NOx-吸附器的脱硫方法

文档序号:5185332阅读:182来源:国知局
专利名称:NOx-吸附器的脱硫方法
技术领域
本发明涉及一种内燃机排气系统中的NOX-吸附器的脱硫方法。本发明进一步涉及能够实施该方法的NOX-吸附元件,及一种包括该NOX-吸附元件的NOX-吸附装置。
背景技术
减少贫废气中的NOX量是本领域公知的。研究了以下的催化途径NO分解催化剂、用氨选择性催化还原(SCR)、用烃选择性催化还原(DeNOX或贫NOX-催化剂)。
虽然起初是很有希望的,但已经证明NO的催化分解难以实现。该分解受到水的抑制,并对SO2中毒相当敏感,并且只在低空速下有效,并且该催化剂的活性及选择性不令人满意。如果将还原剂注入催化剂床上游的气体中,能够实现NOX-的选择性催化还原(SCR)。SCR工艺利用含氮还原剂如氨或尿素。SCR的缺点包括高的资金投入及高的操作成本、需要的空间大、产生氨的排放、及硫酸铵(危险废物)使设备结垢。
在用烃的选择性催化还原中(deNOX-催化剂),SCR体系中的尿素或氨被烃所代替。已开发的deNOX催化剂具有特定的缺点,主要涉及窄的温度范围、不足的耐热性和/或耐硫性。更重要的是,已有报道在常规测试周期中系统的NOX转化率为10-20%。目前看来deNOX催化剂在技术上不能够达到未来苛刻的排放目标。
为了克服在贫条件下deNOX催化剂的NOX转化率低的状态,加入所谓的NOX吸附化合物。当deNOX催化剂活性低时,在废气温度低的期间内,据信这些化合物可吸附NOX,而在能够有利于与烃进行选择性反应的温度下使其释放。
上述加入NOX吸附化合物的思想和与三元催化剂结合的结果是NOX吸附器。NOX吸附器/催化剂的概念已经基于酸-碱修补基面涂层(washcoat)化学而被开发,该NOX吸附器/催化剂亦称为NOX捕集器。NOX吸附器是一种材料,其在贫燃烧条件下(低空气/燃料比)贮存NOX,而在富燃烧条件下释放并催化还原所贮存的NOX。在相对宽的温度范围内,NOX吸附器能够达到90%的NOX还原效率。
该催化剂修补基面涂层含有三种活性成分(1)氧化催化剂,如Pt(2)NOX吸附剂,如BaO(3)还原催化剂,如Rh。
该系统经过两步操作循环,包括(1)在贫燃烧操作中,将NOX贮存(化学吸附)在催化剂修补基面涂层中(2)在富燃烧操作期间,经过NOX脱附及非选择性催化还原使捕集器再生。
该两步操作即贮存和再生主要包括以下3步(1)从内燃机中排放的NOX通常由90-95%一氧化氮NO组成。通过适当的氧化催化剂如Pt,NO尽可能多地被氧化成NO2。
(2)通过吸附化合物如BaO,以无机硝酸盐的形式吸附所得到的NO2及剩余的NO。例如,当使用BaO时,NO和NO2被吸附或所谓的被“捕集”产生Ba(NO3)2。由于NOX-吸附化合物对NO2吸附最佳,因此尽可能多地提供NO2。
(3)NOX吸附器的再生的反应机理事实上与汽油三元催化剂中的一致。还原剂可假定为一氧化碳或烃在无氧条件下与NOX反应形成元素氮。因此定期的“富”条件即大量的空气与燃料混合物是必需的。总之,这种含有附加的HC的废气富化可通过两种方法来实现(1)将烃,优选内燃机燃料,注入催化剂上游的排放系统中或(2)后缸(Late-in-cylinder)注入常规钢瓶燃料(或仅较后延时注入传统的燃料系统中)。
为了达到所捕集的含氮化合物的脱附,废气的富化是必需的。
一个严重的问题是在内燃机燃料及发动机润滑油中存在硫及含硫化合物。由于燃烧,这些含硫化合物基本上被燃烧成为SO2。在氧化催化剂存在时,这些化合物被氧化成SO3,并与NOX吸附化合物形成稳定的硫酸盐。硫化合物的吸附优先于NOX的吸附。源自于已知NOX贮存材料的硫酸盐比对应的硝酸盐更加热稳定。在吸附操作包括吸附NOX再生循环期间的条件下它们不分解。达不到所需的温度。结果,由于可用于NOX吸附的位点较少,而使吸附器/催化剂的性能逐渐下降。含硫化合物停留在NOX吸附器上。燃料中硫的含量越高,导致失活越快越严重。
即使硫含量小于10ppm,最终仍导致NOX吸附器中毒,更不必说来自发动机润滑油的硫了。含硫量超低的燃料对于实施该技术是必需条件,但即使这种燃料是可得到的,NOx吸附器仍可能需要某种形式的脱硫操作。
发明概述本发明涉及一种燃烧系统中NOX-吸附器的脱硫方法,包括步骤·提供一种导电基质,其中包括金属纤维、氧化催化剂、还原催化剂和NOX-吸附化合物;·通过使来自内燃机排气系统的废气经过导电基质来执行加载步骤,至少部分氧化含硫化合物,并且使至少部分氧化的含硫化合物作为被吸附的含硫化合物吸附在NOX-吸附化合物上;·通过向导电基质提供电流使导电基质的温度升至高于被吸附的含硫化合物的分解温度来执行脱硫步骤。
燃烧系统是指燃烧燃料如柴油的系统,如固定或整合在汽车、卡车、船只或其它运输工具中的内燃机。
该导电基质包括金属纤维、氧化催化剂、还原催化剂和NOX-吸附化合物,在下文中被称为“NOX-吸附器”。
在加载步骤中,含硫化合物被氧化并被吸附。通常,被吸附的含硫化合物是硫酸盐。在该步骤执行期间,来自燃烧反应的NOX也被基本氧化成NO2,该NO2以及可能剩余的NOX以无机硝酸盐的形式被NOX-吸附化合物所吸附。
在定期进行的脱硫步骤中,被吸附的含硫化合物通常为硫酸盐将变得不稳定,并分解为SO3和NOX-吸附化合物。这些NOX-吸附化合物可再现它们吸附NOX或含硫化合物的功能,该含硫化合物通常为SO3。作为本发明的主题,通过向导电基质提供电流,因焦耳效应而使该导电基质被加热,从而达到温度升高。
通过向导电基质提供电流,使该基质的温度升至高于被吸附的含硫化合物的分解温度。一个优点是温度可能被升至高于700℃,从而分解捕集在NOX-吸附器上的含硫组分,且与燃烧过程无关。因此当该基质被加热至高于含硫组分的分解温度时,NOX-吸附器的“硫-中毒”被限制或被逆转。通过利用包含作为本发明主题的NOX-吸附器的方法能够使用含硫更多的燃料。
当废气经过该基质(以下称之为“在线”)或当废气被阻止经过该导电基质时(以下称之为“离线”)时,可以进行本方法的脱硫步骤。后一离线状态是优选的。该脱硫步骤优选在NOX-吸附器的容量或效率变得太小时进行。
当执行脱硫步骤时,也进行含氮化合物的脱附及还原步骤,称之为“脱附及还原步骤”。
为了释放NOX-吸附器上的含氮化合物,在不进行NOX-吸附器脱硫的情况下,可以定期进行附加的脱附和还原步骤,其中所述含氮化合物通常是硝酸盐。将被吸附的硝酸盐脱附并还原成N2的步骤可以在在线或离线时进行。含氮化合物的脱附及还原步骤定期进行,优选在NOX-吸附器接近其饱和点时进行。
考虑燃烧条件,或基于适当的测量如导电基质下游的测量,执行加载步骤、脱硫步骤或含氮化合物的脱附及还原步骤的时间及频率是可以预设或计算的。此外,考虑NOX-吸附器的载硫量,导电基质的电加热时间也是可以预设或计算的。为了使NOX转化率最大化,在设计NOX-吸附器时,贮存容量及再生频率必须被优化。钡吸附器在新鲜状态下其容量通常为2g NOX/升催化剂体积。根据发动机排放、催化剂尺寸和条件及所希望的NOX-还原,每30-120秒必须实施再生。NOX-吸附器再生的持续时间短,在1秒至数秒之间,如5秒。
可以通过合适的电动控制向NOX-吸附器提供烃和/或CO来进行脱附及还原步骤。脱附及还原步骤可以通过柴油燃烧在富燃烧环境下进行来引发。该富燃烧环境为吸附的含氮化合物的还原提供了必需的烃和/或CO,并且使废气的温度及含氮化合物的温度升至高于吸附在NOX-吸附器上的含氮化合物的脱附温度。向燃烧反应提供更多的柴油。可能的话,向NOX-吸附器的导电基质提供电流以提高NOX-吸附器的温度,从而有助于含氮化合物的脱附。由于温度没有高至释放含硫化合物所需的温度,因此需要较少的电流。
可选择地,CO和烃可以通过部分燃烧被设置在NOX-吸附器上游的烟灰捕集器所捕集的烟灰来提供。
优选地,可电再生的金属纤维烟灰过滤器,作为燃烧系统的一部分被安装在NOX-吸附器的上游。最优选地,该可电再生的金属纤维烟灰过滤器被安装在接近NOX-吸附器的导电基质的位置,如可电再生的金属纤维烟灰过滤器和导电基质面对面。在加载步骤中,在一定时间段后,对可电再生的金属纤维烟灰过滤器加载烟灰。在可电再生的金属纤维烟灰过滤器的再生期间,向该可电再生的金属纤维烟灰过滤器提供电流,由于焦耳效应,该过滤器被加热至高于烟灰的燃点。通过烟灰的燃烧,可得到烃和CO,并且SOF被蒸发。
在吸附在NOX-吸附器下游的被分解的含氮化合物的还原反应中,烃、CO和SOF被用作还原剂,生成N2。由于烟灰的点燃和燃烧,与可电再生的金属纤维烟灰过滤器直接相邻的NOX-吸附器通过加热的废气经过导电基质或通过可电再生的金属纤维烟灰过滤器的辐射被加热至一定程度。
可能地,导电基质可以另外被加热,如果需要,利用在吸附的含氮化合物的脱附及还原期间经过该基质的电流。由于温度没有高至释放含硫化合物所需的温度,因此需要较少的电流。
在执行NOX-吸附器的脱附比再生可电再生的金属纤维烟灰过滤器更频繁的情况下,利用富燃烧环境下的燃烧,可以进行附加的脱附和还原步骤。
利用适当的电子设备和组件如集成电路与导电基质相连、及可能地与可电再生的金属纤维烟灰过滤器相连,或与燃烧系统的其它元件相连,很容易实现对该方法中这些步骤如含氮化合物的脱附及还原、脱硫步骤及可能的烟灰过滤器的再生步骤的自动控制(如步骤的持续时间及频率,以及是否果需要附加的电动控制)。
作为本发明的主题,NOX-吸附器包括氧化催化剂,如Pt或Pd。该NOX-吸附器进一步包括还原催化剂,如Rh。该NOX-吸附器还包括NOX-吸附化合物,该化合物包括碱土金属如Mg、Ca、Sr或Ba,碱金属如Li、Na、K或Cs或稀土金属如Y、La或其它镧系元素。这些NOX-吸附化合物优选以盐如氧化物的形式存在。优选使用BaO。
这3种材料,以下称之为“活性元素”,可以沿基质的深度均匀地分布,废气流经该基质。可选择地,每种活性元素位于该基质优选的深度上。利用目前已知的涂覆技术如CVD-技术、溶胶-凝胶技术或通过利用修补基面涂层,可以将它们附在基质上。利用沉淀和共沉淀技术如修补基面涂层,能够将催化剂载体和活性元素附于该基质上。通过连续的或非连续的浸渍过程,以含水淤浆的形式涂覆修补基面涂层,也可以利用喷涂过程来涂覆修补基面涂层。也可以利用溶胶-凝胶制备过程将催化剂载体和活性元素附于该基质上。如果上述技术只用于将载体附于该基质上,则可以利用CVD技术或其它已知的涂覆技术向该基质/载体提供活性元素。
在应用上述技术前,可以应用一些金属织物(fleece)表面处理技术,并且然后可以进行一些热处理。
该导电基质优选包括金属纤维。根据所需的基质性质,这些金属纤维在合金、长度及直径方面可能不同。优选地,该基质由金属纤维织物组成。烧结的金属纤维织物是最优选的。可以改变重量、可透气性、厚度、表面电阻、表面密度和/或开孔率以提供所需的基质性质。该导电基质可进一步包括其它耐热材料和纤维如陶瓷纤维。
本发明进一步涉及能够实施本发明主题方法的NOX-吸附元件。
作为本发明主题的NOX-吸附元件包括导电基质,该导电基质包括金属纤维。在本发明范围内,金属纤维被理解为各种金属纤维,优选不锈钢纤维。根据金属纤维所能耐受的温度范围,可以选择金属合金或钢。300-或400系列AlSl合金不锈钢纤维或合金如Inconel是优选的。在脱附和还原步骤中需要耐受高温(如大于700℃)的情况下,包括Fe、Al和Cr的合金是优选的,如Fecralloy。所述纤维可以通过目前已知的任何生产方法得到,如成束拉伸或刨削。所用的纤维的当量直径为1-100μm,优选2-50μm,如12-3μm,如12、17和22μm。根据所用的合金,使用适当的烧结条件烧结的金属纤维织物是优选的。优选地,该金属纤维是通过成束拉伸或成匝(coil)刨削得到的。后者在WO97/04152中有详细描述。
当量直径被理解为假定的圆纤维的径向切口的直径,假定的圆纤维具有与所考虑的纤维的径向切口相等的表面积。
该基质包括或优选完全由金属纤维组成。100%金属纤维织物是优选的,并且可能被烧结。该导电基质可进一步包括耐热材料如陶瓷颗粒或耐热材料如陶瓷纤维。电阻可以沿着该基质的表面变化,虽然优选该电阻在该基质表面上是一致的,并且与方向无关。
在可电再生的金属纤维烟灰过滤器被安装在NOX-吸附器上游的情况下,该可电再生的金属纤维烟灰过滤器优选包括或完全由金属纤维组成。100%金属纤维织物是优选的,并且可能被烧结。该可电再生的金属纤维烟灰过滤器可进一步包括耐热材料如陶瓷颗粒或耐热材料如陶瓷纤维。电阻可以沿着该可电再生的金属纤维烟灰过滤器的表面变化,虽然优选该电阻在该可电再生的金属纤维烟灰过滤器的表面上是一致的,并且与方向无关。
用于可电再生的金属纤维烟灰过滤器的金属纤维与NOX-吸附器的导电基质所用的金属纤维的类型可以相同或不同。该导电基质的重量、透气性、厚度、表面电阻、表面密度和/或开孔率可以是变化的,从而提供所需的基质性质。
为了能够向导电基质供应电流,导电基质被赋予至少两个接触体,经它们使导电基质通过电线与电源系统如电池和/或集成电路相连,定期接通电流以执行NOX-吸附器的含硫化合物的分解步骤。
该接触体按适当的方式将电流分布在导电基质上。优选地,这些接触体是金属箔片如Ni-箔片或金属织网,优选被烧结在该导电基质的两端。可选择地,该接触体被热喷涂至导电基质上。电线通过焊接(如点焊)、热喷涂、烧结或通过螺栓和螺母与接触体相连。
如果可电再生的金属纤维烟灰过滤器安装在导电基质的上游,则可以向其提供同样的或类似的接触体。
NOX-吸附元件进一步包括固定装置,其保持导电基质定位。优选地,该导电基质与固定装置电绝缘,或固定装置本身为绝缘材料。可能地,如果存在可电再生的金属纤维烟灰过滤器,该可电再生的金属纤维烟灰过滤器可以通过与固定导电基质相同的固定装置来固定。
为了向燃烧系统提供足够的导电基质,可将许多NOX-吸附元件组装成NOX-吸附装置。NOX-吸附元件单独或成组被置于外罩内。可能地,可电再生的金属纤维烟灰过滤器或过滤器组被置于同一外罩内。可能地,可电再生的金属纤维烟灰过滤器或过滤器组靠近导电基质或基质组设置,并通过相同的固定装置固定。
在含氮化合物的脱附及还原步骤和/或脱硫步骤在离线下进行时,NOX-吸附装置进一步包括适当的阀系统,该阀系统在执行不同的步骤时关闭NOX-吸附元件或元件组。该阀系统可以通过与控制NOX-吸附元件电流供给的集成电路相同的集成电路来控制。
使用适当的电子设备和组件如与导电基质、阀系统及可能地与可电再生的金属纤维烟灰过滤器或控制NOX-吸附装置中的工艺参数(如压力、温度、NOX-浓度……)的测量装置相连的集成电路,可以容易地实现该NOX-吸附装置的自动控制,该NOX-吸附装置可能与可电再生的金属纤维烟灰过滤器组合成一体。
然后该NOX-吸附装置成为本发明主题的燃烧系统的一部分,该燃烧系统进一步包括燃烧装置和排气系统,NOX-吸附装置及其中的NOX-吸附元件作为所述排气系统的部件。
附图的简要说明现在参照附图对本发明作详细描述-

图1和图2为作为本发明主题的NOX-吸附元件详图。
-图3是作为本发明主题的NOX-吸附元件的截面图。
-图4和图5给出了作为本发明主题的NOX-吸附元件的接触体。
-图6给出了作为本发明主题的NOX-吸附元件的另一种横截面形式。
-图7是NOX-吸附元件的示意图,另外包括可电再生的金属纤维烟灰过滤器;-图8为作为本发明主题的NOX-吸附装置的示意图。
本发明的优选实施方案的说明优选的作为本发明主题的NOX-吸附元件如图1、图2及图3所示。
多个NOX-吸附元件11一个接一个地堆置。它们均具有类似环的形状。有孔的金属管12被置于NOX-吸附元件的内部开口13内。在每一个NOX-吸附元件间放置盘状SiO2毛毡材料14以使不同的NOX-吸附元件相互之间绝热。在NOX-吸附装置的两端,对着上面和下面的NOX-吸附元件利用螺钉16固定金属板15,如图1所示,螺钉16将该金属板推向NOX-吸附元件。在板15和上面或下面的NOX-吸附元件之间,放置了另一盘状SiO2毛毡材料14。在板15和螺钉16间引入弹簧以吸收NOX-吸附元件11组的热膨胀。
当该NOX-吸附装置被使用时,优选使废气从NOX-吸附元件的外侧流入(以箭头17示出),经过导电基质18,经过金属管12的孔,流向燃烧系统的其它元件,如箭头19所示。可选择地,气体可以沿另一方向流动,为“内-外”流动。
考虑到本实施方案的每个NOX-吸附元件,用金属纤维织物作为导电基质18。含NOX的气体经流入侧20流入,经过金属纤维织物、经金属纤维织物的流出侧21流向其它的燃烧系统。该金属纤维织物通过两个接触体22和23与电路24相连,电路24向该金属纤维织物提供电流以加热导电基质。该金属纤维织物优选进行皱褶,其皱褶方式使由褶25产生的热辐射热辐射至相邻的褶,如箭头26所示。在执行本发明方法的脱附及还原步骤过程中,利用该辐射热来提高导电基质的温度,能够大大节约电力。
可以用包括三层不锈钢纤维的烧结金属纤维织物作为导电基质。第一层包括当量直径为17μm的600g/m2的Fecralloy纤维。第二层Fecralloy纤维被施于第一层的顶部。该层包括当量直径为22μm的250g/m2的纤维。第三层Fecralloy纤维被施于第二层的顶部,其纤维的当量直径为35μm。该第三层包括600g/m2的纤维。
提供氧化催化剂Pt和还原催化剂Rh。优选用BaO作为NOX-吸附化合物。
NOX-吸附元件的优选实施方案的设置如图2所示。固定装置即NOX-吸附元件的侧面28包括金属肋29,丝网30被点焊在该金属肋的一些点31上。在该侧面的绝缘及绝热边33上喷涂一薄层陶瓷材料32。相当厚的陶瓷粘合层34被施于该网及绝缘及绝热边33上,在该金属纤维织物18加载氧化催化剂、还原催化剂和NOX-吸附剂之前,将其粘结在陶瓷粘合剂34上,该陶瓷粘合剂占短金属纤维重量的10%以上。加入该短金属纤维能够提高该陶瓷粘合剂的延展性及热稳定性,该短金属纤维的当量直径为1-150μm、长度与直径(L/D)比大于5。
为了提高对因不同元件通过螺钉16在彼此顶部固定而引起的机械张力的耐受力,可以将数个栓钉35焊在每个NOX-吸附元件的上肋或下肋。
现在转向如图4和图5所示的优选实施方案的接触体22和23,将薄Ni-片36烧结在金属纤维织物末端。两个接触体被放在一起并通过两个螺栓38和39固定至绝缘板37如云母板上。为了避免接触体22及螺栓38之间、及接触体23和螺栓39之间的电接触,在绝缘板37和接触体22和23间插入两个云母片。
可选择的设置如图5所示。使用与图4相同的设置,但接触体22按此方式成型,使在螺栓38的后面不存在该接触体22的材料,并将接触体23固定至绝缘板37上。同样地,接触体23按此方式成型,使在螺栓39的后面不存在该接触体23的材料,并将接触体22固定至绝缘板37上。使用此接触体,可避免使用两个云母板40,从而简化了NOX-吸附元件的构造。接触体与电源或集成电路的电连接,可以通过与如所用的螺栓或螺母相连的电线来实现。
可选择的沿BB’的剖面如图6所示。在该实施方案中多孔管具有椭圆形的截面。此外,金属纤维织物沿皱褶线被皱褶,在本发明的所吸附的含硫化合物脱硫步骤的升温期间,其能从一个皱褶辐射至另一皱褶。
当使用图1的NOX-吸附元件时,将含NOX和含S的废气供给NOX-吸附元件。氧化催化剂氧化NOX,氧化产物被NOX-吸附器捕集或吸附,形成含氮化合物。
在优选实施方案中,用Pt作为氧化催化剂。NOX-被最大程度氧化为NO2。然后NO2及剩余的NOX作为含氮化合物被NOX-吸附化合物吸附。优选的NOX-吸附化合物是BaO,因此得到Ba(NO3)2。
在含氮化合物的脱附期间,这些化合物变得不稳定,并以NO2和可能的NOX再次释放。这一点可以通过在富燃烧环境下短时运行燃烧过程来获得。然后向NOX-吸附器提供烃和CO。可能地,可以向导电基质供应一些电流以由焦耳效应来升高其温度(如高于200℃)。这有助于进行脱附和还原步骤。
所吸附的这些含氮化合物,通常是NO和NO2,通过还原催化剂并利用烃和/或CO作为还原剂被还原成N2,其中还原催化剂优选是Rh。
废气还包括一些含硫物质,当废气经过导电基质时,这些物质至少部分被氧化催化剂氧化成氧化的含硫化合物,通常为SO3。然后该氧化的含硫化合物至少部分被NOX-吸附化合物所吸附作为被吸附的含硫组分,其通常是硫酸盐。
当使用BaO时,产生BaSO4。在脱硫期间,导电基质的温度优选升至700℃以上。吸附在所谓硫中毒的NOX-吸附器上的含硫化合物变得不稳定,并通常被分解为SO3。NOX吸附器的脱硫所需的温度为500-700℃。如钡基NOX-吸附器的脱硫至少在650℃下达到。
在使用BaO时,SO3作为BaSO4被吸附。优选温度升至700℃以上以再次释放SO3。由于该基质是导电的,可以向该基质提供电流由焦耳效应来加热该基质,从而来实现这一点。
对于本领域技术人员来说,很清楚的是作为本发明的主题的NOX-吸附装置包括适当的阀系统,从而在含氮组分的脱附和还原期间和/或所吸附的含硫化合物的分解期间并且在有一个步骤是在离线下进行的情况下,来关闭一个或多个NOX-吸附元件。
图7给出了本发明的NOX-吸附元件的优选方案,包括NOX-吸附器和可电再生的金属纤维烟灰过滤器。NOX-吸附元件具有类似环状的结构。图7给出了NOX-吸附元件的垂直于其轴71方向的截面。
提供可电再生的金属纤维烟灰过滤器72,其为烧结的金属纤维织物,基本上为矩形。该矩形沿平行于该矩形的一对边皱褶,以此形成波浪形的另一对边。将平行于皱褶线的两边在每条边处捏在一起,提供接触体73和74。
提供导电基质75,其为烧结的金属纤维织物,具有与可电再生的金属纤维烟灰过滤器72基本一致的形状。将该导电基质75皱褶成与可电再生的金属纤维烟灰过滤器72基本一致的形状。该导电基质75被置于可电再生的金属纤维烟灰过滤器72的下游。在导电基质的两边可以提供两个接触体76和77。
该金属纤维织物优选按这样的方式皱褶,以使由皱褶78产生的热辐射热辐射至相邻的皱褶,如箭头79所示。在实施本发明的方法的再生、分别脱硫和/或释放和还原步骤期间,利用该辐射热来提高可电再生的金属纤维烟灰过滤器和导电基质的温度,大大节约电力。由于可电再生的金属纤维烟灰过滤器72的位置靠近导电基质75,热能可以从可电再生的金属纤维烟灰过滤器72辐射至导电基质75,因此在过滤器的再生期间,部分地提高了导电基质的温度。
对于导电基质,可以使用包含三层不锈钢纤维的烧结的金属纤维织物。第一层包括当量直径为17μm的600g/m2的Fecralloy纤维。第二层Fecralloy纤维被施于第一层的顶部。该层包括当量直径为22μm的250g/m2的纤维。第三层Fecralloy纤维被施于第二层的顶部,其当量直径为35μm。该第三层包括600g/m2纤维。
提供氧化催化剂Pt和还原催化剂Rh。优选用BaO作为NOX-吸附化合物。
将第二种金属纤维织物用作可电再生的金属纤维烟灰过滤器,其在废气流经导电基质前捕集烟灰颗粒和SOF。被该金属纤维织物保留的烟灰和SOF将被释放,如考虑SOF时进行蒸发,或考虑烟灰时进行燃烧,并向作为可电再生的金属纤维烟灰过滤器的该金属纤维织物的下游的部分燃烧系统提供烃和CO。
优选使用包含三层不锈钢纤维的烧结的金属纤维织物。第一层包括当量直径为17μm的600g/m2的Fecralloy纤维。第二层Fecralloy纤维被施于第一层的顶部。该层包括当量直径为22μm的250g/m2的纤维。第三层Fecralloy纤维被施于第二层的顶部,其纤维的当量直径为35μm。该第三层包括600g/m2的纤维。
使用孔隙率为85%的不锈钢细纤维,能够获得91%的烟灰截留率。
对烟灰进行所谓的深度过滤。这可以理解为烟灰颗粒被沿过滤器的整个深度捕集。SOF以其液相存在于烟灰颗粒上。
用于向可电再生的金属纤维烟灰过滤器72和导电基质75提供电流的接触体73、74、76和77与图3中所示的接触体22和23相同。
接触体73、74、76和77与电源和/或适当的集成电路70相连。
可电再生的金属纤维烟灰过滤器72和导电基质75按图2所示类似的方式结合在NOX-吸附元件中。
当使用该NOX-转化装置时,优选地废气从NOX-吸附元件的外侧流入,经过可电再生的金属纤维烟灰过滤器72,经过导电基质75,流出NOX-吸附元件。
在加载步骤中,烟灰和SOF由可电再生的金属纤维烟灰过滤器72截留。然后向导电基质75提供仍载有NOX的废气。氧化催化剂氧化NOX并且氧化产物被NOX-吸附器所捕集或吸附,形成含氮化合物,通常为氮氧化物。含硫化合物也被吸附。
在优选实施方案中,用Pt作为氧化催化剂。NOX被最大程度氧化为NO2。然后NO2和剩余的NOX被NOX-吸附化合中物作为含氮化合物吸附。优选地NOX-吸附化合物是BaO,由此得到Ba(NO3)2。
在规定的时间后,优选防止废气流经可电再生的金属纤维烟灰过滤器72和导电基质75。通过电线和接触体76和77向该可电再生的金属纤维烟灰过滤器提供电流。可电再生的金属纤维烟灰过滤器72被加热到至多1000℃,但优选为500-600℃。被可电再生的金属纤维烟灰过滤器72截留的烟灰和SOF被燃烧或蒸发,产生CO2、CO和烃化合物。
由于可电再生的金属纤维烟灰过滤器72的温度升高,导电基质75也被加热至高于250℃的温度。含氮化合物变得不稳定,并以NO2和可能的NOX被再次释放。由该可电再生的过滤器辐射的热能在再生时被利用。当再生期间由该可电再生的金属纤维烟灰过滤器72辐射不能达到此温度的情况下,可以向导电基质75提供附加的电流。
这些释放的产物被还原催化剂还原产生N2,该还原催化剂优选是Rh,同时因烟灰的不完全燃烧而导致所存在的CO和烃被氧化。
在导电基质75包含大量含硫物质(如由于富硫柴油的燃烧)的情况下,优选定期将基质的温度升至700℃以上。吸附在NOX-吸附器上的所得到的含硫化合物通常是硫酸盐也变得不稳定,并以SO3释放。为了在导电基质75上达到此温度,向导电基质75提供电流。在使用BaO的情况下,SO3以BaSO4被吸附。温度升至700℃以上以再次释放SO3。当基质导电时,通过向该基质提供电流由于焦耳效应来加热该基质,可以实现这一点。
优选地脱硫步骤与可电再生的金属纤维烟灰过滤器72的再生同时进行。
NOX-吸附装置88示于图8中。如图所示,数个NOX-吸附元件80堆置成组件87,它们依次置于外罩86内。
所有NOX-吸附元件80均具有类似环的形状。多孔金属管81被置于NOX-吸附元件的内部开口82内。在每个NOX-吸附元件之间,放置盘状SiO2毛毡材料83以使不同的NOX-吸附元件相互间绝热。
数个组件被置于NOX-吸附装置88中。安装了包括一个或多个阀85的阀系统84,其能够定期关闭一个或多个组件,而其它组件保持在线。在此关闭期间,一个或数个NOX-吸附元件执行脱附和还原步骤、脱硫步骤和可能的烟灰过滤器的再生步骤。通过一个集成电路86可以向不同的NOX-吸附元件80提供电流和控制阀系统84。
该NOX-吸附装置88可以用作排气系统的一部分,而所述排气系统是燃烧系统如柴油机的一部分。
权利要求
1.一种内燃机排气系统中的NOX-吸附器的脱硫方法,包括步骤·提供导电基质,其中包括金属纤维、氧化催化剂、还原催化剂和NOX-吸附化合物;·执行加载步骤,来自所述内燃机排气系统的废气经过所述导电基质,至少部分氧化含硫化合物,并在所述的NOX-吸附化合物上至少部分吸附所述氧化了的含硫化合物作为被吸附的含硫化合物;通过向所述导电基质提供电流,使所述导电基质的温度升至高于所述被吸附的含硫化合物的分解温度,来执行脱硫步骤。
2.如权利要求1的内燃机排气系统中的NOX-吸附器的脱硫方法,所述导电基质被加热至700℃以上。
3.如权利要求1-2的内燃机排气系统中的NOX-吸附器的脱硫方法,所述方法进一步包括在所述导电基质上游提供可电再生的金属纤维烟灰过滤器。
4.如权利要求1-3的内燃机排气系统中的NOX-吸附器的脱硫方法,所述方法包括附加的脱附和还原被所述NOX-吸附化合物吸附的含氮化合物的步骤,这些步骤通过提供烃和CO以还原所吸附的含氮化合物,以及将所述含氮化合物的温度升至高于在所述加载步骤中吸附在NOX-吸附器上的所述含氮化合物的脱附温度来进行。
5.如权利要求4的内燃机排气系统中的NOX-吸附器的脱硫方法,通过所述可电再生的金属纤维烟灰过滤器的再生来提供所述的烃和/或CO。
6.如权利要求4或5的内燃机排气系统中的NOX-吸附器的脱硫方法,通过向所述导电基质提供电流,将所述含氮化合物的温度升至高于在所述加载步骤中吸附在NOX-吸附器上的所述含氮化合物的脱附温度
7.如权利要求1-6的内燃机排气系统中的NOX-吸附器的脱硫方法,所述NOX-吸附化合物包括BaO。
8.如权利要求1-7的内燃机排气系统中的NOX-吸附器的脱硫方法,所述导电基质为烧结的金属纤维织物。
9.如权利要求1-8的内燃机排气系统中的NOX-吸附器的脱硫方法,所述金属纤维包括Fe、Al和Cr。
10.一种NOX-吸附元件,包括基质、氧化催化剂、还原催化剂和NOX-吸附化合物,其特征在于所述基质是导电的,所述导电基质包括金属纤维。
11.如权利要求10中的NOX-吸附元件,所述导电基质的所述金属纤维包括Fe、Al和Cr。
12.如权利要求10-11中的NOX-吸附元件,所述导电基质是烧结的金属纤维织物。
13.如权利要求10-12中的NOX-吸附元件,所述NOX-吸附化合物包括BaO。
14.如权利要求10-13的NOX-吸附元件,所述金属纤维的当量直径为1-100μm。
15.如权利要求10-14的NOX-吸附元件,所述金属纤维织物是被皱褶的。
16.如权利要求10-15的NOX-吸附元件,所述NOX-吸附元件进一步包括位于所述导电基质上游的可电再生的金属纤维烟灰过滤器。
17.如权利要求16的NOX-吸附元件,所述导电基质的金属纤维与所述可电再生的金属纤维烟灰过滤器的金属纤维相同。
18.一种NOX-吸附装置,包括至少一个如权利要求10-15的NOX-吸附元件。
19.一种NOX-吸附装置,包括至少一个如权利要求16-17的NOX-吸附元件。
20.权利要求18的NOX-吸附装置,所述NOX-吸附装置包括与所述NOX-吸附元件的所述导电基质相连的集成电路。
21.如权利要求19的NOX-吸附装置,所述NOX-吸附装置包括与所述NOX-吸附元件的所述导电基质相连的集成电路。
22.如权利要求20-21的NOX-吸附装置,所述NOX-吸附装置包括阀系统。
全文摘要
本发明涉及一种内燃机排气系统中NO
文档编号F01N13/02GK1513082SQ02811165
公开日2004年7月14日 申请日期2002年6月21日 优先权日2001年6月26日
发明者S·布里兰特, S 布里兰特, W·马雷卡, 卓 申请人:贝克特股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1