用于低温液化工艺中的组合式循环机械驱动的系统的制作方法

文档序号:4795560阅读:192来源:国知局
专利名称:用于低温液化工艺中的组合式循环机械驱动的系统的制作方法
用于低温液化工艺中的组合式循环机械驱动的系统
背景技术
多年来,已不断研发出并在专利文献中描述了布雷顿(Brayton)冷却循环的各种变型。例如,由于制冷剂在整个循环中都保持单相且因此更易于适应如气体冷却的单相负荷这一事实,最初的单膨胀机系统的特性显示出有利于利用冷却应用的工艺而非液化的工艺然而,尽管传统的布雷顿工艺就液化功率而言不及级联工艺(cascad印rocess)、 混合制冷剂工艺及其它大规模液化系统做得那么好,但由于此工艺简单、耐用且灵活而受到一些欢迎,并且还用于液化,例如用于液化天然气(LNG)的生产。尤其是对于较小的工厂,已证明简单的布雷顿系统是切实可行的。与其它技术相比,当涉及用在较大规模的天然气液化设施中时,上面提及的大多数因素已被看作是对布雷顿循环的正面影响,但比能(specificenergy)需求较其他有利影响更为重要。例如,如挪威专利申请2008 3740所描述的那些的布雷顿循环的新近发展使布雷顿循环与其它技术之间的差距变小,就能量性能而言也是如此。除了更一般的设计、 更安全的工艺及其它方面的新需要以外,这些有助于使布雷顿回路的变型由于新介质而得以新生,以用于大规模的LNG应用,例如用在浮式(Hoating)LNG市场中。挪威专利申请2008 3740所描述的不同工艺变型中的大多数的特征是需要多个压缩和膨胀级(stage)。乍一看,当将这些工艺用于需要使设备重量和尺寸最小化的应用时,这似乎像是一个复杂的因素。如在下文中所表明的,这并不是事实。本发明的主要目的是为这种工艺提供一种这样的解决方案,即,其带来了紧凑的机械布局、低的功率系数(specific power)要求、以及电力用户与供应者的独特的且最佳的平衡。另一方面是如何通过用于压缩机和/或膨胀机单元的直接机械驱动将这种机械布局结合到热电厂中。因此,本系统利用了双布雷顿循环或三布雷顿循环中的能量平衡,以是最佳的且灵活的、以及节约能量的。本系统还促进了不同回路(即低温、中温及高温回路)之间的动态的功率平衡,包括这种工艺布局能应付波动和变化的情况。

发明内容
根据本发明,这些目的通过依靠使用单相气态制冷剂的制冷组件来生产液化的且过冷的天然气的系统来实现,本系统包括至少两个膨胀机;压缩机组件;用于从天然气吸热的热交换器组件;以及排热(heat rejection)组件,其中,膨胀机布置在膨胀机回路 (loop)中,并且制冷剂依靠具有提供适于各个膨胀机的入口压力和出口压力的压缩机或压缩机级的压缩机组件而以压缩流供应至各个膨胀机,其中,膨胀机和压缩机或膨胀机级和压缩机级组装在两个机械地连接的压缩机和膨胀机机组(package)中,其中的一个机组由燃气涡轮机驱动,且另一个机组由蒸汽涡轮机驱动,蒸汽主要由来自废热回收单元中的燃气涡轮机的废气产生,并且其中,膨胀机和压缩机或膨胀机级和压缩机级分布在两个压缩机和膨胀机机组之间,以使蒸汽利用最优化,且使由燃气涡轮机和蒸汽涡轮机产生的功率平衡。本 发明的其他实施例在从属专利权利要求和下面的详细描述中详细说明。简要地,本发明正专注于研发如挪威专利申请2008 3740所叙述的双布雷顿回路或三布雷顿回路。期望获得更高的效率(即,生产每kg的LNG需要更少kW)是如今的液化天然气作业的一个重要因素。解决该问题的结果是单制冷系统的巨大飞跃。本发明在以下方面是独特的燃气涡轮机提供了至少一个压缩机和可能地至少一个膨胀机单元的机构 (setup)所需要的净功率,并且使用来自燃气涡轮机的废气来产生蒸汽。蒸汽然后按特定路线传送(route)至蒸汽涡轮机,驱动至少一个压缩机和可能地至少一个膨胀机单元的另一机构。低温或过冷回路物理地设置在燃气涡轮机驱动单元上,而高温或过热降温 (de-superheating)回路优选地物理地位于蒸汽涡轮机驱动单元上。中温(medium temperature)或冷凝及冷却回路典型地在上述两个回路之间分开(split)。由于在蒸汽涡轮机与燃气涡轮机之间产生的功率级的数量级为2 1,因此该系统布局非常适于具有双布雷顿回路或三布雷顿回路的工艺解决方案。这导致一种与没有废热回收单元的常规燃气涡轮机驱动系统相比具有极低的燃料需求的机构,且因此是经济的、环保的并具有低的生产成本。经由诸如离合器、齿轮的机械装置或其它手段,系统能使功率平衡,从而满足整个系统需要的功率消耗,即,如果任何气体成分致使热力改变不足以满足功率需求,那么这能改为经由机械转换完成。否则,这通常通过诸如压力级的工艺调节、或经由压缩机或膨胀机中的导叶来实现。


图1示出了如挪威专利申请2008 3740所描述的三布雷顿循环的示意性布局;以及图2是基于图1中的三布雷顿循环的包括燃气涡轮机和蒸汽涡轮机的压缩机及膨胀机驱动机构的示意性布局。
具体实施例方式如图1所示,本制冷组件包括三个不同的制冷回路高温回路,在此图示为具有两个压缩机12、13或压缩机级和一个膨胀机1或膨胀机级,在下文中仅分别标出了压缩机和膨胀机。对于所有三个回路,这都是基本情况,但如果此工艺优点是显而易见的,那么该布局可由不同数量的压缩机或膨胀机单元构成,取决于工艺需求或其它标准。该高温回路用于过热降温。中温回路用于使LNG冷凝,并且该回路通常由两个压缩机14、15和一个膨胀机2 构成;以及低温回路在基本情况下同样由三个压缩机16、17、18和一个膨胀机构成,并用于使LNG过冷。关于该制冷组件的其他信息见于挪威专利申请2008 3740,并且出于所有相关目的,将相同公开通过弓I证结合于此。
基于来自燃气涡轮机的废热回收的蒸汽涡轮机在此工艺和发电工业中是众所周知的。在大多数情况下,由于驱动器直接连接至发电机,因此将这种组合式发电单元中的至少一个涡轮机(比较美国专利6640586),经常是两个涡轮机,用于发电。本发明描述了如下的系统,其中,将燃气涡轮机和蒸汽涡轮机形式的组合式循环系统的两个驱动器用作不同旋转机械(即压缩机、膨胀机、齿轮等)的直接机械驱动器。如已提及的,挪威专利申请2008 3740所描述的工艺包括至少两个膨胀机回路和未定义数量的压缩机或压缩机级。根据优选的工艺布局,尤其是在每个膨胀机回路具有一个专用闭合布雷顿循环的情况下,压缩级和/或膨胀级的数量可以非常大,参见图1。这可通过采用多个驱动器来解决,但由于重量和占用的空间(footprint)限制,经常强制性地采用更紧凑的设计。一体式齿轮传动机(integrally geared machine)提供了将多个压缩级和膨胀级组合到一个共用齿轮箱205、305上、涉及分别来自膨胀机和压缩机的能量供应和能量消耗的可能性。能够合并到一个大齿轮(即,又驱动经由小齿轮207、307附设的压缩机或膨胀机单元的一个大的齿轮206、306)上的级的数量受叶轮或涡形(volute)的物理几何形状和齿轮自身的尺寸限制。一体式齿轮传动机通常将关于每个小齿轮轴以相同速度旋转的两个叶轮结合起来。对于普通的一体式齿轮传动机,小齿轮轴的数量限于三个,最多四个,因此允许最多六个到八个叶轮。有时且根据驱动速度,驱动器自身也可连接至小齿轮轴而非大齿轮自身。与上面指定的数量相比,该事实进一步限制了对于每个大齿轮而言叶轮的最大数量。在图1所示的工艺中,需要共计十个叶轮,S卩,在任何情况下,叶轮的总数多于能够连接至单个大齿轮。在这种情况下,可能引入至少一个另外的大齿轮。图2示出了图1所示的工艺的一个机械机构,其中,每个大齿轮的主驱动器分别是燃气涡轮机和蒸汽涡轮机。一般说来,在组合式循环燃气涡轮机系统中,蒸汽涡轮机的最大轴功率是燃气涡轮机的约50%。由于叶轮的大数量,因此工艺的离散化可分别实现至少一个工艺循环直接通过燃气涡轮机来驱动,并且至少一个另外的工艺循环在燃气涡轮机大齿轮与蒸汽涡轮机大齿轮之间分开,以使燃气涡轮机与蒸汽涡轮机之间的功率比接近2 1。在图1中,示出了具有三个流体分离的布雷顿循环的工艺。使工艺离散化的一种可行方式由图2表示,其中,与膨胀机3相关联的整个低温布雷顿循环连接至燃气涡轮机大齿轮,包括膨胀机1的整个高温布雷顿循环连接至蒸汽涡轮机大齿轮,而包括膨胀机2的中间温度布雷顿循环在上述两个大齿轮之间分开。在图2中,机组200、300的一种可行机构分别包括燃气涡轮机201和蒸汽涡轮机 301。燃气涡轮机机 组包括低温膨胀机3、及低温压缩机16、17、18和中温压缩机15,而蒸汽涡轮机机组包括高温膨胀机和中温膨胀机1、2、及中温压缩机14和高温压缩机12、13。假定连接至燃气涡轮机大齿轮的中温布雷顿循环压缩机完全再循环,这种布置允许与其它布雷顿循环无关地起动低温回路。由于蒸汽产生开始,因此于是可使主热交换器 8或低温试验箱同时冷却下来。该机械布局还允许两个驱动一体式齿轮传动压缩机之间的经由离合器、轴或齿轮箱的接合,从而可处理从驱动器传送的功率和一体式齿轮传动压缩机要求的功率的不平衡。上面说明的解决方案展示了以最佳的发电和配电且在低的功率系数消耗下将燃气涡轮机中产生的蒸汽直接用在蒸汽涡轮机中的可能性。通常在所有的固有能量损失下, 将热电机构中的蒸汽传送至蒸汽涡轮机,蒸汽涡轮机驱动发电机,发电机又向电机供电。该系统直接利用能量,并还使得可获得占用的空间小、重量轻且成本低的机械布局。蒸汽经由燃气涡轮机中的排气烟囱中的螺旋管而产生,并通过蒸汽涡轮机典型地以两个压力级(一个为过热高压蒸汽级,且一个为中压蒸汽级)按特定路线传送。 燃气涡轮机具有废热回收单元202。该废热回收单元原理上是由排气烟囱中的螺旋管构成的闭合回路循环,其中,蒸汽由废气中的余热(excessheat)产生。由此产生的蒸汽直接用在蒸汽涡轮机中。这两个一体式齿轮传动压缩机和膨胀机机构也可经由离合器、 轴或齿轮机械地接合。布置在废热回收单元202中的未示出的补燃燃烧器(duct burner) 可补偿蒸汽需求的较小不足,从而使工艺最优化。作为一种可替代方案,可使用该废热回收单元中未包括的另一适当热源。燃气涡轮机和蒸汽涡轮机201、301中的每个都可机械接合至具有布置在图中未示出的单独的孤立膨胀机-增强器(booster)-压缩机台(skid)上的膨胀机1、2、3的各个压缩机段。
权利要求
1.一种依靠使用单相气态制冷剂的制冷组件来生产液化的且过冷的天然气的系统,包括-至少两个膨胀机(1、2、3);-压缩机组件(12、13、14、15、16、17、18);-用于从天然气吸热的热交换器组件(8);以及-排热组件(25、19、20、21、22、23),其中,所述膨胀机布置在膨胀机回路中,并且所述制冷剂依靠具有提供适于各个膨胀机的入口压力和出口压力的压缩机或压缩机级的所述压缩机组件而以压缩流供应至各个膨胀机,其特征在于,所述膨胀机和压缩机或膨胀机级和压缩机级组装在机械地连接的两个压缩机和膨胀机机组(200、300)中,其中的一个机组由燃气涡轮机(201)驱动,且另一个机组由蒸汽涡轮机(301)驱动,蒸汽主要由来自废热回收单元(202)中的所述燃气涡轮机的废气产生,并且其特征在于,所述膨胀机和压缩机或膨胀机级和压缩机级分布在所述两个压缩机和膨胀机机组之间,以使蒸汽利用最优化,且使由所述燃气涡轮机和所述蒸汽涡轮机产生的功率平衡。
2.根据权利要求1所述的系统,其特征在于,布置在所述废热回收单元(202)中的补燃燃烧器或另一热源补偿了蒸汽需求的较小不足,以使工艺最优化。
3.根据权利要求1和权利要求2所述的系统,其特征在于,所述燃气涡轮机和蒸汽涡轮机(201、301)中的每个都机械地接合至包括压缩机和膨胀机单元的不同组合的一体式齿轮箱(205、305)。
4.根据权利要求1、权利要求2和权利要求3所述的系统,其特征在于,每个膨胀机回路都是流体分离的制冷剂循环的一部分,与所述制冷剂循环中的至少一个相关联的所有压缩机和膨胀机都布置在由所述燃气涡轮机直接驱动的所述齿轮箱上,从而能与上述蒸汽系统的状态无关地建立和控制冷却任务。
5.根据权利要求1和权利要求2所述的系统,其特征在于,所述燃气涡轮机和蒸汽涡轮机中的每个都机械地接合至各个压缩机段,所述膨胀机布置在单独的孤立膨胀机_增强器-压缩机台上。
全文摘要
一种依靠使用单相气态制冷剂的制冷组件来生产液化的且过冷的天然气的系统,包括至少两个膨胀机;压缩机组件;用于从天然气吸热的热交换器组件;以及排热组件,其中,膨胀机布置在膨胀机回路中,并且制冷剂依靠具有提供适于各个膨胀机的入口压力和出口压力的压缩机或压缩机级的压缩机组件而以压缩流供应至各个膨胀机。根据本发明,膨胀机和压缩机组件组装在机械地连接的两个压缩机和膨胀机机组(200、300)中,其中的一个机组由燃气涡轮机(201)驱动,且另一个机组由蒸汽涡轮机(301)驱动,蒸汽主要由来自废热回收单元(202)中的燃气涡轮机的废气产生,并且其特征在于,膨胀机和压缩机组件分布在两个压缩机和膨胀机机组之间,以使蒸汽利用最优化,且使由燃气涡轮机和蒸汽涡轮机生成的功率平衡。
文档编号F25J1/02GK102203531SQ200980143991
公开日2011年9月28日 申请日期2009年10月16日 优先权日2008年11月4日
发明者拉尔斯·霍尔利克, 比约恩·哈拉尔德·豪克戴尔 申请人:海威气体系统公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1