用于用氮气供给燃烧室的方法和装置制造方法

文档序号:4801493阅读:133来源:国知局
用于用氮气供给燃烧室的方法和装置制造方法
【专利摘要】在一种用于将氮气供给至燃烧室的方法中,在第一压力下从空气分离单元(7)抽取气态氮(9),所述气态氮在氮压缩机的至少两个级(C1,C2)中被压缩并且在第二压力下被送至燃烧室(25)中,所述第二压力为氮压缩机的最后一级(C3)的输出压力,在氮压缩机的两个级之间,氮气在穿过接触器(17)时通过直接接触被加湿,所述接触器在其顶部处被供给水,经加湿的氮气在氮压缩机的至少一个级中被压缩并且被送至燃烧室。
【专利说明】用于用氮气供给燃烧室的方法和装置[0001 ] 本发明涉及用于将氮气供给至燃烧室的方法和装置。
[0002]空气分离单元经常用于将氮气供给至燃烧室。用于燃烧室的燃料可来自于燃料利用氧气的气化,该氧气也来自空气分离单元。
[0003]本发明提出一种用于在引导至燃烧室中之前在氮气压缩期间用水增湿/浸透/使其饱和以及预热氮气的方法。本发明使热量能够从空气分离单元回收至燃烧室并且降低对氮气的需求。
[0004]本发明特别地提出一种方法,该方法优化了通过煤利用氧的气化和联合循环或IGCC发电的工厂的效率。
[0005]煤在氧存在的情况下气化产生的合成气在与空气流混合并且(在压力下)被引入燃烧室——来自该燃烧室的烟气会通过发电涡轮而膨胀——之前或之后,通常去除杂质(例如,汞、含硫化合物、CO2等等)并且通过惰性气体(即不可燃物;例如氮气、水蒸汽、CO2等等)稀释。
[0006]稀释气体的作用是限制燃烧室中的火焰速度,限制气态混合物的氧化特性和限制火焰温度的峰值,从而将氮氧化合物的产量限制在根据环境规章的浓度内。
[0007]在利用氧气化的情况下,稀释合成气的惰性气体常规地为由空气分离单元(ASU)共同生产的氮气,其通常添加有水蒸汽,添加水蒸汽是为了除了向涡轮提供大量显热以外还提高了稀释气体的惰化能力。这是因为稀释气体的惰化能力直接地与其热容相关,将水蒸汽添加至由装置共 同生产的氮气中与仅使用氮气相比更好的降低了燃烧室中的热应力(对于同样体积流量的流向涡轮的烟气而言)。水蒸汽还用于预热合成气和/或稀释气体的混合物以便提高涡轮发电机的生产率。
[0008]多篇文献描述了大致在氮气进入燃气轮机时的压力下通过直接接触对氮气加湿,例如 EP-A-1001149,US-A-5865023, US2007/0119176,和 1993 年 Novem 的“ Integration ofGas Turbine and Air Separation Unit for IGCC Power Plants,,。
[0009]所述的Novem报告还指出,氮气被加压至燃烧室的压力,与合成气混合,然后利用水使其饱和(图7)。
[0010]US-A-2011/0277860描述了将被送至燃气轮机的干燥氮气在没有任何增湿的情况下的压缩。
[0011]本发明提出一种用于预热并且增湿稀释氮气,同时减小或者甚至消除水蒸汽的使用的方法,使得最大限度地在别处使用水蒸汽成为可能(例如,电力的生产),并且限制从空气分离单元提取的氮气部分,该氮气部分必须被压缩以便构成稀释气体。
[0012]必须压缩来自于空气分离装置的稀释氮气(例如,在4bar abs(绝对压力)下)以便实现燃烧室的压力(例如介于15bar abs和IOObar abs之间);此压缩可由多集成径向压缩机完成,该压缩机由电动机或蒸汽涡轮驱动。在稀释氮气的压缩期间,本发明提出借助于供有氮气和液态形式的水流的气液接触器利用水蒸汽增湿稀释氮气。
[0013]优选地,从每个压缩级排出后,稀释的氮气通过这种方式利用水蒸汽增湿。在压缩结束时,氮气可通过与一流体热交换而被加热,该流体与供给空气分离单元的压缩空气接触受热;此处经压缩的氮气所达到的温度水平约为200°C至250°C。氮气然后可通过新的气液接触器再次富含水/增湿,或甚至饱和。最后,在氮气被引导至燃烧室之前,氮气(可选地饱和以水)可常规地被过热(电加热器或使用蒸汽或与ASU的另一流体交换)至其露点以上 50°C至 100°C。
[0014]此外,在用于增湿的气液接触器中所采用的水流可通过来自ASU的流体(例如从主空气压缩机或空气增压器排放的空气)被预热至约为150°C的温度以便最大化通过氮气流的增湿所引入的水量。此最优化尤其与位于压缩级下游的注射相关。
[0015]这是因为用于利用水对经压缩的氮气增湿的中间接触器还具有在接着的压缩级之前冷却气体并且因此改善压缩效率的作用。在中间压缩级中预热用于增湿氮气的水因此会减小压缩的功效。
[0016]由于两个压缩级之间的氮气的冷却,两个压缩级之间的增湿可达到高程度的增湿(氮气中高于10%的水)而压缩不需要过多的能量。1997年4月,Vol.119,Transactions ofthe ASME 中 Smith 等人的“Next Generation Integration Concepts for Air SeparationUnits and Gas Turbines”中推荐的绝热压缩后增湿允许实现同样的水含量。但是,压缩能
量则高得多。
[0017]供给气液接触器的水的流量调整成使得从接触器排出时不会凝结;这是因为流量大于此极限会造成热量损失,从而减弱本发明的优点。
[0018]本发明因此使得能够生产氮气-水蒸汽稀释气体的预热混合物而无需抽取水蒸汽;因此在发电涡轮处有利地充分利用水蒸汽(除了在过热器中可能使用的以外),同样无需提取从涡轮压缩机显现的且供给燃烧室的空气流的热量。
[0019]总之,本发明使得可以将热量从空气分离单元转移至涡轮的燃烧室,降低从所述单元作为稀释气体抽取的氮气并且最终降低由燃烧室供给的涡轮的质量负荷(在等能量下)和将转子上的机械应力保持在所需的极限/范围之内。本发明应用于例如用于具有或不具有CO2捕集系统的、利用氧气(或甚至空气)使煤或石油焦或重质残余物气化的单元。
[0020]所提出的解决方案与其中稀释氮气不用蒸汽稀释的解决方案相比较。在此示例中,接触器放置在三级压缩机的第一和第二压缩级的排出口的位置处(在最后的压缩级的下游无接触器)。
[0021]对于在参考情况下使用204,OOONmVh的稀释氮气的450MWe的IGCC发电站,所提出的新方法使得在等焓的情况下引入10,OOONmVh的水蒸汽代替13,OOONmVh的加压氮气成为可能。
[0022]由空气分离单元的机构导致的电气增益约为1.2丽,换言之IGCC发电站的总电力输出的0.3%。
[0023]与仅利用最终增湿的绝热压缩(如Smith等人的情况一样)相比较,在两个级之间对氮气增湿的氮压缩机对于相似的水量消耗的能量少得多。
[0024]与仅利用最终增湿的离心式压缩相比较,在两个级之间对氮气增湿的氮压缩机允许引入多得多的水(8%相对于2% )。
[0025]在本发明的变型中,从空气分离单元排出的氮气也可以在一进入压缩机时就用水增湿,这使得可以生产冷冻水和降低利用吸附作用的空气净化单元上游的制冷单元的能量消耗。[0026]根据本发明的一个主题,提供了一种用于将氮气供给至燃烧室的方法,其中:在第一压力下从空气分离单元抽取气态氮,氮气在氮压缩机中被压缩并且在第二压力下被送至燃烧室中,所述第二压力为氮压缩机的最后一级的输出压力,其特征在于,氮压缩机包括至少两个级,在氮压缩机的两个级之间,氮气在穿过接触器时通过直接接触被加湿,所述接触器在其顶部处被供给水,经加湿的氮气在氮压缩机的至少一个级中被压缩。
[0027]根据本发明的一个主题,提供了一种用于将氮气供给至燃烧室的方法,其中:在第一压力下从空气分离单元抽取气态氮,所述气态氮在氮压缩机的至少两个级中被压缩并且在第二压力下被送至燃烧室中,所述第二压力为氮压缩机的最后一级的输出压力,其特征在于,在氮压缩机的两个级之间,氮气在穿过接触器时通过直接接触被加湿,所述接触器在其顶部处被供给水,经加湿的氮气在氮压缩机的至少一个级中被压缩并且被送至燃烧室。
[0028]根据其他可选的方面:
[0029]-所有送至接触器的水都转移至气态氮流;
[0030]-送至接触器的水的温度与环境温度相差不超过10°C或甚至5°C;
[0031]-送至接触器的水处于环境温度下;
[0032]-还在氮压缩机的最后一级的下游的接触器中对氮气加湿;
[0033]-送至氮压缩机的最后一级的下游的接触器中的水通过来自空气分离单元的流预热;
[0034]-仅通过与水的直接接触对氮气加湿;
[0035]-来自燃烧室的气体在涡轮中膨胀;
[0036]-利用来自气化单元的燃料供应燃烧室,利用来自空气分离单元的气态氧供应气化单元;
[0037]-仅被送至接触器的水的一部分转移至气态氮流,从接触器以液态形式排出的过量的水用作空气分离单元中的冷冻水。
[0038]根据本发明的另一主题,提供了一种用于将氮气供给至燃烧室的装置,其包括压缩机;至少一个直接接触式接触器,所述接触器配置成接收在压缩机的一级中被压缩的氮气并且将经压缩的和加湿的氮气送至该压缩机的下一级;以及用于将水送至所述至少一个接触器的结构;用于将来自该压缩机的最后一级的经压缩的和加湿的氮气送至燃烧室的至少一个管道,所述装置的特征在于,所述压缩机具有至少两个级,所述接触器连接于所述压缩机的一级的下游和所述压缩机的另一级的上游以便接收经压缩的氮气和将加湿的氮气送至后面一级,所述装置包括用于经由所述至少一个管道将来自所述压缩机的最后一级的经压缩的和加湿的氮气送至燃烧室的结构。
[0039]所述装置可包括位于所述压缩机的最后一级的下游、用于通过直接接触对氮气加湿的结构,或者不包括该结构。
[0040]所述接触器优选是用于经压缩的氮气的冷却结构。
[0041]所述接触器可能不具有用于液体的出口结构。
[0042]根据本发明的另一主题,提供了一种与燃气轮机成一体的空气分离单元,其包括:空气分离单元;用于压缩来自空气分离单元的氮气的设备,该设备包括具有至少两个级的压缩机,配置成接收在压缩机的一级中压缩的氮气并且将经压缩的且加湿的氮气送至压缩机的下一级的至少一个直接接触式接触器,以及用于将水送至至少一个接触器的结构;燃烧室;涡轮;用于将燃烧气体从燃烧室送至涡轮的结构;和用于将来自压缩机的最后一级的经压缩的并且加湿的氮气送至燃烧室和/或涡轮的结构。
[0043]下面更详细地根据附图描述本发明。
[0044]在图1中,空气流I在空气压缩机3中压缩并且然后在空气分离单元7中通过低温蒸馏分离。如果本发明的目的仅仅是生产氮气,则可采用其他分离方法。在具有两个级Cl ;C2的压缩机中压缩氮气9。在两个级之间并且在级Cl的下游具有直接接触式接触器17,在其顶部被供给以水。所有的水被转移至气态氮流,该氮流然后在级C2中被压缩。将经压缩的和加湿的氮气19送至燃烧室25。燃烧室25还被供给来自气化器13的合成气23。该气化器可选地接收来自空气分离单元7的氧气11以及燃料15,例如天然气或煤。
[0045]通过燃烧室25产生的气体27在涡轮中膨胀以便提供电力。
[0046]在图2中,在三级压缩机中压缩氮气,该三级压缩机在每对级之间并且在第一级的下游具有一接触器。空气流I在空气压缩机3中压缩并且然后在空气分离单元7中通过低温蒸馏分离。如果本发明的目的仅仅是生产氮气,则可采用其他分离方法。在具有三个级C1、C2、C3的压缩机中压缩氮气9。在最初的两个级之间并且在第一级Cl的下游具有直接接触式接触器17,在该接触器的顶部被供给以水。所有的水被转移至气态氮流,该氮流然后在级C2中被压缩。经压缩的且加湿的氮气19被送至第二直接接触式接触器117,在该接触器中被加湿并且然后在级C3中被压缩。在级C3中压缩的氮气可选地被送至第三接触器217以便被加湿并且然后被送至燃烧室25或者一涡轮,该涡轮使通过燃烧室产生的燃烧气体膨胀。被送至接触器217的水可以可选地被预热,可选地通过与被送至单元7的压缩空气1、增压空气或其他热流在交换器6中热交换而被预热。如果在最后一级之后用于增湿的水较热,则其从而在燃烧室之前预热稀释氮气。燃烧室25还被供给来自气化器13的合成气23。该气化器可选地接收来自空气分离单元7的氧气11,以及燃料15,例如天然气或煤。
[0047]通过燃烧室25产生的气体27在涡轮中膨胀以便提供电力。
[0048]本发明的一个主要优点在于可以取代压缩机的至少一个级间冷却器或者减小该冷却器的尺寸,因为接触器产生部分所需的制冷量。
【权利要求】
1.一种用于将氮气供给至燃烧室的方法,其中:在第一压力下从空气分离单元(7)抽取气态氮(9),所述气态氮在氮压缩机(C1、C2、C3)中被压缩并且在第二压力下被送至燃烧室(25)中,所述第二压力为所述氮压缩机的最后一级(C3)的输出压力,其特征在于,所述氮压缩机包括至少两个级,在所述氮压缩机的两个级之间,氮气在穿过接触器(17、117)时通过直接接触被加湿,所述接触器在其顶部处被供给水,经加湿的氮气在所述氮压缩机的至少一个级中被压缩以形成在所述第二压力下被送至所述燃烧室的氮气。
2.根据权利要求1所述的方法,其中,被送至所述接触器的所有的水都转移至气态氮流。
3.根据权利要求1或2所述的方法,其中,被送至所述接触器(17、117)的水的温度与环境温度相差不超过10°c或者甚至5°C。
4.根据前述权利要求中任一项所述的方法,其中,还在所述氮压缩机的第一级下游的接触器(217)中对氮气加湿。
5.根据权利要求4所述的方法,其中,被送至所述氮压缩机的最后一级的下游的接触器(217)中的水通过来自所述空气分离单元的流(I)预热。
6.根据前述权利要求中任一项所述的方法,其中,仅通过与水的直接接触对氮气(9)加湿。
7.根据前述权利要求中任一项所述的方法,其中,来自所述燃烧室(25)的气体在涡轮中膨胀。
8.根据前述权利要求中任一项所述的方法,其中,利用来自气化单元的燃料(23)供应所述燃烧室(25),利用来自所述空气分离单元(7)的气态氧(11)供应所述气化单元。
9.根据前述权利要求中任一项所述的方法,其中,仅被送至接触器(17、117、217)的水的一部分转移至气态氮流,从所述接触器以液态形式排出的过量的水用作所述空气分离单元中的冷冻水。
10.根据前述权利要求中任一项所述的方法,其中,氮气在所述接触器中通过与水直接接触而被冷却。
11.一种用于将氮气供给至燃烧室的装置,其包括压缩机(Cl、C2、C3);至少一个直接接触式接触器(17、117),所述接触器配置成接收来自所述压缩机的一级的经压缩的氮气并且将经压缩的和加湿的氮气送至所述压缩机的下一级;以及用于将水送至所述至少一个接触器的结构;用于将来自所述压缩机的最后一级的经压缩的和加湿的氮气送至所述燃烧室的至少一个管道,所述装置的特征在于,所述压缩机具有至少两个级,所述接触器连接于所述压缩机的一级的下游和所述压缩机的另一级的上游以便接收经压缩的氮气和将加湿的氮气送至后面一级,所述装置包括用于经由所述至少一个管道将来自所述压缩机的最后一级的经压缩的和加湿的氮气送至所述燃烧室的结构。
12.根据权利要求11所述的装置,其中,所述装置包括位于所述压缩机的最后一级的下游、用于通过直接接触对氮气加湿的结构(217)。
13.根据权利要求11所述的装置,其中,所述装置在所述压缩机的最后一级的下游不包括用于氮气的加湿结构。
14.根据权利要求11至13中任一项所述的装置,其中,所述接触器(17、117、217)是用于经压缩的氮气的冷却结构。
15.根据权利要求11至14中任一项所述的装置,其中,所述接触器(17、117、217)不具有用于液体 的出口结构。
【文档编号】F25J3/04GK103958853SQ201280058038
【公开日】2014年7月30日 申请日期:2012年11月23日 优先权日:2011年11月25日
【发明者】R·杜贝蒂尔-格勒尼耶, S·格拉尔德, L·乔利 申请人:乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1