一种在超重真空状态下的盐溶液再生器的制作方法

文档序号:12059923阅读:407来源:国知局
一种在超重真空状态下的盐溶液再生器的制作方法与工艺

本发明涉及空调技术领域,更具体的说,是涉及一种在超重真空状态下的盐溶液再生器。



背景技术:

在溶液除湿空调系统中,盐溶液吸湿以后浓度变小,吸湿能力降低,需要经过浓缩处理,提高吸湿能力,再次循环进入除湿系统。该过程即溶液的再生过程。再生过程的具体处理方法有两种:一种是常压加热蒸发法,该方法加热热源温度要求较高,能源利用效率低,且温度对盐溶液的吸湿性能影响很大,必须把再生后的热溶液冷却至常温才可以再次循环利用,而冷却过程耗时较长;另一种方法则是在有一定真空度的密闭容器内,把稀溶液加热蒸发,此方法所需热源温度相对较低;再生后的溶液冷却时间相对较短,有非常显著的优势。但是,该方法的主要问题是,由于系统在负压状态下运行,蒸汽无法顺利排出,需要增设捕水器,即用低温冷源把水蒸气冷凝下来并排出;此外,真空度的维持一般靠真空泵,真空泵的运转也耗能较多,从而影响整体效率。综上所述,在溶液除湿空调系统中,如何开发一种再生效果好,能源利用率高的盐溶液再生系统是本技术领域技术人员亟待解决的课题。



技术实现要素:

本发明针对上述现有技术中存在的问题,提出一种在超重真空状态下的盐溶液再生器,从而解决溶液除湿空调系统中溶液再生问题,提高能源综合利用效率。

本发明在超重真空状态下的盐溶液再生器,该再生器包括壳体部分、叶轮部分、端盖部分和热源;

所述壳体部分由壳体、热源流道、热源进口和热源出口组成;在壳体的内部开有多条环状的热源流道,每相邻两个热源流道为一组,每组热源流道内的热源由一条热源流道连接的热源进口进入,在热源流道内循环两周后由另一条热源流道连接的热源出口流出;

所述叶轮部分由叶片和转轴组成;转轴的轴心与壳体的轴心平行但不重合,转轴的一端与固定叶片,叶片随转轴同步旋转;转轴的另一端与电机相连;

所述端盖部分由端盖、进液口、进液孔、排气口、排气孔,排液口和排液孔组成;端盖上开有进液孔、排气孔和排液孔;进液孔通过进液管道和进液管道一端的进液口相通,排气孔通过排气管道和排气管道一端的排气口相通,排液孔通过排液管道和排液管道一端的排液口相通;所述热源采用流体热源。

本发明与现有技术相比具有以下突出特点:

其一,节能,溶液是在低压状态下蒸发,对热源温度要求较低;叶片不断旋转,从而带动溶液转动,使得溶液处于真空状态下,不需要外加真空泵;此外,溶液环保持高速旋转因离心力的存在,溶液在该过程中一直处于超重状态,超重状态下,其传热系数和蒸发效率会成倍提高。

其二,结构简单,由于真空场和超重力场都是由同一个转轮部分完成的,不需要单独真空泵和旋转机构,减小了再生器的体积,大大简化了系统。

本发明利用叶轮部分的旋转为溶液同时提供超重力场和真空环境;同时,利用再生器内部的真空度,可以让溶液自动被吸入再生器内部进行蒸发再生;利用高速旋转溶液的离心力,再生后的溶液可自动排出,使该溶液再生器的结构更加紧凑、效率更高、运转更加安全可靠。

附图说明

图1为一种超重真空溶液再生器的结构示意图;

图2为一种超重真空溶液再生器壳体的局部剖视图;

图3为一种超重真空溶液再生器热源流道结构示意图;

图4为一种超重真空溶液再生器端盖部分结构示意图。

图中的标记为:1-排气口 2-进液口 3-壳体 4-进液孔 5-热源进口 6-热源出口 7-热源流道 8-溶液环 9-端盖 10-转轴 11-热源 12-排液孔 13-排液口 14-排气孔 15-叶片。

具体实施方式

下面结合附图1、图2、图3和图4详细说明本发明的具体结构和实施过程。

本发明提出了一种超重真空溶液再生器,具体包括壳体部分、叶轮部分、端盖部分和热源,其中壳体部分、叶轮部分和端盖部分组成了一个密闭的环状空间。

所述壳体部分由壳体3、热源流道7、热源进口5和热源出口6组成;在壳体3的内部开有多条环状的热源流道7,每相邻两个热源流道7为一组,每组热源流道7内的热源11由一条热源流道连接的热源进口5进入,在热源流道7内循环两周后由另一条热源流道连接的热源出口6流出;

所述叶轮部分由叶片15和转轴10组成;转轴10的轴心与壳体3的轴心平行但不重合,转轴10的一端与固定叶片15,叶片15随转轴10同步旋转;转轴10的另一端与电机相连;

所述端盖部分由端盖9、进液口2、进液孔4、排气口1、排气孔14,排液口13和排液孔12组成;端盖9上开有进液孔4、排气孔14和排液孔12;进液孔4通过进液管道和进液管道一端的进液口2相通,排气孔14通过排气管道和排气管道一端的排气口1相通,排液孔12通过排液管道和排液管道一端的排液口13相通;所述热源11采用流体热源。

一种超重真空溶液再生器运转过程说明:在开机前,溶液在重力作用下依次经过进液口2和进液孔4进入再生器,开机后,由外置电机带动转轴10和叶片15高速顺时针转动,同时溶液也会随叶片15高速旋转,这样溶液在离心力的作用下,就会紧贴壳体3的内壁面形成一个溶液环8,溶液环8的内表面刚好与转轴10的表面相切,此时溶液也就获得了超重力场;在图1中随着叶轮部分的转动,叶轮部分右侧的叶片,每两个叶片15与溶液环8内壁面形成的一个个密闭空间会逐渐变大,即每个空间内的压力逐渐降低,这也就为溶液提供了真空再生的环境;由于再生器内真空度的存在,开机后,溶液可以靠再生器内外的压差依次经过进液口2和进液孔4进入再生器。溶液加热与物料排放,热源11从热源进口5进入热源流道7,然后把溶液环8加热,溶液环8吸热后蒸发,蒸发后的水蒸气随叶片15转动,然后水蒸气被压缩,接着依次经过排气孔14和排气口1排出再生器,热源11放热后从热源出口6排出;再生后的溶液在超重的作用下依次经过排液孔12和排液口13排出再生器。这样就完成了一个完整的循环,如此重复即可达到一种超重真空溶液再生器的持续运行。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1