷砖(setter tiles)。 已证实,对现有技术的铝硅酸盐基陶瓷材料进行高温处理会促进晶体二氧化硅 (cristabolite)的形成,而晶体二氧化硅可对在工作过程中、尤其当处理基底以进行移除、
5清洗或重新组装时暴露于基底的人员造成健康危害。晶体二氧化硅是二氧化硅的结晶相,
其已被认定为一种在长期暴露于其粉末形式时会致癌的已知致癌物质,从而在试图减少另
一种危害时会形成新的危害。已发现,本发明可在不形成晶体二氧化硅的情况下形成铝硅
酸盐纤维的陶瓷纤维基基底,并在高温工作环境下抑制晶体二氧化硅的形成。 参见图l,显示根据本发明的一种制造铝硅酸盐纤维基基底的方法100。 一般而
言,将铝硅酸盐纤维120与添加剂130和流体140混合150成塑性批料,然后将塑性批料成
形160为坯体基底并加以固化170。所述铝硅酸盐纤维120和添加剂130形成与具有化学
稳定性的化合物粘合的莫来石纤维结构,在随后的热处理过程中此结构不会促进形成晶体
二氧化硅。 铝硅酸盐纤维120通常用作耐火材料,这是因为其成本较低,原因在于其所用的 原料丰足且能够利用熔体纤维化工艺(例如熔纺或吹制)将此种材料纤维化。铝硅酸盐纤 维120当最初以纤维形式提供时呈非晶或玻璃状态。参见图2,显示根据背景技术的氧化铝 (A1203)和二氧化硅(Si02)的相图。当具有约15%至约72% (按体积或重量计)之间的氧 化铝含量的铝硅酸盐材料暴露于最高达约160(TC的温度时,非晶组合物将形成多晶莫来石 和非晶或晶体二氧化硅。反玻璃化和结晶过程开始于低至90(TC的温度,但是反应/转换速 度随温度的增加而增加。 莫来石是矿物学名称,是指二氧化硅_氧化铝(Si02-Al203)体系中仅有的具有化 学稳定性的中间相。莫来石通常表示为3A1203 2 Si02(即60摩尔X的AlA和40摩尔X 的Si02)。然而,这会让人产生误解,因为莫来石实际上是固溶体,在低于1600°C的温度下具 有约60摩尔%至63摩尔%氧化铝的平衡组成极限值(equilibrium composition limit)。 由于莫来石超常的高温特性,因而莫来石是铝硅酸盐材料的理想相。此种材料由于具有较 低的热膨胀系数、良好的强度和联锁晶粒结构(interlocking grain structure)而表现出 高的耐热震和热应力分布性。莫来石的特征还在于具有相对低的导热率和高的耐磨性。这 些特性在高温下不会明显降低,从而使基底结构在高温下仍保持可用。
不像莫来石在高温下具有化学稳定性,当二氧化硅长时间地暴露于超过IOO(TC的 温度时,表现出结晶成其晶体二氧化硅晶体相的倾向。在铝硅酸盐基基底中形成晶体二氧 化硅会有效地降低结构完整性,因为材料在相对低的强度下表现出脆裂。如上所述,存在潜 在的健康风险,尤其是当人员暴露于呈可吸入的微尘形式的小颗粒时,这些小颗粒可能是 由基底在使用时或在基底已长时间暴露于高温后处理时散发出。例如,如果基底用于燃烧 室或窑的隔热,则对窑进行定期维护或重新组装可对维护人员造成健康危害。如果基底用 于高温废气过滤(例如柴油微粒过滤器),如果基底在使用时受损或破裂,便可能散发出晶 体二氧化硅颗粒。根据本发明,添加剂130包含无机粘合剂材料,所述无机粘合剂材料在固 化步骤170中与以莫来石形式存留在纤维中的二氧化硅(游离二氧化硅)发生反应,以当 基底在以后长时间暴露于高温时抑制晶体二氧化硅的形成。 添加剂130的无机粘合剂可与铝硅酸盐纤维120发生反应,以通过多种方式抑制 在操作中形成晶体二氧化硅。 一个此种方式是在固化步骤170中,改变来自纤维的二氧化 硅的相形成。通过使游离二氧化硅与添加剂130发生反应,可形成稳定的玻璃化合物。此 外,如图3中实例性三元相图的平面投影中所示,添加剂130的组成可反应而形成三元体系 或其它复杂体系,所述体系中的氧化铝和二氧化硅是来自纤维120。包含氧化钙(Calcium
6Oxide ;CaO)(俗称石灰)的添加剂130在固化步骤170中与氧化铝和二氧化硅发生反应 而形成具有稳定的玻璃键的莫来石。另一用于抑制在操作过程中形成晶体二氧化硅的 方式,是使添加剂130与纤维中的二氧化硅发生反应而形成不具有序晶体结构(ordered crystalline structure)的非晶玻璃化合物,以便在没有结晶晶种的情况下,抑制晶体二 氧化硅的形成。 在下文将更详细描述的本发明的实例性实施例中,在添加剂130中可包含以下材 料作为无机粘合剂包含硅酸铝镁的硅酸镁铝(veegum)粘土、包含硅酸铝镁钙、铈、氧化钛 的膨润土粘土、和玻璃粉末、以及其它材料。例如,用于陶器的釉面涂层的Ferro Frit 3851 包含氧化铝(26. 8重量% ) 、二氧化硅(48. 9% )、氧化镁(23. 8% )和氧化钙(0. 5% ),其 可用作无机粘合剂,当然也可使用具有不同组成的其它材料。通常,无机粘合剂将以粉末或 颗粒形式提供,但作为另外一种选择,无机粘合剂也可至少部分地以纤维形式提供。
复参见图l,在方法100中所用的铝硅酸盐纤维120为通常用作耐火材料的玻璃质 铝硅酸盐纤维,例如散纤维(bulk fiber)或短切纤维(cho卯ed fiber)。在一实例性实施 例中,可利用由Unifrax(位于Niagara Falls, NY)制造的FIBERFRAXHS-95C、或由Thermal Ceramics (位于Augusta, GA)制造的CERAFIBER、或任何类似的熔纺或熔喷铝硅酸盐纤维。 通常,氧化铝/ 二氧化硅的含量为氧化铝含量在40重量%至60重量%的范围内,其余为 二氧化硅,但本发明的方法也可在任何以下氧化铝/二氧化硅的含量下实施氧化铝含量 在约15重量%至72重量%范围内,其余为二氧化硅。铝硅酸盐纤维120的直径应取决于 基底的拟定应用。例如,如果需要得到用于高温过滤的多孔结构,则必须根据所得孔径大小 来考虑纤维直径,以得到对于将被过滤的颗粒特性而言最佳的过滤介质。在柴油微粒过滤 器的特定实例中,已证实,在3微米至10微米的纤维情况下,大约15微米的孔径便能得到 对于烟灰颗粒而言具有低反压力的优异的捕获效率。对于其中孔隙率并不重要且具有优异 的强度和尺寸均匀性的真空浇铸或浇铸的基底,可得到利用各种不同纤维直径的更高密度 的材料。 如上文所述,添加剂130包含无机粘合剂材料,所述无机粘合剂材料在随后的固 化操作170中,与铝硅酸盐纤维发生反应而形成与莫来石结构粘合的稳定的玻璃。此外, 添加剂可包含可能适用于随后的成形步骤160的有机粘合剂、挤出或成形助剂、流变改性 剂和加工助剂以及增塑剂。例如,可包含作为添加剂130的有机粘合剂包括甲基纤维素 (methylcellulose)、羟丙基甲基纤维素(hydroxypropylmethylcellulose ;HPMC)、乙基纤 维素、及其组合。 可包含造孔剂作为添加剂130,以提高最终结构的孔隙率。造孔剂是非反应性材 料,其在混合步骤150和随后的成形步骤160中在塑性混合物中占据体积,但通过热解或通 过热降解或挥发可在固化步骤170中容易地移除。例如,可包含微蜡乳剂、酚醛树脂微粒、 面粉、淀粉或碳粒作为添加剂130,这些添加剂将在随后的固化步骤170中燃尽。造孔剂在 成形步骤160中,也可赋予纤维对齐或定向特性,这取决于微粒形状或纵横比的分布。当以 低密度形式(例如空心球体或气凝胶)提供无机粘合剂时,无机粘合剂也可起到造孔剂的 作用。 可添加其它加工助剂(例如增塑剂或流变改性剂)作为添加剂130,以在随后的成 形步骤160中提高或优化塑性混合物的可成形性。造孔剂材料或与铝硅酸盐纤维反应的材料也可通过增强塑性混合物的塑性或润滑性而起到加工助剂的作用。例如,碳造孔剂在塑 性混合物被挤出成各种形状时提供润滑,而粘土基无机添加剂(例如硅酸镁铝(veegum)或 膨润土)则提供混合物的塑性。 根据需要添加流体140,以得到适合于成形步骤160的塑性混合物的所欲流变能 力。通常使用水,但也可使用各种类型的溶剂,将水与和添加剂相关联的液体(例如粘合剂 或可引入混合物中作为液体中的胶状悬浮体或溶胶悬浮体的其它添加剂) 一起使用。在混 合步骤150中可进行流变测量,以评价混合物的流变性,相较于成形步骤160所欲的流变 性。可能不希望使用过量的流体,因为在固化步骤170中可能会发生过大的收縮,从而可能 导致在基底中形成裂纹。 铝硅酸盐纤维120、添加剂130和流体140在混合步骤150中进行混合,以将材料 均匀地分布成具有成形步骤160所欲的流变性的均质体。此种混合可包含干法混合、湿法 混合、剪切混合和揉捏,这可能是将材料均匀地分布成均质体、同时赋予必要的剪切力来破 碎及分散或打碎纤维、微粒或流体所需要的。混合、剪切和揉捏的程度以及这些混合工艺的 持续时间取决于纤维特性(长度、直径等)、添加剂130的类型和数量、以及流体140的类型 和量,以获得材料在混合物内的均匀、一致的分布,并具有成形步骤160所欲的流变特性。
成形过程可包含将混合步骤150中的塑性混合物成形为坯体基底的所欲形式的 任何类型的加工。作为非限制性的实例,成形步骤160可包含挤出、真空浇铸和浇铸。本发 明的纤维基陶瓷基底的成形步骤160类似于粉末基陶瓷基底材料的成形步骤。在挤出蜂窝 状基底的过程中,包含适当的增塑助剂(例如HPMC)且具有适当的流变性的塑性混合物,在 压力下受迫通过蜂窝状模具,以形成大体连续的蜂窝块,所述大体连续的蜂窝块被切成所 欲的长度。蜂窝状模具决定蜂窝状通道的大小和几何形状,并且取决于挤出模具的设计而 定,可以是矩形、三角形、六边形或其它多边形的通道。此外,也可使用恰当的挤出模具来作 出具有更宽的入口通道的替代设计,例如不对称通道。用于成形步骤160的挤出系统可以 是通常用于挤出粉末基陶瓷材料的类型,例如活塞挤出机或螺旋型挤出机。所属领域的技 术人员将意识到,混合步骤150的某些方面可在成形步骤160中在螺旋挤出机内进行。真 空浇铸工艺和其它浇铸方法可类似地将塑性混合物成形为坯体基底,所述塑性混合物的流 变性及塑性具有足以形成基底但仍在随后的加工中保持其形状的特性。 一般而言,成形步 骤160形成坯体基底,所述坯体基底的坯体强度(green strength)足以在随后的固化步骤 170中保持其形状和相对的纤维排列。 通过将铝硅酸盐纤维120、添加剂130和流体140的塑性混合物成形为坯体基底, 并接着如下文所述固化所述基底,会在陶瓷基底中形成独特的相互缠结的纤维显微结构。 在随后的固化步骤170之后,当添加剂130和流体140的某些部分被移除,同时仍在整个基 底中保留相对的纤维间距时,所得结构可变得相当多孔。作为在成形过程中纤维的运动和 对齐的结果,基底的多孔性表现出孔在基底内的均匀分布,从而由于纤维间的间距而形成 开放孔网络。此外,尽管基底的表面可被视为更类似于由联锁且互连的纤维形成的二维垫 (与基底的内部区域相区分,基底是由联锁且互连的纤维形成的三维结构),通道壁的表面 并不是完全平面的。纤维端部具有自表面以一角度突出的趋势。当基底用作过滤器(例如 柴油微粒过滤器)时,这些突出部分尤其有用,因为突出部分可用作烟尘的成核、凝聚或捕 获部位,从而有效并均匀地形成烟尘"饼"。这些部位在通道壁表面上的分布确保了微粒可均匀地积聚,这可提高烟尘在过滤器上的捕获效率、使烟尘更均匀地沉积和使烟尘再生。
纤维的对齐、孔径、孔的分布、成核、凝聚、以及捕获部位分布、和在壁表面与内部 区域之间的孔的特性可通过改变成形步骤160的参数来控制。例如,可改变混合物的流变 性、纤维的直径和纵横比分布、添加剂的特性、成形压力和速度,以在所得的基底结构中得 到所欲特性。 参照图4进一步说明固化步骤170。可按以下三个阶段的顺序执行固化步骤170 : 流体移除步骤180、有机物移除步骤190及烧结步骤200。在第一阶段,即流体移除步骤 180中,通过移除流体来对坯体基底进行干燥,移除流体的方式是在使用或不使用强制对流 的条件下,利用相对低温度的加热来缓慢地移除流体。各种通过对坯体基底应用相对低温 度的加热来移除流体的方法,例如热空气对流加热、真空冷冻干燥、溶剂萃取、微波或电磁/ 射频(radio frequency ;RF)干燥方法、或其组合。被挤出的坯体基底内的流体不能自基底 移除得太快,以便不会由于收縮而形成干燥裂缝。通常,对于含水基系统(aqueous based systems),坯体基底在暴露于90°C至150°C之间的温度约一小时即可被干燥,但实际的干 燥时间可因基底的大小和形状而异,其中更大的部件常常要用更长的时间才能完全干燥。 在微波或RF能量干燥情形中,流体本身或被挤出材料中的其它组分会吸收辐射而在整个 材料中更均匀地产生热量。在流体移除步骤180中,根据对用作添加剂130的材料的选择 而定,起粘合剂作用的材料可凝结或胶化而为基底提供足够的坯体强度以便于处理。
—旦坯体基底被干燥或通过流体移除步骤180而实质上不再包含流体130,便进 行固化步骤170的下一阶段,即有机物移除步骤190。固化步骤170的此一阶段通过热解 或通过热降解或挥发来移除添加剂120的任何有机成分,实质仅留下铝硅酸盐纤维120和 添加剂130的无机组分。有机物移除步骤190可进一步分解成一系列成分移除步骤,例如 在有机粘合剂燃尽后接着进行造孔剂燃尽,当添加剂120的有机组分被选择成使固化步骤 170可依序移除这些成分时。例如,当HPMC用作粘合剂时,其将在约30(TC时热分解。当利 用碳粒造孔剂时,在存在氧气的条件下,碳在被加热至约60(TC至90(TC时将氧化成二氧化 碳。类似地,面粉或淀粉在用作造孔剂时,将在30(TC至60(rC之间的温度下热分解。因此, 可通过使基底经受一两步骤式燃烧程序以移除粘合剂并接着移除造孔剂,来对使用HPMC 作为添加剂130的粘合剂成分和使用碳粒作为添加剂130的造孔剂成分的坯体基底进行处 理,从而实现有机物移除190。在此实例中,可在至少30(TC、但低于60(TC的温度下进行粘 合剂燃尽达一段时间,接着在至少60(TC、但低于任何无机组分(例如铝硅酸盐纤维120或 添加剂130的无机粘合剂)的反玻璃化(devitrification)温度的温度下进行造孔剂燃 尽。所述依照加热顺序的固化步骤能受控地移除为有利于实现成形步骤160所需的添加剂 130及用于增强基底的最终显微结构的添加剂130。 另一选择为,可通过对环境进行热量及/或化学控制而将固化步骤170依序控制 成任意数量的步骤。例如,可在第一阶段中通过以下方式执行有机物移除步骤190,以在惰 性环境中在某一温度下选择性地移除第一有机组分(例如有机粘合剂),通过利用惰性气 体(例如氩气、氮气、氦气)对环境进行吹洗,或通过在真空环境中进行加热,抑或利用惰性 气体的低分压来吹洗局部真空。下一阶段可通过启动和保持向固化环境中弓I入氧气来燃尽 第二有机组分(例如造孔剂)。此外,可能需要对有机物移除步骤190进行热控制或化学控 制,以便任何放热反应(exothermicreaction)均不会使基底内的温度过分升高。此控制水平可通过对加热环境进行过程控制或通过计量流入加热环境中的氧气来实现。
在固化步骤170的有机物移除步骤190中,当添加剂120的有机成分被移除时,铝 硅酸盐纤维120的相对位置仍保持与在成形步骤160中形成坯体基底时的位置实质相同。 铝硅酸盐纤维是呈相互缠结的关系,其中由添加剂120的无机粘合剂提供支撑。当添加剂 120的有机成分被移除时,将留下无机成分(例如无机粘合剂)用于为纤维提供支撑。在完 成有机物移除步骤190后,基底的机械强度可能非常脆弱,并且基底可能需要采取谨慎的 处理程序。可能有利的情形为在相同的炉或窑内执行有机物移除步骤190和下一烧结步骤 200,以使因处理而对基底造成的损坏最小化。 固化步骤170的最终阶段是烧结步骤200。在这个阶段中,实质上不含流体130 和实质上不含添加剂120的有机成分的坯体基底被加热至超过IOO(TC的温度,但低于铝硅 酸盐纤维的1587t:的液化(熔化)温度(如图2的相图所示),通常在120(TC至150(TC之 间,以形成稳定的莫来石结晶相和稳定的非晶玻璃。在该烧结步骤200中,当坯体基底被加 热并保持在烧结温度时,随着氧化铝和二氧化硅结合成莫来石固溶体,玻璃质铝硅酸盐纤 维120转变成多晶莫来石形式,其中平衡组成极限值为氧化铝占约60摩尔%至63摩尔% 之间,其余的二氧化硅则与无机粘合剂添加剂130发生反应而形成非晶玻璃。
所得结构的实际组成以及热量和化学特性取决于对纤维、无机粘合剂及烧结时间 和温度的选择。例如,恰当量的硅酸镁铝(veegum)无机粘合剂(氧化钙_氧化镁_氧化 铝_ 二氧化硅粘土)将提供热膨胀系数与莫来石的热膨胀系数密切匹配的玻璃,以便如果 基底遭受热震,内部应力可被最小化。膨润土无机粘合剂在氧化钙的量增加时将有可能形 成具有增强的耐化学性的玻璃组合物。添加二氧化硅(例如胶状二氧化硅形式的二氧化 硅)便可促进非晶玻璃的形成,同时还与无机粘合剂的其它组分发生反应而形成稳定的非 晶玻璃。此外,二氧化铈基无机粘合剂可形成与催化剂和洗涂层(washcoat)高度兼容的玻 璃组合物,例如可用于柴油微粒过滤器及/或发动机废气排放控制。类似地,可使用用于形 成二氧化铈的化学品(例如硝酸铈或其它化学品)作为无机粘合剂来增强稳定的非晶玻 璃的组成,从而与催化剂涂层兼容。此外,可使用磷酸铝作为无机粘合剂。磷酸铝酸(acid alumin即hosphate)是指磷酸(H3P04)和铝盐(例如氢氧化铝)的液体溶液,其中酸的比 例是高于形成固体磷酸铝(例如,A1(P0丄或A1P0》所需的比例。磷酸本身可用作无机粘 合剂,但是添加铝会增强在形成稳定的非晶玻璃或稳定的化合物时与铝硅酸盐纤维的反应 性。氧化钛无机粘合剂将形成可有效地降低最终结构的热膨胀系数的玻璃组合物,这可能 尤其适用于那些在操作中可能存在高的热量梯度的应用。 图5绘示本发明的电子扫描图像的表示形式。铝硅酸盐纤维120和添加剂120 在围绕并粘合所述纤维的非晶玻璃内形成多晶莫来石结构320,多晶莫来石结构320保 持近似原始铝硅酸盐纤维的纤维形式。图6绘示该实例性实施例的X射线衍射(X-ray diffraction ;XRD)分析,其清楚地显示只有晶体结构与莫来石相关联,没有任何存在晶体 二氧化硅的迹象。 例如,可利用添加剂130的以下组成中的任何一种与低成本的铝硅酸盐纤维形成 纤维基陶瓷基底,以形成在形成过程中或后续在高温工作时不会形成晶体二氧化硅的基 底。 在利用硅酸镁铝(veegum)作为无机粘合剂的第一例示性实施例中,用25. 3重量%铝硅酸盐纤维(近似为50/50的氧化铝/ 二氧化硅)、2. 0重量%硅酸镁铝(veegum) 作为无机粘合剂、8. 1重量%羟丙基甲基纤维素(HPMC)作为有机粘合剂、32. 9重量%碳粒 (.325目级(mesh grade))、以及31. 7%去离子水作为流体来制备塑性混合物。这些材料混 合成塑性混合物并通过挤出而形成1英寸直径的蜂窝状基底。利用射频(RF)对这些基底 进行干燥,并移除有机物,接着在150(TC温度下进行烧结操作一小时以形成与稳定的非晶 玻璃粘合的莫来石结构。 在利用膨润土作为无机粘合剂的第二例示性实施例中,用24. 2重量%铝硅酸盐 纤维(近似50/50的氧化铝/二氧化硅)、2. 2重量%膨润土和4. 8%胶状二氧化硅(浓度为 50%) —同作为无机粘合剂、7.7重量%羟丙基甲基纤维素(HPMC)作为有机粘合剂、31.4 重量%碳粒(.325目级)、及29.7%去离子水作为流体来制备塑性混合物。这些材料混合 成塑性混合物并通过挤出而形成l英寸直径的蜂窝状基底。利用射频(RF)对这些基底进 行干燥,并移除有机物,接着在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻 璃粘合的莫来石结构。 在利用粉末作为无机粘合剂的第三例示性实施例中,用23. 0重量%铝硅酸盐纤 维(近似50/50的氧化铝/ 二氧化硅)、2. 8重量%粉末3851作为无机粘合剂、7. 4重量% 羟丙基甲基纤维素(HPMC)作为有机粘合剂、30. 0重量%碳粒(.325目级)作为用以提高孔 隙率的造孔剂、以及36. 8%去离子水作为流体来制备塑性混合物。这些材料混合成塑性混 合物并通过挤出而形成l英寸直径的蜂窝状基底。利用射频(RF)对这些基底进行干燥,并 移除有机物,在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻璃粘合的莫来石 结构。 在利用磷酸铝作为无机粘合剂的第四例示性实施例中,用23. 0重量%铝硅酸盐 纤维(近似50/50的氧化铝/ 二氧化硅)、2. 8重量%磷酸铝(Al (H2P04))作为无机粘合剂、 7.4重量%羟丙基甲基纤维素(HPMC)作为有机粘合剂、30.0重量%碳粒(.325目级)作为 用以提高孔隙率的造孔剂、以及36. 8%去离子水作为流体来制备塑性混合物。这些材料混 合成塑性混合物并通过挤出而形成l英寸直径的蜂窝状基底。利用射频(RF)对这些基底 进行干燥,并移除有机物,在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻璃 粘合的莫来石结构。 在利用胶状铈作为无机粘合剂的第五例示性实施例中,用23. 2重量%铝硅酸盐 纤维(近似50/50的氧化铝/ 二氧化硅)、9. 3重量%胶状铈作为无机粘合剂、7. 4重量%羟 丙基甲基纤维素(HPMC)作为有机粘合剂、30. 1重量%碳粒(.325目级)作为用以提高孔隙 率的造孔剂、以及30. 0%去离子水作为流体来制备塑性混合物。这些材料混合成塑性混合 物并通过挤出而形成l英寸直径的蜂窝状基底。利用射频(RF)对这些基底进行干燥,并移 除有机物,在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻璃粘合的莫来石结 构。 在利用二氧化钛(Ti02)作为无机粘合剂的第六例示性实施例中,用22. 5重量% 铝硅酸盐纤维(近似50/50的氧化铝/ 二氧化硅)、5. 0重量%二氧化钛微粒作为无机粘合 剂、7.2重量%羟丙基甲基纤维素(HPMC)作为有机粘合剂、29.3重量%碳粒(.325目级) 作为用以提高孔隙率的造孔剂、以及36. 0%去离子水作为流体来制备塑性混合物。这些材 料混合成塑性混合物并通过挤出而形成l英寸直径的蜂窝状基底。利用射频(RF)对这些
11基底进行干燥,并移除有机物,接着在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻璃粘合的莫来石结构。 在利用氧化镁硅酸盐纤维(magnesia silicate)作为无机粘合剂的第七例示性实施例中,用26. 5重量%铝硅酸盐纤维(近似50/50的氧化铝/二氧化硅)、3. 3重量%ISOFRAX生物可溶性氧化镁硅酸盐纤维和5. 2重量%滑石粉(硅酸镁) 一同作为无机粘合剂、6.6重量%羟丙基甲基纤维素(HPMC)作为有机粘合剂、26.9重量%碳粒(.325目级)作为用以提高孔隙率的造孔剂、以及31. 5%去离子水作为流体来制备塑性混合物。这些材料混合成塑性混合物并通过挤出而形成l英寸的直径蜂窝状基底。利用射频(RF)对这些基底进行干燥,并移除有机物,接着在150(TC温度下进行烧结操作一小时以形成与稳定的非晶玻璃粘合的莫来石结构。 上文已参照本发明的某些例示性具体实施例对本发明进行了详细说明,然而,本发明不应被视为仅限于这些实施例,因为在不背离随附权利要求书的精神和范围的前提下可作许多修改。
权利要求
一种制造陶瓷基底的方法,包含提供铝硅酸盐纤维,具有约15重量%至约72重量%范围内的氧化铝含量;将所述纤维与包含无机粘合剂和有机粘合剂的添加剂以及流体混合,以提供塑性混合物;将所述塑性混合物形成坯体基底;加热所述坯体基底,以移除所述流体及所述有机粘合剂;以及烧结所述坯体基底,使所述铝硅酸盐纤维及所述无机粘合剂形成与稳定的非晶玻璃粘合的莫来石结构。
2. 根据权利要求1所述的方法,其特征在于,所述结构具有因所述铝硅酸盐纤维之间 的空间而形成的孔隙率。
3. 根据权利要求2所述的方法,其特征在于,所述添加剂还包含造孔剂,且所述加热步 骤移除所述造孔剂。
4. 根据权利要求1所述的方法,其特征在于,所述有机粘合剂包含二氧化铈。
5. 根据权利要求1所述的方法,其特征在于,所述有机粘合剂包含胶体铈。
6. 根据权利要求1所述的方法,其特征在于,所述无机粘合剂包含硅酸铝镁。
7. 根据权利要求6所述的方法,其特征在于,所述无机粘合剂包含硅酸镁铝。
8. 根据权利要求1所述的方法,其特征在于,所述无机粘合剂包含氧化钙。
9. 根据权利要求8所述的方法,其特征在于,所述无机粘合剂包含膨润土。
10. 根据权利要求1所述的方法,其特征在于,所述无机粘合剂被选择成使所述非晶玻 璃的热膨胀系数近似地匹配所述莫来石的热膨胀系数。
11. 根据权利要求1所述的方法,其特征在于,所述无机粘合剂被选择成使所述非晶玻 璃的热膨胀系数对于所述铝硅酸盐纤维的热膨胀系数为低。
12. 根据权利要求11所述的方法,其特征在于,所述无机粘合剂包含氧化钛。
13. 根据权利要求1所述的方法,其特征在于,所述无机粘合剂是纤维。
14. 根据权利要求1所述的方法,其特征在于,所述烧结步骤是在超过100(TC的温度下 进行。
15. 根据权利要求1所述的方法,其特征在于,所述将所述塑性混合物形成坯体基底的 步骤包含挤出。
16. 根据权利要求15所述的方法,其特征在于,所述坯体基底是蜂窝形状。
17. —种陶瓷基底,包含多晶莫来石纤维,由铝硅酸盐纤维在原位形成,所述铝硅酸盐具有约15重量%至约 72重量%范围内的氧化铝含量,由所述铝硅酸盐纤维与无机粘合剂在原位形成与稳定的非 晶玻璃粘合的所述多晶莫来石纤维,形成刚性结构,所述刚性结构的特征在于在经受超过 100(TC的工作温度时抑制晶体二氧化硅的形成。
18. 根据权利要求17所述的陶瓷基底,还包含因所述多晶莫来石纤维之间的孔隙空间 而形成的孔隙率。
19. 根据权利要求18所述的陶瓷基底,其特征在于,所述刚性结构包含通过挤出而形 成的蜂窝形状。
20. 根据权利要求18所述的陶瓷基底,其特征在于,所述无机粘合剂包含由氧化钙、氧化镁、氧化铈、及氧化钛组成的群组中的至少之一。
21. 根据权利要求20所述的陶瓷基底,其特征在于,所述无机粘合剂是纤维。
22. 根据权利要求17所述的陶瓷基底,其特征在于,所述稳定的非晶玻璃所具有的热 膨胀系数近似地匹配所述多晶莫来石的热膨胀系数。
23. 根据权利要求17所述的陶瓷基底,其特征在于,所述刚性结构所具有的热膨胀系数小于所述铝硅酸盐纤维的热膨胀系数。
全文摘要
本发明通过利用无机粘合剂,使用低成本的铝硅酸盐纤维来形成陶瓷基底材料,所述无机粘合剂会促进稳定化合物的形成,从而在基底用于或暴露于高工作温度时,抑制晶体二氧化硅(crystal silica或cristabolite)的形成。所述铝硅酸盐纤维与包含有机粘合剂和无机粘合剂的添加剂以及流体相混合而形成塑性混合物。将所述塑性混合物形成为坯体基底,并依序固化成陶瓷基底。纤维基组分允许形成用于过滤、隔热和高温处理以及化学反应的刚性多孔结构。
文档编号B29C47/00GK101765570SQ200880101009
公开日2010年6月30日 申请日期2008年5月13日 优先权日2007年7月31日
发明者B·祖贝里, J·J·刘 申请人:美商绩优图科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1