一种分子筛SCR催化剂制备方法及其制备的催化剂与流程

文档序号:16579665发布日期:2019-01-14 17:51阅读:366来源:国知局
一种分子筛SCR催化剂制备方法及其制备的催化剂与流程

本发明属于催化剂制备技术领域,尤其属于分子筛scr(selectivecatalyticreduction,选择性催化还原)催化剂制备技术领域,特别涉及一种用于柴油车尾气净化的高效分子筛scr催化剂制备及其制备得到的催化剂。



背景技术:

nox是一种重要的大气污染物,是形成光化学烟雾,雾霾的一种重要污染物。随着机动车保有量的快速增长,机动车尾气中nox受到国内外的广泛关注,对机动车尾气nox净化的技术也得到飞速发展。随着柴油车在汽车中所占的份额不断攀升,柴油车尾气nox净化技术已经成为世界性的热点研究课题。氨选择性催化还原技术(nh3-scr)是目前柴油车后处理中净化nox最为成熟的技术。其原理是:通过在scr催化转化器前端喷射一定比例的尿素溶液,尿素水解产生的氨气作为还原剂在催化剂表面与nox发生nh3-scr反应,生成n2和h2o。由于国vi阶段对pm和pn提出了更为严格的要求,所以国vi阶段柴油车尾气后处理系统中必须配置颗粒捕集器(dpf),scr催化剂通常置于dpf之后,dpf喷油主动再生时,scr催化剂承受的温度高达650℃,甚至在短时间内会达到750℃,此时传统v基催化剂会发生tio2晶相转化、vox挥发从而导致催化剂失活,因此在国vi阶段柴油车后处理系统中传统钒基催化剂已经无法应用,需要采用耐受温度更高的分子筛催化剂。

以廉价分子筛为载体的cu-fe复合分子筛催化剂具有优异的催化活性,但是在发生scr反应过程中会产生大量副产物n2o,这大大限制了其在柴油车尾气后处理催化剂中的应用。因此,使用成本低廉分子筛材料为载体,开发一种具有宽活性温度窗口和高水热稳定性,同时在发生scr反应中产生较少的n2o,对环境友好的scr催化剂是当前分子筛scr催化剂需要努力攻克的一个难点。

cn103127951a专利公开了一种分子筛催化剂的制备方法,以价格低廉的中孔/大孔分子筛为载体材料,以cu和fe为活性组分,该催化剂具有很宽的活性温度窗口,同时也表现出较优异的抗老化性能,但是,在实际应用中发现其发生nh3-scr反应过程中会产生大量的n2o,表现出较低的n2选择性。n2o是强温室效应气体,欧美等国家已对柴油车尾气中n2o的浓度实行严格限制,所以该技术方案在实际工业应用中受到一定的制约。



技术实现要素:

本发明根据现有技术的不足公开了一种用于柴油车尾气脱硝净化的具有低成本、宽活性温度窗口、n2o产生量低,同时水热稳定性优异的scr催化剂及其制备方法。本发明要解决的第一个问题是提供一种不采用贵金属,也没有采用vox,而是无毒的cu和fe作为活性组分,对人体无害的催化剂组成;本发明要解决的第二个问题是提供一种新的方法制备分子筛型scr催化剂,既能保持分子筛催化剂宽的活性温度窗口和高的水热稳定性,同时也能有效降低催化反应过程中n2o的生成量。

本发明通过以下技术方案实现:

一种分子筛scr催化剂制备方法,包括以下步骤:

一、分子筛混合:将几种分子筛先加去离子水调浆,再通过液态喷雾干燥进行均匀混合,并造粒;

二、分子筛改性:将可溶解性过渡金属和/或稀土金属盐溶于去离子水中,溶液的浓度为0.01~0.5mol/l,加热至70~90℃,在保持强烈搅拌的条件下加入一定量干燥分子筛粉末,在70~90℃的恒温反应釜中进行离子交换,交换时间为2~12h,之后进行过滤洗涤,干燥;

三、等体积浸渍负载活性组分fe:称取步骤二得到的分子筛粉末备用;先测试出其单位质量的饱和吸水量,计算得到分子筛总吸水量。将可溶解性铁盐溶于去离子水中,搅拌溶解,溶液总体积=分子筛总吸水量(体积)。加入备好的分子筛粉末,并在旋转蒸发仪上进行常温搅拌,之后水浴加热,持续搅拌,直至粉末完全干燥,置于马弗炉中空气气氛焙烧,焙烧条件为500℃恒温3h;

四、离子交换负载活性组分cu:准确称步骤三得到的分子筛粉末备用。将可溶解性铜或铁盐溶于去离子水中,溶液的浓度为0.01~0.6mol/l,加热至70~90℃,在保持强烈搅拌的条件下加入称量好的分子筛粉末,在70~90℃的恒温反应釜中进行离子交换,交换时间为2~12h,之后进行过滤洗涤,干燥;

五、焙烧制备催化剂粉料:将步骤四得到的分子筛粉末在空气气氛下进行焙烧处理,焙烧条件为500℃恒温3h;

六、调浆涂覆:将步骤五得到的粉料加入水和粘结剂,球磨制浆,涂覆在陶瓷载体或金属载体上,干燥焙烧,即得到柴油车分子筛scr催化剂。

所述步骤一中,所选用的分子筛是12元环结构的beta分子筛或硅铝盐沸石和8元环结构的cha分子筛。所述12元环结构的硅铝盐沸石,其si/al比范围为20-100。所述8元环结构的硅铝盐沸石和硅铝磷沸石,其si/al比范围为10-40。所述混合后得到的分子筛是beta分子筛或硅铝磷沸石中二种或多种的混合物,还可以是不同比例的beta和cha分子筛的混合物,其中beta分子筛与其他分子筛的质量比例为1~50:1。

所述步骤二中,改性用过渡和/或稀土金属是:cr、mn、fe、co、ce、ni、zn、sn、y、pr、zr、nd、w、la中的一种或几种。进一步所述改性所用过渡和稀土金属是:fe、ni、y、pr、zr、ce、nd、w、la中的一种或几种。本发明用于分子筛改性的过渡和稀土金属盐类选自其各自的硝酸盐溶液、醋酸盐溶液、氯化盐溶液或硫酸盐溶液。所选用的过渡金属盐浓度是0.01mol/l、0.1mol/l、0.2mol/l、0.4mol/l或0.5mol/l;

所述步骤三中,所选用的fe盐可以是feso4、fe(no3)3、fe(ch3coo)3或fecl3。旋转蒸发仪水浴加热搅拌时,所选用的加热温度可以是50℃、60℃、70℃或80℃。活性组分以fe3+计算,占分子筛总质量的1-10%;

所述步骤四中,所选用的铜盐为可溶性的cu(no3)2、cu(ch3oo)2、cuso4和cucl2,浓度是0.01mol/l、0.1mol/l、0.2mol/l、0.4mol/l或0.6mol/l。活性组分以cu2+计算,占分子筛总质量的0.5-4.5%;

所述分子筛通过离子交换改性步骤(2)和离子交换负载活性组分cu步骤(4)中,离子交换的次数可以1次,也可以是多次。

本发明采用混合分子筛作为载体,对分子筛载体先进行改性处理,再采用等体积浸渍法负载fe,继续采用离子交换法负载cu,制备出整体式柴油车尾气催化剂。通过该催化剂制备技术可以使用价格低廉的分子筛作为载体,在保持催化剂宽活性温度窗口和高水热稳定性的同时,在催化反应中产生更少量的n2o。

本发明有益性如下:

本发明所采用的分子筛是:首先将几种分子筛进行混合,再经过渡金属或稀土金属以离子交换改性处理,采用等体积浸渍负载fe,一次或多次液态离子交换负载cu。实验数据表明将几种分子筛进行混合后再进行改性处理,可以在一定程度上提高催化剂的抗老化性能,并且对分子筛催化剂的氧化性能具有一定的调控作用。

本发明在改性分子筛上先采用等体积浸渍负载fe,再采用液态离子交换负载cu,经过研究实验论证,该方法能够保障催化剂具有高的新鲜/老化催化活性的基础上,有效降低副产物n2o的生成,同时,通过改变cu/fe比例,还可以有效调节其新鲜和老化样品活性温度窗口。

本发明采用过渡和稀土金属改性稳定分子筛混合物的技术,采用等体积浸渍法负载fe,一次或多次液态离子交换负载cu等技术相结合,并通过稳定、有效的改性和负载控制,得到的催化材料经过调浆涂覆工序,涂覆在载体基体上制成整体式催化剂;经过新鲜样品活性测试和水热老化测试,该催化剂具有很宽的活性温度窗口,很好的抗水热老化能力,同时该方案制备的催化剂的n2o生成量较前期同类型的催化剂明显降低。通过该方案的实施能够有效解决同类催化剂净化柴油车尾气中有毒副产物n2o较高的难题,同时该催化剂还能够满足柴油车尾气催化剂对于宽活性温度窗口和高水热稳定性的需求,具有重要的现实意义。

附图说明

图1是nox转化效率对比图。图中,横坐标表示温度,纵坐标表示nox转化效率,单位%;

图2是不同催化剂在scr反应过程中的生成的副产物n2o的量。图中,横坐标表示温度,纵坐标表示副产物n2o的含量,单位ppm。

具体实施方式

下面通过实例对本发明进行具体的描述,本实施例只用于对本发明进行进一步的说明,但不能理解为对本发明保护范围的限制,本领域的技术人员根据上述本发明的内容作出的一些非本质的改进和调整也属于本发明保护的范围。

实施例1

一、载体分子筛原材料的制备。

取beta分子筛和ssz-13分子筛,二者的质量比为3:1,混合均匀后,加去离子水进行调浆,之后进行喷雾干燥,得到分子筛载体材料。

二、载体分子筛材料改性处理

配置1000ml硝酸镧溶液,溶液中la3+的浓度为0.5mol/l,加热至70℃,在保持强烈搅拌的情况下加入50g载体分子筛粉料,在70℃的恒温反应釜中进行离子交换,交换时间为10h。得到的浆液进行过滤,去离子水洗涤三次,所得分子筛泥块进行干燥处理,干燥温度105℃,空气气氛,干燥时间为24h,干燥后的分子筛泥块,进行捻细,过40目筛。得到的粉料记做la-zeolite。

三、等体积浸渍负载fe

检测步骤二得到的改性分子筛材料的比孔容,将步骤二得到的la-zeolite粉料置于旋转蒸发仪中,将可溶解性fe盐固体以fe3+来计算:fe3+占分子筛总质量的2%,根据比孔容和fe3+的负载比例配置成盐溶液,溶液的总体积=分子筛总质量﹡比孔容,溶液以喷雾的形式缓慢加入,并保持搅拌,喷完后继续搅拌3h,然后在70℃继续搅拌5h。取出粉料,置于105℃烘箱中干燥24h,再在550℃空气气氛中焙烧3h,得到暗红色粉末,记作fe/la-zeolite。

四、离子交换负载cu

配置500ml硝酸铜溶液,溶液中cu2+的浓度为0.6mol/l,加热至70℃,在保持强烈搅拌的情况下加入50g③所得的fe/la-zeolite,在70℃的恒温反应釜中进行离子交换,交换时间为4h。得到的浆液进行过滤,采用去离子水洗涤三次,再进行干燥处理,干燥温度105℃,空气气氛,干燥时间为24h,干燥后的分子筛泥块,进行捻细,过40目筛。重复离子交换cu操作3次。得到的分子筛粉料进行空气气氛下焙烧处理,焙烧曲线为:从室温→300℃(1hr)→500℃(3hr)自然降至室温,得到红色粉末。

将上述粉料制成固含量为质量百分比含量30%~35%的浆料。将浆料涂覆在孔目数400cell/in2,体积为38.4ml堇青石陶瓷载体上,放入电热鼓风干燥箱干燥后,再放入箱式电阻炉内,按照从室温→300℃(1hr)→500℃(3hr)焙烧后即得到scr催化剂。

比较例1

将市场上在售的分子筛催化剂进行切割,取规格与实施例1中规格相同的催化剂。所得样品记作b1。

比较例2

为了进行横向比较,验证本发明制备的催化剂与类似负载方法制备的催化剂的性能,按照cn103127951a专利的方法,采用等体积浸渍负载cu和fe的方法制备了类似组成的催化剂。取实施例1中的改性分子筛粉末la-zeolite,采用等体积浸渍法同时负载fe和cu,fe和cu分别占分子筛粉末总质量的2.5%,其他制备条件和催化剂涂覆等条件和实施例1相同。所得样品记作b2。

实施例1(s1)、比较例1(b1)和比较例2(b1)的nox转化效率对比如图1所示。b1为商用cu-cha分子筛催化剂,与b1相比,s1和b2均表现出更优的低温催化剂活性,在中温区域,三者没有明显差异。而在高温区域,s1和b1具有相似的高温活性,而b2的高温活性稍低于s1和b1。由此可知,本发明制备的催化剂在活性温度窗口与商用cu-cha相同,并且具有更高的低温活性。另外,本发明制备的催化剂的新鲜活性稍优于专利cn103127951a制备的催化剂。

实施例2

将beta分子筛和ssz-13分子筛进行均匀混合,二者的质量比为3:1,混合均匀后进行调浆、喷雾干燥,再采用浓度为0.2mol/l硝酸钇溶液进行改性处理,之后进行等体积浸渍负载fe和离子交换负载cu,除了分子筛改性所用的盐种类差异外,其他催化剂制备参数、条件和实施例1相同。所得样品记作s2。

对比s1、s2和b2催化剂在scr反应过程中的生成的副产物n2o的量如图2所示,与b2相比,采用本发明制备的催化剂在催化还原nox过程中产生的n2o的量降低了近50%,明显提高其n2选择性,由此可知,采用本发明的催化剂制备技术制备的催化剂的n2o生成量明显降低,具有重要的应用前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1