被动NOX吸附剂的制作方法

文档序号:14011154阅读:253来源:国知局

本发明涉及一种被动nox吸附剂,和它在内燃机排气系统中的用途。

发明背景

内燃机产生含有多种污染物的废气,污染物包括氮氧化物(“nox”)、一氧化碳和未燃烧的烃。这些排放物是政府立法的目标。广泛使用排放控制系统来减少这些污染物排放到大气的量,并且一旦它们达到它们的操作温度(通常200℃和更高),这些系统通常获得非常高的效率。但是,这些系统在低于它们的操作温度(“冷起动”阶段)相对效率不足。

例如,实施来满足euro6b排放的当前基于尿素的选择性催化还原(scr)应用,要求在尿素可以注入和用来转化nox之前,尿素注入位置处的温度应高于约180℃。使用当前系统难以应对低于180℃的nox转化,而且未来的欧洲和美国法规将强调低温nox储存和转化。目前,这通过加热策略来实现,但是这对于co2排放具有不利影响。

随着甚至更严格的国家和地区法规降低可以从柴油或汽油发动机排出的污染物的量,减少冷起动阶段期间的排放正在变成主要挑战。所以,减少冷起动条件期间nox排出量的方法不断被开发出来。

例如,pct国际申请wo2008/047170公开了一种系统,其中来自贫燃废气的nox在低于200℃的温度被吸附,并随后在高于200℃被热解吸。教导了nox吸附剂由钯,和氧化铈或者含铈的混合氧化物或复合氧化物,和至少一种其他过渡金属组成。

美国申请公布2011/0005200教导了一种催化剂体系,其通过在贫nox阱的下游放置氨-选择性催化还原(“nh3-scr”)催化剂配制物,来同时去除氨和增强净nox转化。nh3-scr催化剂吸附贫nox阱中富脉冲期间生成的氨。储存的氨然后与从上游的贫nox阱排出的nox反应,这增大nox转化率,同时消耗储存的氨。

pct国际申请wo2004/076829公开了一种废气净化系统,其包含位于scr催化剂上游的nox储存催化剂。该nox储存催化剂包含至少一种碱金属、碱土金属或稀土金属,其用至少一种铂族金属(pt、pd、rh或ir)涂覆或活化。教导了特别优选的nox储存催化剂包含基于氧化铝的载体上的涂覆有铂的氧化铈,和另外地作为氧化催化剂的铂。ep1027919公开了一种nox吸附剂材料,其包含多孔载体材料如氧化铝、沸石、氧化锆、二氧化钛和/或氧化镧,和至少0.1wt%的贵金属(pt、pd和/或rh)。例示了氧化铝上负载的铂。美国申请公布2012/0308439a1教导了一种冷起动催化剂,其包含:(1)沸石催化剂,其包含贱金属、贵金属和沸石,和(2)负载型铂族金属催化剂,其包含一种或多种铂族金属和一种或多种无机氧化物载体。

美国申请公布2015/0158019公开了一种被动nox吸附剂(pna),其包含贵金属和小孔分子筛如菱沸石(cha)。尽管贵金属/沸石pna催化剂如pd/cha和pd/β表现出良好的nox储存性能,和与非沸石pna相比改进的耐硫性,但是nox释放的温度对于下游的scr部件而言过低,无法将全部nox转化成n2。

对于任何汽车系统和方法,期望的是在废气处理系统中获得仍然进一步的改进,特别是在冷起动条件下。已经发现一种新型被动nox吸附剂,其提供了对于内燃机废气的增强的净化。该新型被动nox吸附剂不仅提高nox释放温度,而且增大总nox储存容量。



技术实现要素:

本发明是一种被动nox吸附剂,其有效地在或低于低温吸附nox,并在高于该低温的温度释放吸附的nox。该被动nox吸附剂包含第一贵金属和具有ltl骨架的分子筛。本发明还包括包含该被动nox吸附剂的排气系统,和利用该被动nox吸附剂来处理内燃机废气的方法。

附图说明

图1显示了对于处于新鲜状态和经过水热老化的本发明的pna和对比pna,nox储存和释放相对于时间的曲线。

具体实施方式

本发明的被动nox吸附剂有效地在或低于低温吸附nox,并在高于该低温的温度释放吸附的nox。优选地,该低温是约250℃。该被动nox吸附剂包含第一贵金属和具有ltl骨架类型的分子筛。第一贵金属优选是钯、铂、铑、金、银、铱、钌、锇或其混合物;更优选是钯、铂、铑或其混合物。特别优选钯。

分子筛具有ltl骨架类型,可以是任何天然或合成的分子筛,包括沸石,优选包含铝、硅和/或杂原子(例如ga),并且具有ltl骨架。ltl分子筛典型地具有to4(t=si、al、ga)单元的三维排列,或者通过共享氧原子来结合的四面体,并且特征在于包含1-d12-环通道的通道体系。命名12-环是指构成环体系的四面体原子(例如si、al)或氧原子的数目。分子筛骨架典型地是阴离子的,其通过电荷补偿阳离子,典型地碱金属和碱土金属元素(例如na、k、mg、ca、sr和ba)、铵离子,以及质子来平衡。可以将其他金属(例如fe、ti)引入ltl分子筛的骨架中,来生成引入金属的分子筛。

优选地,ltl骨架分子筛是铝硅酸盐沸石、铝磷酸盐沸石、硅铝磷酸盐(sapo)沸石或者其他金属取代的铝硅酸盐或铝磷酸盐沸石。更优选地,ltl骨架分子筛是沸石l、linde型l、镓硅酸盐l、lz-212、ltl型sapo或锶碱沸石(perlialitezeolite)。

被动nox吸附剂可以通过任何已知手段来制备。例如,可以通过任何已知手段来将第一贵金属添加到ltl骨架分子筛,以形成被动nox吸附剂,添加方式不被认为是特别关键的。例如,可以通过浸渍、吸附、离子交换、初始润湿、沉淀、喷雾干燥等来将贵金属化合物(如硝酸钯)负载在分子筛上。替代地,可以在分子筛合成过程中添加贵金属。也可以将其他金属添加到被动nox吸附剂。

优选地,被动nox吸附剂进一步包含流通式基底或滤过式基底。流通式或滤过式基底是能够含有催化剂组分的基底。基底优选是陶瓷基底或金属基底。陶瓷基底可以由任何适合的难熔材料制成,例如氧化铝、二氧化硅、二氧化钛、氧化铈、氧化锆、氧化镁、沸石、氮化硅、碳化硅、硅酸锆、硅酸镁、铝硅酸盐、金属铝硅酸盐(如堇青石和锂辉石)或者其任意两种或更多种的混合物或混合氧化物。特别优选堇青石、铝硅酸镁和碳化硅。

金属基底可以由任何适合的金属制成,特别是耐热金属和金属合金如钛和不锈钢以及含有铁、镍、铬和/或铝以及其他痕量金属的铁素体合金。

流通式基底优选是具有蜂窝结构的流通式整料,具有轴向穿过该基底并从该基底的入口或出口贯穿延伸的许多小的、平行的薄壁通道。该基底的通道截面可以是任何形状,但优选是正方形、正弦曲线形、三角形、矩形、六边形、梯形、圆形或椭圆形。

滤过式基底优选是壁流式整料过滤器。壁流式过滤器的通道是交替阻塞的,其使得废气流从入口进入通道,然后流过通道壁,并从导向出口的不同通道离开该过滤器。所以,废气流中的颗粒被捕集在过滤器中。

可以通过任何已知手段来将被动nox吸附剂添加到流通式或滤过式基底。下面列出了使用载体涂覆程序来制备被动nox吸附剂的代表性方法。将理解的是,下面的方法可以根据本发明的不同实施方案而变化。

可以通过载体涂覆步骤来将预形成的被动nox吸附剂添加到流通式或滤过式基底。替代地,可以通过首先将未改性的分子筛载体涂覆到基底上来生成涂覆有分子筛的基底,而在流通式或滤过式基底上形成被动nox吸附剂。然后可以将贵金属添加到涂覆有分子筛的基底,这可以通过浸渍程序等来实现。

优选地,通过首先在适当溶剂中将被动nox吸附剂(或未改性的ltl骨架分子筛)的磨细颗粒制浆,来形成浆料,而进行载体涂覆程序。也可以将另外的组分如过渡金属氧化物、粘结剂、稳定剂或促进剂引入浆料中,作为水溶性或水分散性化合物的混合物。如果在浆料中使用未改性的ltl骨架分子筛,则可以将贵金属化合物(如硝酸钯)添加到浆料中,以在载体涂覆过程中形成贵金属/ltl骨架分子筛。

浆料优选含有10-70wt%的固体,更优选20-50wt%。在形成浆料之前,优选使被动nox吸附剂(或未改性的ltl骨架分子筛)颗粒经过粉碎处理(例如研磨),由此使固体颗粒的平均粒度小于直径20微米。

然后可以将流通式或滤过式基底一次或多次浸入到浆料中,或者可以将浆料涂覆在基底上,由此具有所需负载量的催化材料沉积在基底上。如果没有在载体涂覆流通式或滤过式基底之前或期间将第一贵金属引入到ltl骨架分子筛中,则典型地干燥和煅烧涂覆有分子筛的基底,然后可以通过任何已知手段来将第一贵金属添加到涂覆有分子筛的基底,已知手段包括浸渍、吸附或离子交换例如与贵金属化合物(如硝酸钯)离子交换。

被动nox吸附剂涂层可以覆盖基底的整个长度,或者替代地可以仅覆盖基底的整个长度的一部分,由此形成被动nox吸附剂涂层的仅入口区或出口区。优选地,基底的整个长度涂覆有被动nox吸附剂浆料,由此被动nox吸附剂的载体涂层覆盖基底的整个表面。

在流通式或滤过式基底已经用被动nox吸附剂涂覆,并且如果需要,用贵金属浸渍之后,优选地通过在升高的温度加热来干燥和然后煅烧经涂覆的基底,以形成涂覆有被动nox吸附剂的基底。优选地,煅烧在400-600℃进行约1-8小时。

在一个可选的实施方案中,流通式或滤过式基底包含被动nox吸附剂。在这种情况中,将被动nox吸附剂挤出以形成流通式或滤过式基底。被动nox吸附剂挤出的基底优选是蜂窝流通式整料。

挤出的分子筛基底和蜂窝体,和制造它们的方法,是本领域中已知的。参见例如美国专利5,492,883、5,565,394和5,633,217和美国专利re.34,804。典型地,将分子筛材料与永久粘结剂如硅树脂和临时粘结剂如甲基纤维素混合,并将混合物挤出以形成生坯蜂窝体,然后将该生坯蜂窝体煅烧和烧结,以形成最终的小孔分子筛流通式整料。在挤出之前,分子筛可以含有第一贵金属,由此通过挤出程序来生成被动nox吸附剂整料。替代地,可以将第一贵金属添加到预形成的分子筛整料,以生成被动nox吸附剂整料。

另外地,被动nox吸附剂可以进一步包含第二分子筛催化剂。第二分子筛催化剂包含第二贵金属和第二分子筛,其中第二分子筛不具有ltl骨架类型。在这个实施方案中,被动nox吸附剂可以包含一种或多种另外的分子筛催化剂(例如第二分子筛催化剂和/或第四分子筛催化剂),条件是该另外的分子筛与第一和第二分子筛不同。

第一贵金属和第二贵金属独立地选自铂、钯、铑、金、银、铱、钌、锇或其混合物;优选地,它们独立地选自钯、铂、铑或其混合物。更优选地,第一贵金属和第二贵金属均是钯。

第二分子筛优选是具有aco、aei、aen、afn、aft、afx、ana、apc、apd、att、cdo、cha、ddr、dft、eab、edi、epi、eri、gis、goo、ihw、ite、itw、lev、kfi、mer、mon、nsi、owe、pau、phi、rho、rth、sat、sav、sfw、siv、tho、tsc、uei、ufi、vni、yug和zon骨架类型的小孔分子筛,具有mfi、fer、mww或euo骨架类型的中孔分子筛,具有con、bea、fau、maz、mor、off或emt骨架类型的大孔分子筛,以及任意两种或更多种的混合物或共生体。更优选地,小孔分子筛是aei或cha,中孔分子筛是mfi,和大孔分子筛是bea。

含有第二分子筛催化剂的被动nox吸附剂可以通过本领域中公知的方法来制备。可以将贵金属/ltl骨架分子筛和第二分子筛催化剂物理混合,以生成被动nox吸附剂。优选地,被动nox吸附剂进一步包含流通式基底或滤过式基底。在一个实施方案中,将贵金属/ltl骨架分子筛和第二分子筛催化剂涂覆到流通式或滤过式基底上,优选地使用载体涂覆程序沉积到流通式或滤过式基底上,以生成被动nox吸附剂。

适合的流通式或滤过式基底,以及用贵金属/ltl骨架分子筛和第二分子筛催化剂来载体涂覆基底的程序,如上所述。将贵金属/ltl骨架分子筛和第二分子筛催化剂添加到流通式或滤过式基底上的顺序不被认为是关键的。所以,可以在第二分子筛催化剂之前将贵金属/ltl骨架分子筛载体涂覆到基底上,或者可以在贵金属/ltl骨架分子筛之前将第二分子筛催化剂载体涂覆到基底上,或者可以将贵金属/ltl骨架分子筛和第二分子筛催化剂同时载体涂覆到基底上。

在一个可选的实施方案中,流通式或滤过式基底包含贵金属/ltl骨架分子筛,第二分子筛催化剂,或者贵金属/ltl骨架分子筛和第二分子筛催化剂二者。在这种情况中,将贵金属/ltl骨架分子筛,第二分子筛催化剂,或者二者挤出,以形成流通式或滤过式基底。如果不包含在挤出的基底中,则将贵金属/ltl骨架分子筛或第二分子筛催化剂涂覆到挤出的流通式或滤过式基底上。挤出的基底优选是蜂窝流通式整料。

优选地,被动nox吸附剂包含含有贵金属/ltl骨架分子筛的第一层,和含有第二分子筛催化剂的第二层。典型地,第一层可以位于基底上,第二层位于第一层上。替代地,第二层可以位于基底上,第一层位于第二层上。

在一个单独的实施方案中,被动nox吸附剂包含含有贵金属/ltl骨架分子筛的第一区,和含有第二分子筛催化剂的第二区。第一区可以在第二区的上游,由此第一区在第二区之前接触废气,或者替代地,第二区可以在第一区的上游,由此第二区在第一区之前接触废气。优选地,第二区位于第一区的上游,由此废气先接触第二分子筛催化剂,后接触第一分子筛催化剂。两个区可以在同一催化剂部件(或催化剂砖)上,或者含有贵金属/ltl骨架分子筛的第一区可以位于相对于含有第二分子筛催化剂的第二区单独的砖(或催化剂部件)上。

本发明还包括包含被动nox吸附剂的内燃机排气系统。排气系统优选包含一个或多个另外的后处理装置,其能够在正常的操作温度从内燃机废气从除去污染物。优选地,排气系统包含被动nox吸附剂和一个或多个选自以下的其他催化剂部件:(1)选择性催化还原(scr)催化剂,(2)颗粒过滤器,(3)scr过滤器,(4)nox吸附剂催化剂,(5)三效催化剂,(6)氧化催化剂,或者其任意组合。被动nox吸附剂优选是相对于任何上述后处理装置单独的部件。替代地,可以将被动nox吸附剂作为部件引入任何上述后处理装置中。即,可以将被动nox吸附剂作为含有其他催化剂组分的基底上的区来引入,或者可以作为含有其他催化剂组分的基底上的层来引入。作为示例性实例,被动nox吸附剂可以是基底上的前部区,该基底还含有柴油氧化催化剂作为后部区(或者被动nox吸附剂可以是基底上的后部区,该基底还含有柴油氧化催化剂作为前部区);或者被动nox吸附剂可以是基底上的下层,该基底具有柴油氧化催化剂形成的该下层上面的上层,或者被动nox吸附剂可以是覆盖含有柴油氧化催化剂的下层的上层。

因此,本发明还包括一种催化剂,其包含基底、柴油氧化催化剂和被动nox吸附剂。被动nox吸附剂位于基底上的第一区或第一层上;柴油氧化催化剂位于基底上的第二区或第二层上。优选地,当基底含有被动nox吸附剂的第一区和柴油氧化催化剂的第二区时,第一区位于第二区的上游。替代地,第一区位于第二区的下游。当基底含有被动nox吸附剂的第一层和柴油氧化催化剂的第二层时,优选第一层位于基底上,第二层位于第一层上。替代地,第一层位于基底上,第一层位于第二层上。

这些后处理装置是本领域中公知的。选择性催化还原(scr)催化剂是通过与氮化合物(如氨或尿素)或烃(贫nox还原)反应来将nox还原为n2的催化剂。典型的scr催化剂包含氧化钒-二氧化钛催化剂,氧化钒-氧化钨-二氧化钛催化剂,或者金属/沸石催化剂如铁/β沸石、铜/β沸石、铜/ssz-13、铜/sapo-34、fe/zsm-5或铜/zsm-5。

颗粒过滤器是从内燃机废气中减少颗粒的装置。颗粒过滤器包括催化型颗粒过滤器和纯(非催化型)颗粒过滤器。催化型颗粒过滤器(用于柴油和汽油应用)包含金属和金属氧化物组分(如pt、pd、fe、mn、cu和氧化铈)来氧化烃和一氧化碳,并且破坏被该过滤器捕集的烟灰。

选择性催化还原过滤器(scrf)是合并了scr和颗粒过滤器的功能的单一基底装置。它们用来减少来自内燃机的nox和颗粒排放物。除了scr催化剂涂层之外,颗粒过滤器可以还包含其他金属和金属氧化物组分(如pt、pd、fe、mn、cu和氧化铈)来氧化烃和一氧化碳,并且破坏被该过滤器捕集的烟灰。

nox吸附剂催化剂(nac)经设计来在贫废气条件下吸附nox,在富条件下释放吸附的nox,和还原释放的nox以形成n2。nac典型地包含nox储存组分(例如ba、ca、sr、mg、k、na、li、cs、la、y、pr和nd),氧化组分(优选pt)和还原组分(优选rh)。这些组分包含在一个或多个载体上。

三效催化剂(twc)典型地用在化学计量条件下的汽油发动机中,从而在单一装置上将nox转化为n2,将一氧化碳转化为co2,和将烃转化为co2和h2o。

氧化催化剂,特别是柴油氧化催化剂(doc),是本领域中公知的。氧化催化剂经设计来将co氧化为co2,和将气相烃(hc)和柴油颗粒的有机部分(可溶性有机部分)氧化为co2和h2o。典型的氧化催化剂包含高表面积无机氧化物载体如氧化铝、二氧化硅-氧化铝和沸石上的铂还有任选地钯。

被动nox吸附剂优选是相对于任何上述后处理装置单独的部件。替代地,可以将被动nox吸附剂作为部件引入任何上述后处理装置中。例如,基底可以包含同一基底上的被动nox吸附剂的上游区和scr催化剂的下游区。

排气系统可以经配置,以使被动nox吸附剂的位置接近发动机,并且另外的后处理装置位于被动nox吸附剂的下游。所以,在正常的操作条件下,发动机废气首先流过被动nox吸附剂,然后接触后处理装置。替代地,排气系统可以含有阀或其他导气装置,由此在低温阶段期间(低于约150-220℃范围的温度,优选200℃,大致在后处理装置处测量),废气被引导来接触后处理装置,然后流至被动nox吸附剂。一旦后处理装置达到操作温度(约150-220℃,优选200℃,大致在后处理装置处测量),废气流则被引导来接触被动nox吸附剂,然后接触后处理装置。这确保被动nox吸附剂的温度在更长的时间内保持为低,由此改进被动nox吸附剂的效率,同时使后处理装置更迅速地达到操作温度。美国专利5,656,244,其教导在此通过参考引入,例如教导了用于在冷起动和正常操作条件期间控制废气流动的装置。

本发明还包括处理内燃机废气的方法。该方法包括在或低于低温的温度将nox吸附到被动nox吸附剂上,在高于该低温的温度从该被动nox吸附剂热解吸nox,和在该被动nox吸附剂下游的催化剂部件上催化除去解吸的nox。优选地,该低温是约250℃。

被动nox吸附剂下游的催化剂部件是scr催化剂、颗粒过滤器、scr过滤器、nox吸附剂催化剂、三效催化剂、氧化催化剂或其组合。

下面的实施例仅说明本发明。本领域技术人员将认识到本发明主旨和权利要求书范围内的许多变化。

实施例1:制备被动nox吸附剂(pna)

pna1a:1wt%pd/ltl

根据以下程序将钯添加到ltl沸石(晶体结构;二氧化硅与氧化铝之比(sar)为约6;nh4+交换的)以生成pna1a:使用可溶性钯化合物作为前体,通过沸石的湿浸渍来制备粉末催化剂。在105℃干燥之后,在500℃煅烧样品,以形成新鲜的催化剂,然后将该新鲜的催化剂的一部分在含有10%h2o的空气气氛中在750℃水热老化。pna1a的pd负载量是1wt%。

pna1b:3wt%pd/ltl

使用与pna1a相同的程序生成pna1b,除了将更高量的钯负载到ltl沸石上。pna1b的pd负载量是3wt%。

对比pna2a:1wt%pd/cha

使用与pna1a相同的程序生成对比pna2a,除了使用二氧化硅与氧化铝之比(sar)为25的小孔菱沸石(cha)来代替ltl。对比pna2a的pd负载量是1wt%。

对比pna2b:3wt%pd/cha

使用与pna1b相同的程序生成对比pna2b,除了使用二氧化硅与氧化铝之比(sar)为25的小孔菱沸石(cha)来代替ltl。对比pna2b的pd负载量是3wt%。

实施例2:nox储存容量测试程序

将催化剂(0.4g)在以300l×h-1×g-1的mhsv以2升/分钟流动的含no气体混合物中在约100℃的吸附温度保持5分钟。这个吸附阶段之后是在含no气体存在下升温速率17℃/分钟的程序升温解吸(tpd),直到床温达到约450℃,从而从催化剂清除全部储存的nox用于进一步的测试。

吸附和解吸二者过程中的含no气体混合物包含n2中的10vol%o2,60ppmno,5vol%co2,1500ppmco,130ppmc3h6和5vol%h2o。

按照每升催化剂储存的no2的量,参照含有约3g/in3的催化剂负载量的整料,来计算nox储存。结果示于表1中,对于新鲜的和老化的催化剂(如实施例1中所述在750℃水热老化)的nox吸取和释放曲线示于图1中。

表1的结果显示,本发明的pna(pna1a和pna1b)与对比pna相比,在新鲜的状态在整个测试期间储存更大量的nox,并且清楚地展示,与相应的pd/cha对比催化剂相比,对于pd/ltl,新鲜的和老化的均有更高的nox释放温度。尽管在起初的100℃储存期间,pd/cha样品的nox储存高于pd/ltl样品,但是在高于100℃的升温阶段期间,pd/ltl样品比对比pd/cha样品储存更多的nox,如图1中所示。图1还显示,在比对比pd/cha样品更高的温度热释放nox(约370℃对比约260℃),并且经过水热老化保持了nox释放特性。

表1:nox储存比较结果

1“穿透”定义为气流中的nox浓度升至高于初始入口值60ppm的温度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1