一种纳米SiO2气凝胶柔性保温膜的制作方法

文档序号:12078329阅读:805来源:国知局

本发明属于保温材料技术领域,具体涉及一种纳米SiO2气凝胶柔性保温膜及其制备方法。



背景技术:

随着隔热材料的发展,研究人员提出了先进隔热材料与超级绝热材料的概念,与传统的硅酸铝纤维、石英纤维、氧化锆纤维相比,它们的特征是更高的热阻、更薄的厚度、更小的密度、更好的强度。多年的研究表明,气凝胶具备上述的特征,代表着高效隔热材料的发展方向。气凝胶是由胶体粒子或有机高聚物分子相互链接而构成纳米多孔空间网络结构,并在多孔孔隙中充满气态分散介质的一种高分散固态材料,具有特殊的连续无规则多孔网络结构,由于气凝胶具有纳米尺度的颗粒及大量的孔隙分布,使其具有很低的热导率,但气凝胶机械强度不够,成型困难,所以与其他材料复合是解决此难题的一个优化方案。

柔性复合材料一般由纤维增强材料和韧性聚合物基体组成,与常用的热固性或热塑性聚合物基体复合材料相比,具有较大的变形范围,有较高的承载载荷能力和良好的疲劳性能。在现实使用中,柔性膜材常用于建筑,可使建筑造型更加多样化,新颖美观;也可用于特殊产品的包装,是当今流行的新型材料。

授权公告号为CN 203629449U的中国专利,公开了一种气凝胶防护板,包括气凝胶板与功能填料层,所述气凝胶板包覆所述功能填料层,所述功能填料层为多层的纤维制品。所述的气凝胶防护板密度低,导热系数小,保温性能优良,且具有减震吸能效果。但是该结构的防护板能解决气凝胶的掉粉问题,随着震动,防护板的防护及保温的能力将逐渐恶化。

授权公告号CN 204312942U的中国专利,公开了一种气凝胶隔热保温材料,其包括位于上层的第一铝膜反射层、位于下层的第二铝膜反射层以及分布于第一铝膜反射层和第二铝膜反射层之间的中间基础层,所述的中间基础层包含一个以上气凝胶填充的囊状物。该实用新型结构简单,保温隔热性能优良,但是该保温材料能实现普通的卷曲却不能实现复杂形状的贴覆,层间结合也容易老化。

考虑到气凝胶绝热材料多为复合板材,不适合复杂形体包覆,为了解决这一问题,我们结合柔性膜材和气凝胶各自的特点,开发了具有优异保温性能和机械性能的柔性保温膜。



技术实现要素:

本发明的目的在于提供一种适于异形物体包覆的高效保温膜材。

为实现本发明的目的,所采用的技术方案是:一种纳米SiO2气凝胶柔性保温膜,其特征在于:由纳米SiO2-PET复合气凝胶层,聚酰亚胺基层和镀铝膜反射层依次组成;该柔性保温膜的总厚度为0.1~1.1mm,其中,纳米SiO2-PET复合气凝胶层的厚度为0.001~0.01mm,聚酰亚胺基层的厚度为0.1~1mm,镀铝膜反射层的厚度为0.001~0.006mm,镀铝膜反射层是由真空蒸发镀铝直接在聚酰亚胺基层背面沉积。

所述的纳米SiO2-PET复合气凝胶层的厚度为0.001~0.01mm,层中纳米SiO2粒径平均尺寸为20~70nm,比表面积为900~1200m2/g,体积密度为23~38kg/m3,纳米SiO2粉末直接接触,粉末孔隙之间通过PET树脂固化粘接,SiO2/PET的体积比为1∶(1.0~2.3)。

该纳米SiO2气凝胶柔性保温膜的制备方法如下:

(1)以盐酸为催化剂,一甲基三乙氧基硅烷、二甲基二乙氧基硅烷为有机相前驱体,正硅酸乙酯为无机相前驱体,放入无水乙醇中,加入一定量蒸馏水,混合后搅拌均匀,得到SiO2湿凝胶;

(2)将上述SiO2湿凝胶放入烘箱中加温至180~220℃干燥,得到的SiO2气凝胶后碎化,筛选出粒径小于200nm的粉末;

(3)将聚酰亚胺薄膜浸入一定浓度的碳酸钠、碳酸氢钠和磷酸氢二钠配置的除油液中浸泡10~20min除油,再用蒸馏水冲洗干净,再放入一定浓度的氢氧化钠和丙三醇配置的粗化液中50~60min粗化,再用蒸馏水冲洗干净,干燥待用;

(4)将(3)中得到的粗化过的聚酰亚胺薄膜送入真空镀膜机中,使用98%的铝线材为蒸发源,对聚酰亚胺薄膜的反面进行镀膜,厚度控制在0.001~0.006mm;

(5)对(4)中得到的聚酰亚胺薄膜正面进行淋膜,淋膜第一层PET聚酯液,随后将(2)中得到的SiO2气凝胶粉末均匀涂撒于PET聚酯液上,粉末厚度为0.7μm~8.8μm,再经淋膜机对有SiO2气凝胶粉末的一面淋膜第二层PET聚酯液,使聚酯液渗入粉末间隙并在表面形成光滑薄膜,干燥后即成型为纳米SiO2-PET复合气凝胶层,控制该层的厚度为0.001~0.01mm。本发明所具有的有益效果是:①纳米SiO2气凝胶层中的纳米多孔结构可有效抑制热传导,绝热性能高效;②镀铝膜反射层能弥补气凝胶不能抑制辐射热传导的不足,使材料全方面实现保温绝热;③柔性膜最厚只有1.1mm左右,能适应多种复杂的几何形状;④淋膜工艺简单易操作,便于量产。

附图说明

图1是一种纳米SiO2气凝胶柔性保温膜的示意图。

图示中10为镀铝膜反射层,20为聚酰亚胺薄膜,30为纳米SiO2气凝胶层。

具体实施方式

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。

实施例

(1)以盐酸为催化剂,一甲基三乙氧基硅烷、二甲基二乙氧基硅烷为有机相前驱体,正硅酸乙酯为无机相前驱体,放入无水乙醇中,加入一定量蒸馏水,混合后搅拌均匀,得到SiO2湿凝胶;

(2)将上述SiO2湿凝胶放入烘箱中加温至200℃干燥,得到的SiO2气凝胶后碎化,筛选出粒径小于200nm的粉末;

(3)将厚度为0.6mm的聚酰亚胺薄膜浸入一定浓度的碳酸钠、碳酸氢钠和磷酸氢二钠配置的除油液中浸泡15min除油,再用蒸馏水冲洗干净,再放入一定浓度的氢氧化钠和丙三醇配置的粗化液中55min粗化,再用蒸馏水冲洗干净,干燥待用;

(4)将(3)中得到的粗化过的聚酰亚胺薄膜送入真空镀膜机中,使用98%的铝线材为蒸发源,对聚酰亚胺薄膜的反面进行镀膜,厚度控制在0.003mm;

(5)对(4)中得到的聚酰亚胺薄膜正面进行淋膜,淋膜第一层PET聚酯液,随后将(2)中得到的SiO2气凝胶粉末均匀涂撒于PET聚酯液上,粉末厚度为6μm,再经淋膜机对有SiO2气凝胶粉末的一面淋膜第二层PET聚酯液,使聚酯液渗入粉末间隙并在表面形成光滑薄膜,干燥后即成型为纳米SiO2-PET复合气凝胶层,控制该层的厚度为0.01mm。

该纳米SiO2气凝胶柔性保温膜总体厚度约为0.7mm,镀铝膜一侧可再覆压PE保护膜抑制铝膜的氧化腐蚀,整体热导率为0.035~0.042W/(m·K),占用空间极少,可用于建筑保温和特殊材料的包装,实现保温和美化包装双重功能。

上述仅为本发明的两个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1