氧气汽化方法和系统的制作方法

文档序号:4775239阅读:474来源:国知局
专利名称:氧气汽化方法和系统的制作方法
技术领域
本发明涉及一种用于低温空分装置中的氧气汽化方法和系统,其中从低压塔排出的富氧液流经泵送,然后通过与压缩空气流间接换热而汽化,从而导致所述空气流液化。更具体地讲,本发明涉及这样的方法和系统,其中在辅助换热器中在空气流和泵送的富氧液体之间进行潜热交换。发明技术
在采用低温精馏方法将空气分离成其各组成部分的空气分离装置中产生氧气。在这种装置中,空气经压缩、纯化并在主换热器内冷却至适于在蒸馏塔中对其精馏的温度。通常,此类装置利用具有高压蒸馏塔和低压蒸馏塔(这样命名是在于高压塔相比低压塔在更高的压力下操作)的空气分离装置。经压缩、纯化和冷却的空气被引入高压塔,产生粗液态氧塔底产物(也称为釜液)。粗液态氧塔底产物在低压塔中经进一步精炼,形成富氧液态塔底产物。氧气产物可以液体从此类液态塔底产物中取出。在常见类型的空气分离装置中,高压塔和低压塔通过位于低压塔底部的冷凝器锅炉热连接。富氮蒸汽流从高压塔的顶部排出并在冷凝器锅炉中冷凝,所述冷凝器锅炉紧靠从低压塔的底部中收集的富氧液体的汽化部分。冷凝的富氮蒸汽用于对高压塔和低压塔进行回流,并且可部分取出作为产物。同样,通常,作为低压塔的塔顶馏出物产生的富氮蒸汽、低压塔的富氧液态塔底产物流和从低压塔的顶部区域下方排出的不纯氮气流全部被引入主换热器,以冷却空气并使富氧液体汽化,并且得到氧气产物。如果需要处于一定压力下的氧气产物,则将低压塔中产生的富氧液体泵送,然后在主换热器中通过与部分空气间接换热而汽化,所述空气已被压缩至足够高的压力以用于此类目的。泵送液体的汽化导致压缩空气发生液化,从而产生过冷液态空气流。已膨胀到低压塔的适当压力的液态空气流被引入低压塔。此料流的部分还可适当膨胀,然后被引入高压塔。将液态空气引入蒸馏塔,特别是低压塔具有提高氧气以及氩气(当氩气塔与低压塔连接以产生氩气产物时)回收率的作用。完全在主换热器内进行泵送富氧液体汽化和空气液化的问题是在传递潜热以使富氧液体汽化以及使空气液化的过程中主换热器占据了相当长的长度。这导致主换热器的制造成本较高。同时,由于主换热器内的所有通道均可能由于此类目的而变长,因此主换热器的压力损耗会增加,从而增加了压缩空气的电力成本。为了克服这些问题,已知的是采用辅助换热器,其中所有潜热传递均在泵送富氧液体与压缩空气之间发生。另外,在空气液化之后和富氧液体汽化之前,辅助换热器内还可发生液体显热传递。在富氧液体汽化后,所得蒸汽通过与进入主换热器的热端的压缩空气的显热间接换热而进一步升温至环境温度。虽然结合辅助换热器的此种布置使得换热器较短,但考虑到液态氧汽化中必须消耗的空气的量和可从富氧液体传递至辅助换热器内液态空气的显热的量,液态空气的过冷程度非常有限。遗憾的是,考虑到液态空气进入低压塔时越冷,氧气和氩气向下驱往塔的程度就越高,液态空气的过冷程度将对氧气和潜在的氩气回收(如果存在)产生影响。如将进行论述的,本发明提供用于将泵送的液态氧流汽化的方法和系统,其以这样的方式利用辅助换热器,其中以低于使用现有技术的辅助换热器布置的可能温度的温度将液态空气弓I入低压塔以及高压塔。

发明内容
在一个方面以及在一个具体实施方案中,本发明提供了 一种在低温空气分离装置中将泵送氧气流汽化以形成富氧蒸汽产物流的方法。根据此方法,将显热从低温空气分离装置料流内形成的压缩空气流间接交换至已汽化后的泵送氧气流,使得压缩空气流部分冷却,并且使泵送氧气流充分升温以形成富氧蒸汽产物流。将潜热从已冷却后的压缩空气流间接交换至泵送氧气流,使得泵送氧气流汽化并使压缩空气流液化,从而产生液态空气流。显热的至少部分在主换热器内交换,使得富氧蒸汽产物流从其热端排出。就这一点而言,将主换热器用于低温空气分离装置中,以将空气冷却到适于在蒸馏塔系统中对其蒸馏的温度,所述蒸馏塔系统产生富氧液体,该富氧液体反过来经泵送而形成泵送氧气流。潜热的至少部分在与主换热器在其中间位置连接的辅助换热器中进行交换。液态空气流在辅助换热器中时分流成第一副流和第二副流。将第一副流从辅助换热器排出,使得第一副流过冷并从而形成第一过冷流,并且使第二副流进一步过冷并作为第二过冷液态空气流从辅助换热器的另一端排出。将第一过冷液态空气流和第二过冷液态空气流引入蒸馏塔系统中。将第一过冷液态空气流从辅助换热器中除去可使得第二过冷液态空气流进一步过冷,从而导致此类第二过冷液态空气流以比结合辅助换热器的现有技术换热布置的可能温度更低的温度从主换热器的冷端排出。较冷料流将具有提高氧气回收率并且还可能提高氩气回收率(如果要回收氩气)的作用。第一过冷液态空气流可进一步在从主换热器的冷端延伸的另一组换热通道中冷却。在被引入蒸馏塔系统之前,第一过冷液态空气流从主换热器的冷端排出。蒸馏塔系统可具有低压塔和与低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中富氧液体作为塔底产物产生。第一过冷液态空气流的至少部分被引入高压塔,第二过冷液态空气流的至少部分被引入低压塔。在本发明方法的另一具体实施方案中,将显热从低温空气分离装置内形成的压缩空气流间接交换至已汽化后的泵送氧气流,使得压缩空气流部分冷却,并且泵送氧气流升温以形成富氧蒸汽产物流。将潜热从已冷却后的压缩空气流间接交换至泵送氧气流,使得泵送氧气流汽化并使压缩空气流液化。将另外的潜热从已液化后的压缩空气流间接交换至泵送氧气流,使得压缩空气流内的泵送氧气流过冷并且由液态空气形成过冷液态空气流。在此类实施方案中,显热的至少部分和该另外的显热的至少部分在主换热器中进行交换,所述主换热器被构造来使得富氧蒸汽产物流从其热端排出,过冷液态空气流从主换热器的与热端相对设置的冷端排出。潜热的至少部分在与主换热器在其中间位置连接的辅助换热器中进行交换。过冷液态空气流被引入蒸馏塔系统。就这一点而言,过冷液态空气流的至少部分可被引入蒸馏塔系统的至少低压塔中,所述蒸馏塔系统也具有高压塔。由于另外的显热是从主换热器内的液态氧及其它空气流传递至液态空气流,因此所得液态空气流以比使得此类显热仅在辅助换热器内传递的温度更低的温度从主换热器的冷端排出 在另一个方面,本发明提供在低温空气分离装置中的换热系统,用于将泵送氧气流汽化并从而形成富氧蒸汽产物流。所提供的主换热器具有设置在其内部并从其热端延伸的第一组换热通道。这些换热通道被构造来将热量从低温空气分离装置内形成的压缩空气流间接交换至已至少部分汽化后的泵送氧气流,使得压缩空气流部分冷却,使泵送氧气流充分升温以形成富氧蒸汽产物流,并且将该富氧蒸汽产物流从主换热器的热端排出。将主换热器整合在低温空气分离装置内,以将空气冷却到适于在蒸馏塔系统内对其精馏的温度,所述蒸馏塔系统产生富氧液体,该富氧液体反过来经泵送,从而产生泵送氧气流。所提供的辅助换热器在一端具有第二组换热通道,第二组换热通道与第一组换热通道流动连通,并且被构造来使得潜热从已在第一组换热通道中冷却后的压缩空气流间接交换至泵送氧气流。因此,泵送氧气流被至少部分汽化并引入第一组换热通道,并且压缩空气流被液化,从而产生液态空气流。第二组换热通道被构造来使得液态空气流在辅助换热器内时分流成第一副流和第二副流,第一副流从辅助换热器排出,使得第一副流过冷并从而形成第一过冷液态空气流,并且使第二副流进一步过冷并作为第二过冷液态空气流从第二组换热通道的另一端排出。蒸馏塔系统与第二组换热通道流动连通,使得第一过冷液态空气流和第二过冷液态空气流被弓I入蒸馏塔系统。在换热系统的另一个实施方案中,主换热器还具有第三组换热通道,其从主换热器的冷端延伸,并且被构造来进一步冷却第一过冷液态空气流并使第一过冷液态空气流从主换热器的冷端排出。蒸馏塔系统还与第三组换热通道流动连通,以接收第一过冷液态空气流。蒸馏塔系统可具有低压塔和与低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中富氧液体作为塔底产物产生。低压塔与第二组换热通道流动连通,使得第二过冷液态空气流的至少部分被引入低压塔。高压塔与第二组换热通道流动连通,使得第一过冷液态空气流的至少部分被引入高压塔。如果第三组换热通道设置在主换热器中,则高压塔与第三组换热通道流动连通,使得第一过冷液态空气流的至少部分被引入高压塔。在换热系统的另一个实施方案中,主换热器具有第一组换热通道,其设置在主换热器内并从其热端延伸,并且被构造来将热量从低温空气分离装置内形成的压缩空气流间接交换至已至少部分汽化后的泵送氧气流。结果,压缩空气流被部分冷却,泵送氧气流被充分升温以形成富氧蒸汽产物流,并且该富氧蒸汽产物流从主换热器的热端排出。辅助换热器在一端具有与第一组换热通道流动连通的第二组换热通道。这些通道被构造来将潜热间接从已在第一组换热通道中冷却后的压缩空气流间接交换至泵送氧气流,使得泵送氧气流至少部分汽化并且压缩空气流至少部分液化。主换热器还具有第三组换热通道,其从主换热器的冷端延伸并且在第二组换热通道的另一端与第二组换热通道连接。第三组换热通道被构造来将另外的热量从已至少部分液化后的压缩空气流间接交换至泵送氧气流。结果,泵送氧气流升温并被引入第二组换热通道,压缩空气流内的液态空气过冷,并且由已过冷后的液态空气形成的过冷液态空气流从主换热器的冷端排出。蒸馏塔系统与第三组换热通道流动连通,使得过冷液态空气流被引入蒸馏塔系统。在具有低压塔的蒸馏塔系统中,此类塔与第三组换热通道流动连通,使得过冷液态空气流的至少部分被引入低压塔。附图简述 虽然本说明书通过清楚地指出申请人视为其发明的主题的权利要求而得出结论,但认为结合以下附图将更好地理解本发明,在附图中


图1为结合换热系统以实施本发明的方法的空气分离装置的示意性工艺流程 图2为示出图1所示换热系统的替代实施方案的图1的不完整视图;以及 图3为不出图1所不换热系统的另一替代实施例的图1的不完整视图。详述
参照图1,示出的空气分离装置I结合根据本发明的换热系统,所述换热系统(将在后文进行更详细地论述)为辅助换热器2和主换热器3的整合,两者一起起作用以汽化加压的氧气并液化用作蒸馏塔系统4的部分进料的压缩空气。然而应理解,空气分离装置I及其论述是为了进行举例说明,因为本发明可适用于采用不同塔布置的空气分离装置。就这一点而言,尽管本发明被示出具有氩气塔30 (待述),但本发明可适用于其中不回收氩气并从而不存在氩气塔的塔布置。在空气分离装置I中,进料空气流10通过主空气压缩机12压缩,然后在预纯化装置14中纯化以产生压缩和纯化的空气流16。主空气压缩机12可为具有凝结物去除装置(未示出)的中间冷却的整体齿轮式压缩机。如本领域中所熟知,预纯化装置14通常包含根据吸附水分和其它较高沸点杂质的温度和/或变压吸附周期操作的氧化铝床和/或分子筛床。如本领域中所知,此类较高沸点杂质通常为二氧化碳、水蒸气和烃类。当一个床在操作时,另一个床进行再生。可使用其它方法,例如直接接触水冷却、制冷型冷冻、与冷冻水直接接触和相分离。压缩和纯化的空气流16分别分流成第一、第二和第三空气流18、20和22。第一空气流18通过主换热器3冷却至适于其精馏的温度,然后作为主空气进料流24引入蒸馏塔系统4。通常,主换热器3为钎焊的铝制板翅式构造并且虽然示出了一种此类装置,但应理解主换热器3可为一系并联装置,其反过来可再分成热端和冷端换热器。因此,如本文和权利要求中所用,术语“主换热器”可为单个装置或实际上为多个装置。特别地,主空气进料流24被引入蒸馏塔系统4的高压塔26,蒸馏塔系统4还设有低压塔28和氩气塔30。虽然未示出,但高压塔26、低压塔28和氩气塔30各自均设有质量传递接触元件(例如规整填料、无规则填料或筛盘或此类元件的组合)以接触混合物的液相和气相,所述混合物将在此类塔中以本领域中已知的方式进行蒸馏。引入高压塔26的空气被精馏成富氮蒸汽塔顶馏出物和粗液态氧塔底产物(也称为釜液)。粗液态氧流32从高压塔26的底部排出并在过冷装置34内过冷,随后在阀35中减压后被引入与氩气塔30相连的换热器36,以对此类塔进行冷凝回流并从而引发其中氩气将逐渐贫乏而氧气将逐渐富集的此类塔内的下行液相的形成。换热器36设有外壳38和芯40,以与过冷粗液态氧流32和作为氩气塔30内的塔顶馏出物产生的富氩蒸汽流42进行间接热交换。结果,富氩蒸汽流42冷凝成氩回流流44,氩回流流44的部分可作为氩产物流46。吹扫气流47从芯40排出,以防止换热器内不可凝气体(例如氮气)的积聚。过冷粗液态氧流32在换热器36内部分冷凝,并且液相和蒸气相料流48和50被引入低压塔28,以进一步精炼成此类塔中的富氧液态塔底产物和富氮蒸汽塔顶馏出物。高压塔26通过位于低压塔28底部的冷凝器锅炉52与低压塔28热连接。富氮蒸汽流5从高压塔26的顶部提取并在冷凝器锅炉52中冷凝,以产生液氮流54。液氮流54分流成分别对高压塔26和低压塔28进行回流的回流流56和58。在作为回流引入过冷装置34内的低压塔28之前,对回流流58进行过冷。另外,液氮流54还可分流成高压液氮流59和氮气流60,其在主换热器3内汽化形成高压氮产物蒸汽流62。富氮蒸汽流64还可从低压塔28的顶部排出并在过冷装置34内部分升温,以同样使粗液态氧流32和回流流58过冷,然后在主换热器3内充分升温至环境温度,以产生低压氮产物流66。再次转向氩气塔30,富氩蒸汽流68从低压塔28排出并引入氩气塔30,在氩气塔30中,将此类料流精馏以将氩气与氧气分离,从而产生上述富氩塔顶馏出物和含氧塔底产物。将含氧塔底产物流70从氩气塔30除去并被引入低压塔28。氩气塔30可设计成具有有限数量的级数以产生作为供进一步精炼以除去氧气和氮气的粗产物的氩气产物流46,并且可设有足够数量的级数以将氧气和氮气充分分离,从而产生作为最终产物的氩气产物流46。如果存在氩气和氧气的更加完全的分离,则氩气塔30将通常分两段制造。第二空气流20在升压压缩机68中进一步压缩,并在主换热器3内部分冷却。压缩后,第二空气流20在透平膨胀机70膨胀,以产生被引入低压塔28中供制冷用的排气流72。如所示,透平膨胀机70与升压压缩机68直接连接或通过适当传动装置连接。然而,透平膨胀机70还可能与发电机连接,以产生可现场使用或输送到电网的电力。根据本发明,第三空气流22在升压压缩机内进一步压缩,然后作为压缩空气流76引入主换热器3。上述由富氧液态塔底产物构成的富氧液流80从低压塔28排出。富氧液流80可分流成可作为液态氧产物的第一富氧副流82和通过泵86泵送以产生泵送液态氧流88的第二富氧副流84。正如可理解的,副氧气流80的全部可形成泵送液态氧流88,或泵送液态氧流88的部分可作为加压的液态产物。然而如所示,泵送液态氧流88在辅助换热器2内汽化,然后在主换热器3内充分升温以产生氧气产物流90。用于此类目的的换热功能由在辅助换热器2内液化的压缩空气流76提供。为了实现热传递,主换热器3设有第一组换热通道92,其从主换热器3的热端延伸,并且被构造来允许压缩空气流76与已在辅助换热器2内汽化后的泵送液态氧流88之间进行间接换热。辅助换热器设有第二组换热通道94,其与主换热器3内的第一组换热通道92流动连通,以将潜热在泵送液态氧流88和已在主换热器3内冷却后的压缩空气流76之间进行间接交换。结果,压缩空气流76发生液化并且泵送液态氧流88发生汽化。第二组换热通道94还设计为使得已在辅助换热器2内液化后的压缩空气流76在与换热器2的冷端间隔的位置处分流,使得第一过冷液态空气流96以高于在辅助换热器2中充分冷却的第二过冷液态空气流98的温度排出。正是第一过冷液态空气流96的排出允许第二过冷液态空气流98的温度以及实际的温度低于上述及用于类似目的的现有技术辅助换热器的温度。第一过冷液态空气流96之后进一步在主换热器3内冷却,第三组通道100设在主换热器3内以用于此类目的并延伸至主换热器3的冷端,然后其整体被引入高压塔26。第二过冷液态空气流98被部分引入低压塔28。在所示实施方案中,过冷液态空气流98的仅部分作为第一过冷液态空气副流101被引入低压塔28。这通过以下方式实现使第一过冷液态空气副流101在位于低压塔中的此类料流进入点上游的膨胀阀102中膨胀,然后将此类料流引入低压塔28的合适位置。第二过冷液态空气副流103与第一过冷液态空气流96合并,以进一步冷却第一过冷液态空气流96。所得合并流105被引入高压塔26。这通过以下方式实现使合并流105在位于此类料流进入高压塔26的进入点上游的膨胀阀104中膨胀,然后将此类料流引入高压塔26的合适位置。正如可理解的,第二过冷液态空气副流98的全部可被引入低压塔28。在任何情况下,由于根据本发明可达到的过冷程度相比现有技术而言更高,因此液体产量增加,并且由于更多的氧气和氩气沿低压塔28向下驱动,因此氩气产量也增加。参照图2,示出图1中所示换热系统的改进,其中主换热器3’内无第三组换热通道100,主换热器3’在其它方面与上述主换热器3相同。在此类实施方案中,第一过冷液态空气流96被输送至高压塔26,而没有在主换热器3内进一步冷却。而且,与图1实施方案相同,第一过冷液态空气流96的全部可被弓I入高压塔26,并且第二过冷液态空气流98的全部可被引入低压塔28。对图1中此类改进的描述在其它方面与图1所示换热系统相同。在图2和3中示出的实施方案中,通过例如将此类料流与第一过冷液态空气流96混合将第二过冷液态空气流98部分引入低压塔28以及部分引入高压塔26。然而,如果低压塔28中需要附加回流,则可将第一过冷液态空气流96的部分与第二过冷液态空气流的全部混合,并且可将合并流输送至低压塔28,以增加回流(即使在略高的温度下)。另外参照图3,示出本发明的换热系统的一个实施方案,其中主换热器3’’设有第一组换热通道92’,其从主换热器3’ ’的热端延伸以将显热从压缩空气流76交换至已在辅助换热器2’(待述)内汽化后的泵送液态氧流88。辅助换热器2’在一端具有第二组通道94,其与第一组换热通道92’流动连通以汽化泵送液态氧流88并液化压缩空气流76。主换热器还设有位于其内的第三组换热通道106,其从主换热器3’’’的冷端延伸,以将另外的热量从已液化后的压缩空气流76间接交换至泵送液态氧流88,使得显热在此类料流之间交换。要指出的是,除了第一组换热通道92’和第三组换热通道106所提供的改进之外,主换热器3’’’在其它方面与以上参照图1示出和描述的主换热器3相同。第二组通道106内的所得液态空气过冷以形成过冷液态空气流108。过冷液态空气流108整体可被引入低压塔28或在高压塔26与低压塔28之间分流为料流101’和105’。在本发明的上述任一实施方案中,虽然优选的是所有潜热交换发生在辅助换热器2内,但可能存在部分汽化,因此部分汽化的液态氧可被引入主换热器3、3’或3’ ’内的第一组换热通道。就换热器3’’而言,部分液化的空气可被引入第三组换热通道106。这并非优选,因为其会导致换热器在设计方面比以上示出和讨论的换热器长度要长。要注意的是,从以上针对本文所示各个实施方案描述的辅助换热器2和2’中排出的过冷液态氧流可进一步以多种方式冷却。例如,参照图1,通过主换热器3后的第一过冷液态空气流96和/或第二过冷液态空气流98可输送至过冷装置34。换热功能可通过从辅助换热器2中的高压塔26排出的冷却和减压的釜液提供。单独实施且比较图1、2和3示出的本发明的实施方案。结果是,图3的换热系统具有最低的比功率,图1的实施方案具有略高的比功率和略高的氧气回收率。在任何情况下,图1的实施方案还在复杂程度方面相比图3较低。图2的实施方案具有最低的回收率。有关对图1实施方案模拟的详细内容在下表中示出

料流118 |24 [20* |72 |76 丨76** |98 |88 |88林* 190
温度(tC )12. 8 -168~ 38. 6 -165. 5 3876~ -153.4 -176.1 -179.0 -156. 2~ 21. 7
压力(kPa)614 593 一 1180 135 T673~ 1652 1660 688 664 ~ 650
流量(NCMH) |215401 丨215401 丨42866 丨42866 丨98949 丨98949 丨59369 丨67481 丨67481 丨6748权利要求
1.一种在低温空气分离装置中将泵送氧气流汽化以形成富氧蒸汽产物流的方法,所述方法包括 将显热从所述低温空气分离装置料流内形成的压缩空气流间接交换至已汽化后的泵送氧气流,使得所述压缩空气流部分冷却,并且使所述泵送氧气流充分升温以形成所述富氧蒸汽产物流; 将潜热从已冷却后的压缩空气流间接交换至所述泵送氧气流,使得所述泵送氧气流汽化并使所述压缩空气流液化而产生液态空气流; 所述显热的至少部分在主换热器内交换,使得所述富氧蒸汽产物流从所述主换热器的热端排出; 将所述主换热器用于所述低温空气分离装置中,以将空气冷却到适于在蒸馏塔系统中对其蒸馏的温度,所述蒸馏塔系统产生富氧液体,所述富氧液体反过来经泵送而形成所述泵送氧气流; 所述潜热的至少部分在与所述主换热器在其中间位置连接的辅助换热器中进行交换; 使所述液态空气流在所述辅助换热器中时分流成第一副流和第二副流; 将所述第一副流从所述辅助换热器排出,使得所述第一副流过冷并从而形成第一过冷液态空气流,并且使所述第二副流进一步过冷并作为第二过冷液态空气流从所述辅助换热器的另一端排出;以及 将所述第一过冷液态空气流和所述第二过冷液态空气流引入所述蒸馏塔系统中。
2.根据权利要求1所述的方法,其中所述第一过冷液态空气流在从所述主换热器的冷端延伸的另一组换热通道中进一步冷却,并在引入所述蒸馏塔系统之前从所述主换热器的冷端排出。
3.根据权利要求1所述的方法,其中 所述蒸馏塔系统具有低压塔和与所述低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中所述富氧液体作为塔底产物产生; 所述第二过冷液态空气流的至少部分被引入所述低压塔;并且 所述第一过冷液态空气流的至少部分被引入所述高压塔。
4.根据权利要求2所述的方法,其中 所述蒸馏塔系统具有低压塔和与所述低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中所述富氧液体作为塔底产物产生; 所述第二过冷液态空气流的至少部分被引入所述低压塔;并且 所述第一过冷液态空气流的至少部分被引入所述高压塔。
5.一种在低温空气分离装置中将泵送氧气流汽化以形成富氧蒸汽产物流的方法,所述方法包括 将显热从所述低温空气分离装置内形成的压缩空气流间接交换至已汽化后的泵送氧气流,使得所述压缩空气流部分冷却,并且使所述泵送氧气流升温以形成所述富氧蒸汽产物流; 将潜热从已冷却后的压缩空气流间接交换至所述泵送氧气流,使得所述泵送氧气流汽化并使所述压缩空气流液化; 将另外的显热从已液化后的压缩空气流间接交换至所述泵送氧气流,使得所述压缩空气流内的液态空气过冷并且由所述液态空气形成过冷液态空气流; 所述显热的至少部分和所述另外的显热的至少部分在主换热器中进行交换,所述主换热器被构造来使得所述富氧蒸汽产物流从其热端排出,并且使得所述过冷液态空气流从所述主换热器的与所述热端相对设置的冷端排出; 将所述主换热器用于所述低温空气分离装置中,以将空气冷却到适于在蒸馏塔系统中对其蒸馏的温度,所述蒸馏塔系统产生富氧液体,所述富氧液体反过来经泵送形成所述泵送氧气流; 所述潜热的至少部分在与所述主换热器在其中间位置连接的辅助换热器中进行交换;以及 将所述过冷液态空气流引入所述蒸馏塔系统。
6.根据权利要求5所述的方法,其中 所述蒸馏塔系统具有低压塔,在所述低压塔中所述富氧液体作为塔底产物产生;且 所述过冷液态空气流的至少部分被引入至少所述低压塔。
7.—种在低温空气分离装置中的将泵送氧气流汽化并从而形成富氧蒸汽产物流的换热系统,所述换热系统包括 具有第一组换热通道的主换热器,所述第一组换热通道位于所述主换热器内并且从所述主换热器的热端延伸,并且被构造来将热量从所述低温空气分离装置内形成的压缩空气流间接交换至已至少部分汽化后的泵送氧气流,使得所述压缩空气流部分冷却,使所述泵送氧气流充分升温以形成所述富氧蒸汽产物流,并且将所述富氧蒸汽产物流从所述主换热器的热端排出; 所述主换热器整合在所述低温空气分离装置内,以将空气冷却到适于在蒸馏塔系统内对其精馏的温度,所述蒸馏塔系统产生富氧液体,所述富氧液体反过来经泵送而产生所述泵送氧气流; 在一端具有第二组换热通道的辅助换热器,所述第二组换热通道与所述第一组换热通道流动连通,并且被构造来使得潜热从已在所述第一组换热通道中冷却后的压缩空气流间接交换至所述泵送氧气流,所述泵送氧气流被至少部分汽化且引入所述第一组换热通道,并且所述压缩空气流被液化而产生液态空气流; 所述第二组换热通道被构造来使得所述液态空气流在所述辅助换热器内时分流成第一副流和第二副流,所述第一副流从所述辅助换热器排出,使得所述第一副流过冷并从而形成第一过冷液态空气流,并且使所述第二副流进一步过冷并作为第二过冷液态空气流从所述第二组换热通道的另一端排出;且 所述蒸馏塔系统与所述第二组换热通道流动连通,使得所述第一过冷液态空气流和所述第二过冷液态空气流被引入所述蒸馏塔系统。
8.根据权利要求7所述的换热系统,其中 所述主换热器还具有第三组换热通道,其从所述主换热器的冷端延伸,并且被构造来进一步冷却所述第一过冷液态空气流并将所述第一过冷液态空气流从所述主换热器的冷端排出;且 所述蒸馏塔系统还与所述第三组换热通道流动连通,以接收所述第一过冷液态空气流。
9.根据权利要求7所述的换热系统,其中 所述蒸馏塔系统具有低压塔和与所述低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中所述富氧液体作为塔底产物产生; 所述低压塔与所述第二组换热通道流动连通,使得所述第二过冷液态空气流的至少部分被引入所述低压塔;且 所述高压塔与所述第二组换热通道流动连通,使得所述第一过冷液态空气流的至少部分被引入所述高压塔。
10.根据权利要求8所述的换热系统,其中 所述蒸馏塔系统具有低压塔和与所述低压塔以热传递关系可操作地相连的高压塔,在所述低压塔中所述富氧液体作为塔底产物产生; 所述低压塔与所述第二组换热通道流动连通,使得所述第二过冷液态空气流的至少部分被引入所述低压塔;且 所述高压塔与所述第三组换热通道流动连通,使得所述第一过冷液态空气流的至少部分被引入所述高压塔。
11.一种在低温空气分离装置中的将泵送氧气流汽化并从而形成富氧蒸汽产物流的换热系统,所述换热系统包括 具有第一组换热通道的主换热器,所述第一组换热通道位于所述主换热器内并且从所述主换热器的热端延伸,并且被构造来将热量从所述低温空气分离装置内形成的压缩空气流间接交换至已至少部分汽化后的泵送氧气流,使得所述压缩空气流部分冷却,使所述泵送氧气流充分升温以形成所述富氧蒸汽产物流,并且将所述富氧蒸汽产物流从所述主换热器的热端排出; 所述主换热器整合在所述低温空气分离装置内,以将空气冷却到适于在蒸馏塔系统内对其精馏的温度,所述蒸馏塔系统产生富氧液体,所述富氧液体反过来经泵送而产生所述泵送氧气流; 在一端具有第二组换热通道的辅助换热器,所述第二组换热通道与所述第一组换热通道流动连通,并且被构造来使得潜热从已在所述第一组换热通道中冷却后的压缩空气流间接交换至所述泵送氧气流,使得所述泵送氧气流被至少部分汽化且所述压缩空气流被至少部分液化; 所述主换热器还具有第三组换热通道,其从所述主换热器的冷端延伸且在所述第二组换热通道的另一端与所述第二组换热通道连接,所述第三组换热通道被构造来将另外的热量从已至少部分液化后的压缩空气流间接交换至所述泵送氧气流,使得所述泵送氧气流升温并被引入所述第二组换热通道,所述压缩空气流内的液态空气过冷,并且将由已过冷后的液态空气形成的过冷液态空气流从所述主换热器的热端排出;且 所述蒸馏塔系统与所述第三组换热通道流动连通,使得所述过冷液态空气流被引入所述蒸馏塔系统。
12.根据权利要11所述的换热系统,其中 所述蒸馏塔系统具有低压塔,在所述低压塔中所述富氧液体作为塔底产物产生;且 所述低压塔与所述第三组换热通道流动连通,使得所述过冷液态空气流的至少部分被引入所述低压塔。
全文摘要
一种用于产生氧气产物流的方法和系统,其中来自压缩空气流的显热与主换热器中的汽化的泵送液态氧流进行间接交换,并且潜热在与所述主换热器相连的辅助换热器中进行交换。潜热交换产生过冷液态空气并使得所述泵送液体汽化,所述过冷液态空气被供给到空气分离装置的低压塔中。所述过冷液态空气的部分可以比所述过冷液态空气的其余部分更高的温度从所述辅助换热器排出。所述过冷液态空气的全部或部分可进一步在所述主换热器中冷却。因此,产生低温、过冷的液态空气,其使得氧气回收率以及氩气回收率(如果存在氩气塔)增加。
文档编号F25J3/04GK103003652SQ201080046186
公开日2013年3月27日 申请日期2010年9月2日 优先权日2009年10月13日
发明者R.E.鲁克斯 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1