高强度生物可溶性无机纤维隔绝垫的制作方法

文档序号:5053402阅读:229来源:国知局
专利名称:高强度生物可溶性无机纤维隔绝垫的制作方法
技术领域
提供了包括生物可溶性无机纤维的耐高温、抗振隔绝垫,其适用于汽车排气系统。
背景技术
催化转换器和/或催化柴油颗粒过滤器通常包括在汽车的排气系统中以减小排放到空气中的污染物水平。尽管当前使用的催化转换器令人满意地运行,但是一旦达到其起燃温度,在起燃期间存在污染问题。例如,已经确定了从包括催化转换器的汽车排气系统排到大气中的大量污染物在起燃周期形成。如本文使用的,起燃温度是催化转换器在转化器中与排气发生催化反应的温度。 催化起燃周期是催化转化器达到其起燃温度所需的时间。如果从发动机移动到催化转换器的排气热量能够比传统的排气系统保持更长的时间段,达到起燃温度所需的时间将会减少。这将减少排气污染物经过排气系统而不催化的持续时间,并且从而将减少释放到大气中的污染物量。隔绝的汽车排气系统管保持排气热量的应用,至少在它们接触催化转换器或其它催化排气净化装置之前,将缩短起燃周期并对减少排向大气的污染物量有利。例如,隔绝的排气管可用于由内燃发动机驱动的车辆的排气系统中以将发动机连接到催化转换器。已知通过利用同心管中管结构,以包含隔热材料的管之间的空间,来隔绝汽车发动机排气管。还提出利用绝缘毯或排气管外的垫。此用途中提出的垫包括由溶出二氧化硅纤维组成的垫和由多晶陶瓷纤维组成的垫。然而溶出二氧化硅垫具有有限允许温度暴露和当暴露在高温时这些垫经受的热收缩百分比上的显著缺点。多晶氧化铝纤维垫通常昂贵得多并且具有显示出不良振动性能上的更多缺点。当多晶氧化铝纤维垫在操作中被加热,用于制备垫的有机粘接剂被燃尽。这些垫然后将膨胀并且如果在压力下未能充分抑制将会破碎。

发明内容
希望提供用于汽车排气系统的隔绝垫,其能够被容易地处理和安装,并且其使与更传统使用的耐用耐火陶瓷氧化物纤维的吸入相关联的控制问题最小化。


图1是汽车排气处理系统的一部分的示意性剖视图。图2是经受针刺操作的湿垫的示意性扩大剖视图。图3是实验性热分析测试设置的示意性立式图。图4是显示隔绝垫在热暴露之后的线性收缩的曲线。图5是显示隔绝垫在热暴露之前和之后的拉伸强度的曲线。
具体实施方式
提供了包括耐高温无机纤维的耐高温、抗振隔绝垫,其适用于汽车排气系统。垫可包括生物可溶性无机纤维,在某些实施例中耐直到1100° C的温度。隔绝垫适于包含汽车排气系统内的热能,从而允许催化转换器和/或催化柴油颗粒过滤器(DPF’ s)优化地运行。S卩,垫对热管理和‘热端’汽车排气系统的隔绝有贡献(包含排气系统内的热能)从而使在催化转换器或柴油颗粒过滤器中的催化更有效。例如,隔绝垫可用于隔绝用于将排气从内燃发动机输送到汽车排气系统中的催化转换器的排气管,并且可适于允许在短时间内达到催化转换器的起燃温度,并且在发动机操作期间维持催化温度。此外,本文所述的隔绝垫可用作用于排气处理装置的锥形隔绝物。例如,排气处理装置典型地包括壳体,位于壳体内的易碎结构,置于易碎结构和壳体之间的安装垫,用于将排气管或导管附接到壳体的入口和出口端部锥形组件。每个端部锥形组件典型地包括内端部锥形壳体,外端部锥形壳体,和置于内和外端部锥形壳体之间的间隙或空间内的端部锥形隔绝物。典型地提供端部锥形隔绝物来阻止热量从排气处理装置的端部锥形区域放射并且防止置于排气处理装置的易碎结构和壳体之间的安装垫的端部锥形面对边缘暴露于热排气。根据进一步的实施例,隔绝垫可为自支撑的以置于排气处理装置的端部锥形内, 排气处理装置包括外金属锥形和自支撑锥形隔绝物。根据本实施例,端部锥形组件不具有内金属锥形。隔绝垫为了安全原因还可用于热隔绝汽车排气系统的其他部分,和/或保护和隔绝周围的电气和塑料部件。根据某些实施例,隔绝垫包括大致整体,大体上不膨胀层,耐高温、生物可溶性无机纤维的板层或片,例如碱土金属硅酸盐纤维。“大体上不膨胀”意味着隔绝垫在对于包含垫的膨胀材料所期望的热量应用时不容易膨胀。当然,垫的一些膨胀不根据其热膨胀系数发生,而是膨胀量与采用膨胀材料的可用量的垫膨胀相对是不大的且最小化的。术语“生物可溶性无机纤维”指的是可溶的或以其他方式在生理介质中或在模拟生理介质(例如模拟肺液,盐溶液,缓冲盐溶液等等)中可分解的无机纤维。纤维的溶解度可通过在模拟生理介质中测量作为时间的函数的纤维的溶解度而评估。生物可溶性还能够通过在测试动物中观察纤维直接移植的效果或通过已经暴露于纤维的动物或人体的检查而估计,即生物难分解性。在生理介质中用于测量纤维的生物可溶性(即非持久性)的方法在受让给Unifrax I LLC的美国专利No. 5,874,375中公开,其通过引用并入本文。其他方法适于评估无机纤维的生物可溶性。根据某些实施例,生物可溶性纤维当作为0. Ig样本暴露于37° C的0. 3ml/min的模拟肺液流时呈现至少30ng/cm2-hr的溶解度。根据其他实施例,生物可溶性无机纤维当作为0. Ig样本暴露于37° C的0. 3ml/min的模拟肺液流时呈现至少 50ng/cm2-hr,或至少 IOOng/cm2_hr,或至少 1000ng/cm2_hr 的溶解度。估计纤维的生物可溶性的另一途径是基于纤维的组分。例如,德国基于组分索引 (KI值)分类可吸入无机氧化物纤维。KI值通过加上碱和碱土氧化物的重量百分比和减去无机氧化物纤维中氧化铝重量百分比的两倍来计算。生物可溶性的无机纤维典型地具有约 40或更大的KI值。
能够被用于为汽车排气系统的各个部件(包括但不限于下行管隔绝物和端部锥形隔绝物)制备隔绝垫的非限制性适合例子包括在美国专利6,953,757,6,030,910, 6,025,288,5,874,375,5,585,312,5,332,699,5,714,421,7,259,118,7,153,796, 6,861,381,5,955,389,5,928,075,5,821,183,和 5,811,360 中公开的那些生物可溶性无
机纤维,其每个通过弓I用并入本文。根据某些实施例,生物可溶性碱土金属硅酸盐纤维可包括镁和二氧化硅的氧化物混合物的纤维化产物。这些纤维通称为镁-硅酸盐纤维。镁-硅酸盐纤维通常包括约60% 到约90%重量百分比的二氧化硅,从大于0到约35%重量百分比的氧化镁和5%重量百分比或更少的杂质的纤维化产物。根据某些实施例,碱土金属硅酸盐纤维包括约65%到约86%重量百分比的二氧化硅,约14%到约35%重量百分比的氧化镁,0到约7%重量百分比的氧化锆和5%重量百分比或更少的杂质的纤维化产物。根据其他实施例,碱土金属硅酸盐纤维包括约70%到约86%重量百分比的二氧化硅,约14%到约30%重量百分比的氧化镁,和5%重量百分比或更少的杂质的纤维化产物。适合的镁-硅酸盐纤维可从Unifrax I LLCCNiagara Falls, New York)的注册商标为IS0FRAX 商业获得。可商用的IS0FRAX纤维通常包括约 70%到约80%重量百分比的二氧化硅,约18%到约27%重量百分比的氧化镁和4%重量百分比或更少的杂质的纤维化产物。根据某些实施例,生物可溶性碱土金属硅酸盐纤维可包括钙,镁和二氧化硅的氧化物混合物的纤维化产物。这些纤维通称为氧化钙-氧化镁-硅酸盐纤维。根据某些实施例,氧化钙-氧化镁-硅酸盐纤维包括约45%到约90%重量百分比的二氧化硅,从大于0 到约45%重量百分比的氧化钙,从大于0到约35%重量百分比的氧化镁,和10%重量百分比或更少的杂质的纤维化产物。可用的氧化钙-氧化镁-硅酸盐纤维可从Unifrax I LLC (Niagara Falls, New York)的注册商标为INSULFRAX商业获得。INSULFRAX 纤维通常包括约61%到约67%重量百分比的二氧化硅,从约27%到约33%重量百分比的氧化钙,和从约 2%到约7%重量百分比的氧化镁的纤维化产物。其他适合的氧化钙-氧化镁-硅酸盐纤维可从Thermal Ceramics (Augusta, Georgia)的商标名称为 SUPERW00L 607 和 SUPERW00L 607 MAX 商业获得。SUPERW00L 607 纤维包括约60%到约70%重量百分比的二氧化硅,从约25%到约35%重量百分比的氧化钙, 和从约4%到约7%重量百分比的氧化镁,和微量氧化铝。SUPERW00L 607 MAX纤维包括约 60%到约70%重量百分比的二氧化硅,从约16%到约2 重量百分比的氧化钙,和从约1 到约19%重量百分比的氧化镁,和微量氧化铝。隔绝垫可包括粘结剂或多于一种类型的粘结剂的混合物。适合的粘结剂包括有机粘结剂,无机粘结剂和这两种类型的粘结剂的混合物。根据某些实施例,隔绝垫包括一种或多种有机粘结剂。有机粘结剂可以固体,液体,溶液,分散剂,乳胶,或类似形式提供。有机粘结剂可包括热塑性或热固性粘结剂,其在固化之后为柔性材料,该柔性材料能够可选地在安装的隔绝垫燃尽。适合的有机粘结剂的例子包括但不限于丙烯酸或(甲基)丙烯酸,苯乙烯和丁二烯的共聚物,乙烯基吡啶,丙烯腈,丙烯腈和苯乙烯的共聚物,氯乙烯,聚氨酯, 醋酸乙烯酯和乙烯的共聚物,聚酰胺,硅酮,等等的水基乳胶。其他树脂包括低温,柔性热固性树脂,例如不饱和聚酯,环氧树脂和聚乙烯酯(例如聚乙烯乙酸脂或聚乙烯基丁醛乳胶)。有机粘结剂基于隔绝垫的总重量可被包括在0到约20%重量百分比量的隔绝垫中。没有有机粘结剂,或使用少量(例如从约1%到约10%)重量百分比的有机粘结剂,有助于消除或减少在车辆第一次启动期间粘结剂燃尽产生的排气。用于粘结剂的溶剂如果需要的话能够包括用于所用粘结剂的水或适合的有机溶剂,例如丙酮。溶剂(如果使用的话)中粘结剂的溶液浓度能够基于所需的粘结剂装载和粘结剂系统的施工性能(粘度,固体含量等)由常规方法确定。隔绝垫可包括聚合粘结剂纤维来代替树脂或液体粘结剂或与树脂或液体粘结剂结合。这些聚合粘结剂纤维(如果存在的话)可在基于总组分的100%重量百分比的从大于 0到约20%重量百分比,从约1%到约15%重量百分比,或从约m到约10%重量百分比范围内的量中使用,以有助于将无机,生物可溶性纤维粘结在一起。粘结剂纤维的适合的例子包括聚乙烯醇纤维,聚烯烃纤维(例如聚乙烯和聚丙烯),丙烯酸纤维,聚酯纤维,乙烯基醋酸乙脂纤维,尼龙纤维或者它们的组合。除了有机粘结剂以外,隔绝垫还可包括无机粘结剂材料。非限制性的适合无机粘结剂材料可包括氧化铝,二氧化硅,和/或氧化锆的胶体分散剂,例如胶体二氧化硅,胶体氧化铝,胶体氧化锆,或它们的混合物。胶体二氧化硅(例如那些可从Nalco Chemical Company获得的)为水或其他液体介质中纳米尺寸二氧化硅颗粒的稳定分散剂。胶体二氧化硅颗粒的直径尺寸可在约4到约100纳米的范围内。胶体二氧化硅可被例如钠或铵离子稳定化,并且可具有约2到约12的pH值范围。其他适合的可选无机粘结剂材料包括煅烧和/或未煅烧粘土座位对湿法成型工艺的辅助,例如但不限于,硅镁土,球状粘土,膨润土,锂蒙脱石,高岭石,蓝晶石,蒙脱石,坡缕石,皂石,海泡石,硅线石,或者它们的组合。粘土无机粘结剂颗粒尺寸可为约150微米或更小,在某些实施例中小于约45微米。根据某些实施例,隔绝垫可选地包括其他已知的非吸入性无机纤维(二次无机纤维)例如二氧化硅纤维,溶出二氧化硅纤维(块状或短切连续),S-玻璃纤维,S2玻璃纤维, E-玻璃纤维,玻璃丝纤维,短切连续矿物纤维(包括但不限于玄武岩或辉绿岩纤维)和它们的组合物等等,其适合于所需的特定温度应用。这种无机纤维可以基于整个垫的100%重量百分比的从大于0到约40%重量百分比的量被添加到隔绝垫。二次无机纤维可商业获得。例如,溶出二氧化硅纤维可使用本领域已知的任何技术溶出,例如通过使玻璃纤维受到酸溶液或适于从纤维提取非硅酸氧化物和其他组分的其他溶液。一种制造溶出玻璃纤维的工艺被包含在美国专利2,624,658和欧洲专利申请 0973697 中。溶出玻璃纤维可从 BelChem Fiber Materials GmbH, Germany 的商标 BELCOTEX, Gardena California 的 Hitco Carbon Composites, Inc.的注册商标 REFRASIL 以及 Polotsk-Steklovolokno, Republic of Belarus 的名称 PS-23 (R)获得。S2-玻璃纤维典型地包含从约64%到约66%的二氧化硅,从约24%到约25%的氧化铝,和从约9%到约10%的氧化镁。S2-玻璃纤维可从Owens Corning, Toledo, Ohio商业获得。在一个实施例中,隔绝垫通过造纸工艺制备,其中纤维可与粘结剂或其他粘结剂纤维混合以形成混合物或浆体。纤维组分可以约0. 25%到5%稠度或固体含量(0. 25-5份固体对99. 75-95份水)混合。浆体然后可以水稀释以增强成型,并且其可最终利用絮凝剂或排水保持辅助化学品絮凝。其他典型的造纸组分或化学品可存在,例如粘度改性剂,粘结剂等等。絮凝混合物或浆体可被放置到造纸机上以形成为包含纸的纤维板层或片。为了更详细地描述造纸技术,见美国专利3,458,329,其公开通过引用并入本文。隔绝垫能够替代地由真空铸造浆体成型。在用于制造主题隔绝垫的工艺的一个实施例中,耐高温纤维和有机/无机粘结剂在Rotoformer (真空圆网抄纸机)上被湿法纺织,并且然后仍然湿的纸或板在进给通过干燥箱之前通过“针机”处理。该处理包括仍在干燥片之前利用液态造纸溶液或浆体弄湿时, 针刺纤维以此来交织或缠绕所述纤维。由此产生的隔绝垫与现有技术的隔绝片相比是致密和加强的。在典型的纤维针刺操作中(一般紧随纤维化步骤之后),润滑液体(通常为油或其他润滑有机材料)用于阻止纤维破坏并有助于纤维移动和交织。在本工艺中,来自水成型, 造纸工艺的水用于辅助针刺处理。针刺意味着将导致纤维从纸或片内的水平面位移以及在纸或片的相对表面之间延伸一定长度的任何操作。针刺设备典型地包括水平面,纤维网放置在水平表面上或在其上移动,并且包括针板,其承载一列向下延伸的针。针板使针反复进出网,并使一些网纤维重新定向到与网表面基本上垂直的表面。针能够推动纤维从一个方向通过网,或例如通过使用针上的倒刺能够从网顶部推动纤维和从网底部拉动纤维。通过带倒刺的针利用纤维纸或片的全部或部分穿刺提供了纤维的物理交织。另外地或替代地,水交织方法可用于缠绕和交织纤维。在水交织工艺中,小的高强度水射流冲击到松散纤维的层或片上,其中纤维被支撑在穿孔表面上,例如金属丝网筛或穿孔滚筒。液体射流导致纤维(相对短并且具有松散端部)变得重新排列,其中纤维的至少一些部分变得围绕彼此物理交织,卷绕和/或缠绕。在某些实施例中,耐高温生物可溶性无机纤维(例如IS0FRAX碱土金属硅酸盐纤维)可具有约1微米到约3. 5微米的平均直径;在一些实施例中,为约2到约2. 5微米。二次无机纤维(例如S2玻璃纤维)可具有约5微米到约15微米的平均直径;在一些实施例中, 为约9微米。碱土金属硅酸盐纤维的长度范围可从太短而不能有效针刺,到足够长以针刺、交织和缠绕。在某些实施例中,通a^ttled Volume (SV)方法(定体积)的直接长度测量方法,生物可溶性无机纤维具有对应于300ml的最小SV的最小长度。二次无机纤维(例如S2 玻璃纤维)可具有从约1/8英寸到约1. 5英寸的平均长度;在一些实施例中,约为0. 5英寸。在某些实施例中,二次纤维可通过对复合系统做出贡献而以拉伸强度和总‘网强度’协助,由此更长的二次纤维辅助纤维混合物的针刺。不受理论的限制,想到更长的二次无机纤维辅助形成结构,或‘支架连接’,其将所有纤维保持在一起。在针刺或水交织仍湿的纸或真空铸造垫之后,垫在烘箱中被干燥,例如但不是限制,在约80° C到约700° C。隔绝垫能够以辊形式提供,或能够被模制出。隔绝垫可作为薄外形的弹性隔绝片操作,提供易于处理且灵活的形式,以此来能够提供排气组件的至少一部分的总缠绕(如果需要的话)而不破裂。如图1所示,在一个实施例中,互锁纤维隔绝垫10适于在汽车排气管12的外表面周围放置,其连接具有例如催化转换器的排气处理装置14的发动机,或如所示的,柴油颗粒过滤器,其可包括碳化硅(SiC)基底16。因此,互锁纤维隔绝垫10暴露于排气系统的热端,接近内燃发动机中存在的热排气20 (未示出)。因此,隔绝垫10辅助维持气体20的热量直到它们经过排气处理装置14。锥形隔绝物18 (排气管12和排气处理装置14之间的入口连接器19内部或外部)也可将热排气 20与外部环境热隔离。锥形隔绝物18可包括类似于或等同于隔绝垫10的互锁纤维隔绝垫,或替代地可包括与互锁纤维隔绝垫10不同的纤维组分。仍热的排气20经过排气处理装置14,例如具有碳化硅(SiC)基底16的柴油颗粒过滤器(DPF),其可通过隔绝支撑垫22安装在排气处理装置14中。支撑垫22具有除了隔绝垫10以外的所需特征。当排气20经过排气处理装置14时,它们基本上完全转化成CO2, H2O和N2气体M。例子
隔绝垫根据下面的配方和工艺制备,并且在典型地用于测试汽车排气下行管隔绝物的条件下进行测试。配方
洗涤Isofrax碱土金属硅酸盐纤维77%
1/2英寸短切S2玻璃纤维15%
膨润土粘土3%
丙烯酸树脂乳胶粘结剂5%
Rotoformer造纸工艺洗涤纤维,
添加粘土,S2玻璃纤维,粘结剂,絮凝, 在Rotoformer滚筒上湿法成型, 湿针刺, 烘箱干燥,
从垫产物卷轧或制备片。质量测试。湿针刺步骤允许非常易碎纤维缠绕而不显著破坏。湿针刺进一步提供高强度,甚至在有机粘结剂已经在下面所述的测试程序或车辆的初始操作期间已经被燃尽之后,其导致垫保持耐用性,甚至在汽车排气系统经受的振动条件下。如图2所示,针刺包括在仍湿的条件下在座板32和脱模板34之间通过成型纸30。 座板32内的孔口 36和脱模板34内的孔口 38允许带倒刺的针40以往复方式通过,如箭头 44所示。针40推拉纸30中的纤维42以引入交织三维互锁方向到纤维42,使在烘箱中基本上干燥的纸30加强。如图3所示,隔绝纸垫10通过沿收缩缝M缠绕在不锈钢排气管50 (SS304)周围而测试其热性能。热气52在约600° C经过不锈钢管50以模拟汽车排气下行管应用中的热排气。主题隔绝垫10和溶出二氧化硅类型垫以6mm厚度和1000g/m2的纸张重量安装。 热图片在5,10,15和20分钟获取,并最终结果在30分钟获得。隔绝垫10外部的热图像显示出91.7° C的冷面温度。比较以相同方式测试的溶出二氧化硅基垫,其显示出105.9° C 的冷面温度。因此,主题隔绝垫10在管50内保持热能更有效,而不是允许其耗散到系统外部。为了测试收缩,生物可溶性纤维隔绝垫和溶出二氧化硅纤维垫的样本在1100° C 受热M小时。如图4所示,溶出二氧化硅纤维垫(图4中称作(II))收缩约7%,而生物可溶性无机纤维隔绝垫(图4中称作(I))收缩小于1%。生物可溶性纤维隔绝垫,溶出二氧化硅纤维垫,多晶氧化铝垫以及非膨胀催化转换器隔绝垫的样本被测试以确定未处理时的(green)条件(S卩,干燥但不受到模拟汽车排气应用的热量)和在暴露于800° C之后的条件下的拉伸强度。图5示出了测试结果,其中(I) 表示生物可溶性纤维隔绝垫,(II)表示溶出二氧化硅纤维垫,(III)表示多晶氧化铝垫,和 (IV)表示非膨胀催化转换器隔绝垫。这些结果指示生物可溶性纤维隔绝垫(I)在暴露于高温之后经受最小百分比的拉伸强度下降。此外,生物可溶性纤维隔绝垫(I)显示出测试的垫的最高暴露后拉伸强度。生物可溶性纤维隔绝垫和多晶氧化铝垫的样本为抗振性测试,模拟以再现在垫的使用寿命期间在汽车应用中经受的振动。垫首先在700° C加热10小时。当振动频率变化超过10%时预测的测试规程失效。多晶氧化铝垫在约19小时失效,而生物可溶性纤维隔绝垫在25小时测试的持续时间内显示出基本上不变的频率。主题隔绝垫由作为其大组分的生物可溶性纤维制成。主题隔绝垫比多晶氧化铝纤维垫(其被提议用于汽车排气系统应用)具有显著低的单元损失。主题隔绝垫比由溶出二氧化硅纤维材料制备的垫显示出显著低的热收缩。主题隔绝垫还配方设计为包含较低有机粘结剂含量,使得在汽车应用中的初始启动期间最小化气味和烟生成。粘结剂可被添加到主题隔绝垫配方以易于处理和安装。粘结剂提供了更光滑更人满意的表面并且还提供了灵活性。然而,由于用于生产主题隔绝垫的湿针刺工艺,不唯一依靠有机粘结剂来在生产、安装和操作期间将垫保持在一起。即使在现有任何有机粘结剂燃尽之后,主题隔绝垫仍被垫的针刺纤维结构保持在一起。因此,主题隔绝垫即使在高温下也是抗振的。不像催化转换器安装垫材料,主题隔绝垫能够使用而不必须将其保持在任何显著压力下。换言之,在典型汽车排气系统振动和温度条件下,尤其在‘热端’排气隔绝应用下, 隔绝垫不需要被压缩到目标密度(间隙体积密度)以此来在操作期间保持完整。然而,在典型操作环境中,隔绝垫可具有薄覆盖(例如薄金属片)以保护其以防冲击和一般环境。然而, 隔绝垫不需要被密封以防外部环境。例如在某些应用中,边缘可暴露于空气或湿气。非膨胀生物可溶性纤维隔绝垫显示出良好的隔绝值(好于气隙),对湿气和盐分的抵抗以在汽车环境中具有耐用性,耐高温(直到1000° C),灵活性以易于在复杂形状周围安装,以及提高的径向振动耐用性。主题隔绝垫显示出高拉伸强度,其足以允许垫在暴露以高温之后保持就位,并且具有低有机含量(在一些实施例中小于约3%)以在初始加热期间低粘结剂燃尽以及点火的低损失。主题垫成本比高性能转化器垫(例如多晶氧化铝垫)低,同时提供优越的性能。生物可溶性纤维隔绝垫对于隔绝汽车排气应用(例如下行管,歧管)和消音器隔绝物以及催化转换器入口和出口锥形隔绝物是有用的。主题隔绝垫还适合用作汽车热屏蔽。 主题隔绝垫还可用于包裹燃料电池内的发热元件。包括隔绝垫的隔绝垫和设备或装置不限于上述说明性实施例,而是包括由下面权利要求限定的变体、修改和等同实施例。上述实施例在替代物中不是必须的,因为各种实施例可结合以提供所需特性。
权利要求
1.一种高强度生物可溶性无机纤维隔绝垫,包括耐高温碱土金属硅酸盐纤维和可选添加的非吸入性无机纤维,其特征在于,所述隔绝垫具有部分互锁的纤维结构和在暴露于至少600° C的温度之前的小于20%重量百分比的有机物含量。
2.如权利要求1所述的隔绝垫,其特征在于,所述生物可溶性纤维包括氧化镁和二氧化硅的纤维化产物。
3.如权利要求2所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约65%到约86% 重量百分比的二氧化硅,约14%到约35%重量百分比的氧化镁和5%重量百分比或更少的杂质的纤维化产物。
4.如权利要求3所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约70%到约86% 重量百分比的二氧化硅,约14%到约30%重量百分比的氧化镁和约5%重量百分比或更少的杂质的纤维化产物。
5.如权利要求4所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约70%到约80% 重量百分比的二氧化硅,约18%到约27%重量百分比的氧化镁和0到4%重量百分比的杂质的纤维化产物。
6.如权利要求1所述的隔绝垫,其特征在于,生物可溶性纤维包括氧化钙,氧化镁和二氧化硅的纤维化产物。
7.如权利要求6所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约45%到约90% 重量百分比的二氧化硅,大于0到约45%重量百分比的氧化钙,和大于0到约35%重量百分比的氧化镁的纤维化产物。
8.如权利要求7所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约60%到约70% 重量百分比的二氧化硅,从约16%到约35%重量百分比的氧化钙,和从约4%到约19%重量百分比的氧化镁的纤维化产物。
9.如权利要求8所述的隔绝垫,其特征在于,所述生物可溶性纤维包括约61%到约67% 重量百分比的二氧化硅,从约27%到约33%重量百分比的氧化钙,和从约洲到约7%重量百分比的氧化镁的纤维化产物。
10.如权利要求1所述的隔绝垫,其特征在于,所述隔绝垫包括所述生物可溶性无机纤维的从约50%到100%重量百分比。
11.如权利要求10所述的隔绝垫,其特征在于,所述非吸入性无机纤维包括二氧化硅纤维,溶出二氧化硅纤维,S-玻璃纤维,S2玻璃纤维,E-玻璃纤维,玻璃丝纤维,短切连续矿物纤维,或者它们的组合中的至少一个。
12.如权利要求1所述的隔绝垫,还包括至少一个有机粘结剂,至少一个无机粘结剂, 或者它们的组合。
13.如权利要求12所述的隔绝垫,其特征在于,所述有机粘结剂包括丙烯酸或(甲基) 丙烯酸,苯乙烯和丁二烯的共聚物,乙烯基吡啶,丙烯腈,丙烯腈和苯乙烯的共聚物,氯乙烯,聚氨酯,醋酸乙烯酯和乙烯的共聚物,聚酰胺,硅酮,不饱和聚酯,环氧树脂,聚乙烯酯, 聚醋酸乙烯酯,聚乙烯基丁醛,聚乙烯醇纤维,聚乙烯纤维,聚丙烯纤维,丙烯酸纤维,聚酯纤维,乙烯基醋酸乙脂纤维,尼龙纤维,或者它们的组合的乳胶中的至少一个。
14.如权利要求12所述的隔绝垫,其特征在于,所述有机粘结剂包括丙烯酸乳胶。
15.如权利要求12所述的隔绝垫,其特征在于,所述无机粘结剂包括胶体二氧化硅,胶体氧化铝,胶体氧化锆,或它们的混合物中的至少一个。
16.如权利要求12所述的隔绝垫,其特征在于,所述无机粘结剂包括胶体二氧化硅。
17.如权利要求12所述的隔绝垫,其特征在于,所述无机粘结剂包括粘土。
18.如权利要求12所述的隔绝垫,其特征在于,所述粘土包括煅烧和/或未煅烧硅镁土,球状粘土,膨润土,锂蒙脱石,高岭石,蓝晶石,蒙脱石,坡缕石,皂石,海泡石,硅线石,或者它们的组合。
19.一种用于生产如权利要求1所述的隔绝垫的工艺,包括制备湿纸或板,其包括耐高温纤维和可选地有机粘结剂或无机粘结剂的至少一个;以及在干燥之前在所述湿纸或板中交织或缠绕所述纤维。
20.如权利要求19所述的工艺,其特征在于,所述交织或缠绕包括针刺或水刺所述湿纸或板中的至少一个。
21.一种如权利要求1所述的高强度无机生物可溶性纤维隔绝垫由以下工艺获得a.制备湿纸或板,其包括耐高温碱土金属硅酸盐纤维和可选地有机粘结剂或无机粘结剂的至少一个;以及b.在干燥之前在所述湿纸或板中交织或缠绕所述纤维。
22.如权利要求1所述的隔绝垫,其特征在于,所述隔绝垫接合汽车排气系统的下行管。
23.如权利要求1所述的隔绝垫,其特征在于,所述隔绝垫包括锥形隔绝物。
全文摘要
一种高强度无机生物可溶性纤维隔绝垫(10)包含耐高温碱土金属硅酸盐纤维(42)和可选地添加的非吸入性无机纤维,其中,所述隔绝垫(10)具有部分互锁的纤维(42)结构和在暴露于至少600°C的温度之前的小于20%重量百分比的有机物含量。一种生产所述隔绝垫(10)的工艺包括制备湿纸(30)或板,其包括耐高温纤维(42)和可选地有机粘结剂或无机粘结剂的至少一个;以及在干燥之前在所述湿纸(30)或板中交织或缠绕所述纤维(42)。
文档编号B01D53/94GK102271781SQ200980153724
公开日2011年12月7日 申请日期2009年12月29日 优先权日2009年1月5日
发明者A. 费尔南多 J., B. 米勒 K. 申请人:尤尼弗瑞克斯 I 有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1