优化汽缸停用选择和发动机输入扭矩的方法和控制结构的制作方法

文档序号:5202245阅读:118来源:国知局

专利名称::优化汽缸停用选择和发动机输入扭矩的方法和控制结构的制作方法优化汽缸停用选择和发动机输入扭矩的方法和控制结构
技术领域
本披露总体上涉及用于采用电动机械变速器的动力系控制系统的控制系统。
背景技术
:该部分的内容仅提供与本披露有关的背景信息,且可能不构成现有技术。动力系统结构包括扭矩发生设备,包括内燃机和电机,其通过变速器设备传递扭矩给车辆传动系统。一种这样的变速器为双模式、复合分离、电动机械变速器,其采用输入构件,所述输入构件用于从原动机动力源(通常为内燃机)接收驱动扭矩;和输出构件,所述输出构件用于从变速器传递驱动扭矩给车辆传动系统和车轮。可操作地连接到电能存储设备的电机包括电动/发电机,其可操作为产生驱动扭矩输入给变速器,与来自于内燃机的扭矩输入无关。电机还可以将通过车辆传动系统传递的车辆动能转换为可存储在电能存储设备中的电能。控制系统监测来自车辆和操作者的各个输入,并提供动力系统的可操作控制,包括控制变速器换档;控制扭矩发生设备;和调节电能存储设备和电才几之间的电力互4奐。择性地以固定传动比和连续可变操作;莫式操作,通常采用液压回路^现离合器起用。通常由于一个或更多扭矩传递离合器的起用,当变速器输出构件的旋转速度为来自发动机输入构件的旋转速度的固定比时,发生固定传动比操作。当变速器输出构件的旋转速度与输入构件的旋转速度的比可基于一个或更多电机的操作速度变化时,发生连续可变操作。电机可以经由离合器的起用连接到输出轴,或直接连接到输出轴。离合器起用和释放通常通过液压回路实现。采用具有电动机械变速器的动力系统的技术人员目的在于采用控制策略来监测系统状态并控制各种系统和致动器的操作以有效地控制动力系操作。下文描述这样的系统
发明内容根据本发明的实施例,提供一种操作适于传递扭矩给混合动力变速器的内燃机的方法。所述方法包括确定对于多个发动机状态可传递给混合动力变速器的发动机输入扭矩,所述发动机状态包括全缸操作和汽缸停用操作。确定在发动机状态中操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本。发动机状态基于所述成本控制为所述全缸操作和所述汽缸停用操作之一。本发明的实施例包括一种用于在混合动力系统的控制系统中执行的方法,所述混合动力系统包括内燃机和电动机械变速器。所述控制系统优选地包括具有多个信号连接的控制模块的分布式控制模块结构。在一个或更多控制模块中作为机器可读取代码执行的方法包括操作适于传递扭矩给混合动力变速器的内燃机,其包括确定对于多个发态。所述发动机根据所述优选发动机状态控制,以基本满足操作者扭矩请求。本发明在某些部件和部件的布置上可采用物理形式,本发明的实施例详细描述且在形成本发明一部分的附图中示出,其中图1是根据本发明的示范性动力系统的示意图2是根据本发明的控制系统和动力系统的示范性结构的示意图;和图3-9是根据本发明的算法流程图。具体实施方式现在参见附图,其中所述附图仅用于图示说明本发明实施例的目的而不是为了限定本发明,现在描述用于操作适于传递扭矩给混合动力变速器系统的内燃机的策略性控制策略。参见图3-9描述的策略性控制策略优选地在电子控制模块中作为一个或更多算法执行。所述方法包括确定对于多个发动才几状态可传递给混合动力变速器的发动机输入扭矩,所述发动机状态包括全缸操作和汽缸停用操作。确定在发动机状态中操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本。发动机状态基于所述成本控制为所迷全缸操作和所述汽缸停用操作之一。所述方法包括监测混合动力变速器的输出,通常为输出轴的旋转速度N0。执行策略控制130以确定从内燃机命令(或希望)的发动机输入扭矩TICMD,和希望的发动机状态。策略控制的关键输入优选地包括变速器输出速度No、发动机l命入速度Nb当前发动机状态和各种发动机状态的许可性、操作者扭矩请求To—REQ、和变速器的当前实际操作范围状态。示范性的当前发动机状态包括正常发动机操作(,ALL—CYL,)、汽缸停用的发动机操作(,DEACT,)、发动机燃料切断(,FCO,)、和汽缸停用的发动机燃料切断('FCO—DEACT,)。发动机状态许可性表示发动机可以有效地转换到一个或更多发动机状态,通常基于发动机操作条件。控制发动机输入扭矩包括控制发动机操作至优选速度/载荷操作点,以便以发动机状态之一实现发动机输入扭矩,而优选地不违背其它操作条件和要求(包括与可驱动性、燃料经济性和排放有关的条件和要求)。这在下文详细讨论。现在参见图1和2,示出了示范性混合动力系统,所述混合动力系统包括发动机14、变速器10、控制系统、和根据本发明实施例构造的传动系统90。示范性混合动力系统设置为执行图3-9所示用于控制发动机的控制策略。在共同受让的题为"Two-Mode,Compound-Split,HybridElectro-MechanicalTransmissionhavingFourFixedRatios"美国专利号6,953,409中详细公开了示范性变速器10的机械方面,所述专利在此作为参考引入。在图1中示出了体现本披露构思的示范性双模式、复合分离、电动机械混合动力变速器。变速器10包括输入轴12,优选为由内燃机14驱动的输入轴12具有输入速度Nr,和输出轴64,所述输出轴64具有输出旋转速度No。发动机14包括具有特征速度Ne的曲轴,所述曲轴可操作地连接到变速器输入轴12。当变矩器离合器设备(未示出)可操作地连接发动机和变速器时,发动机的速度NE和输出扭矩TE可以不同于变速器输入速度和发动机输入扭矩变速器10包括三个行星齿轮组24,26和28、和四个扭矩传递设备,即离合器C170,C262,C373,和C475。电动液压控制系统42可操作控制离合器的起用和停用,电动液压控制系统42优选地由变速器控制模块(TCM)17控制。离合器C2和C4优选地包括液压制动的旋转摩擦离合器。离合器C1和C3优选地包括液压致动的静止设备,所述固定设备接地到变速器外壳68。包括电动/发电机56(称为MG-A)的第一电机和包括电动/发电机72(称为MG-B)的第二电机经由行星齿轮可操作地连接到变速器。变速器输出轴64可操作地连接到车辆传动系统90,以提供输出扭矩T。给车轮。每个离合器优选地液压制动,从而经由电动液压控制回路42从泵88接收增压液压流体。变速器IO从扭矩发生设备(包括发动机14、MG-A56和MG-B72)接收输入扭矩(分别称为,TV、,TA,、和,Tb,),作为从燃料或存储在电能存储设备(ESD)74中的电势的能量转换的结果。ESD74是经由DC传递导体27高压DC联接到变速器功率逆变器模块(TPIM)19。TPIM19是其后关于图2所述的控制系统的元件。TPIM19用传递导体29从MG-A56来回传输电能,且TPIM19类似地用传递导体31从MG-B72来回传输电能。电流根据ESD74是充电还是放电而传输给ESD74或从ESD74传输。TPIM19包括功率逆变器对和相应的电才几控制模块,所述电机控制模块构造为接收电机控制指令且根据其控制逆变器状态,以提供电机驱动或再生功能。优选地,MG-A56和MG-B72是各具有转子的三相AC电机,所述转子可操作在安装在变速器外壳上的定子内旋转。逆变器包括已知的互补三相功率电子设备。现在参见图2,示出了控制系统的示意性方块图,所述控制系统包括具有分布式控制模块的结构。其后所述的元件包括总体车辆控制结构的子集,且可操作提供在此所述的动力系统的协调系统控制。控制系统可操作合成有关的信息和输入,且执行算法以控制各种致动器实现控制目标,包括诸如燃料经济性、排放物、性能、可驱动性、和硬件(包括ESD74电池以及MG-A56和MG-B72)保护的参数。分布式控制模块结构包括发动机控制模块(ECM)23、变速器控制模块(TCM)17、电池组控制模块(BPCM)21和TPIM19。混合动力控制模块(HCP)5提供前述控制模块的总体控制和协调。用户接口(UI)13可操作地连接到多个设备,车辆操作者通常通过所述UI13控制或指导动力系统(包括变速器10)的操作,包括操作者扭矩请求(To一req)和操作者制动请求(BRAKE)。UI13的示范性车辆输入设备包括加速踏板、制动踏板、变速器档位选择器和车辆速度巡航控制系统。每个前述控制模块经由局域网络(LAN)总线6与其它控制模块、传感器和致动器通信。LAN总线6允许控制参数和指令在各种控制模块之间的结构化通信。所采用的具体通信协议是特殊应用的。LAN总线和合适的协议提供用于在前述控制模块和提供诸如防抱死制动、牵引控制和车辆稳定性的功能的其它控制模块之间稳定信息传递和多控制模块接口。HCP5提供混合动力系统的总体控制,用于协调ECM23、TCM17、TPIM19和BPCM21的操作。基于来自UI13和动力系统(包括电池组)的多个输入信号,HCP5产生多个指令,包括操作者扭矩请求(T0—req)、发动机输入扭矩T"变速器10的N个不同扭矩传递离合器CI,C2,C3,C4的离合器扭矩(TCL_N);和MG-A56和MG-B72的电机扭矩Ta和Tb。TCM17可操作地连接到电动液压控制回路42,以监测各种压力感测设备(未示出),产生并执行各个螺线管的控制信号,以控制其中所包含的压力开关和控制阀。ECM23可操作地连接到发动机14,且用作从多个传感器获取数据并越过多个离散线路(集总地示出为集合线路35)控制发动机14的多个致动器。ECM23从HCP5接收发动机输入扭矩指令,且产生希望的轴扭矩和实际发动机输入扭矩表示T^给变速器,其传达给HCP5。为了简单起见,ECM23总体上示出为经由集合线路35与发动机14双向相接。由ECM23感测的多个其它参数包括发动机冷却剂温度、轴12的发动机输入速度NE(转换为变速器输入速度N!)、歧管压力、环境空气温度和环境压力。由ECM23控制的多个致动器包括燃料喷射器、点火模块和节气门控制模块。TCM17可操作地连接到变速器IO,且用作从多个传感器获取数据并提供指令信号给变速器。从TCM17到HCP5的输入包括N个离合器(即,C1,C2,C3,C4)中的每个所估计的离合器扭矩(TCL—n)、和输出轴64的旋转输出速度N0。可使用其它致动器和传感器,以从TCM提供附加信息给HCP以用于控制目的。TCM17监测来自压力开关的输入,并选择性地起用压力控制螺线管,并切换螺线管以起用多个离合器,从而实现多个变速器操作模式,如下文所述。BPCM21信号连接一个或更多传感器,所述传感器可操作监测ESD74的电流或电压参数,以提供关于电池状态的信息给HCP5。这样的信息包括电池荷电状态、电池电压和可利用的电池功率(称为Pbatmin到Pbatmax的范围)。前述控制模块中的每个优选为通用目的数字计算机(其总体上包括微处理器或中央处理单元);存储介质(包括只读存储器(ROM)、随机存取存储器(RAM)、电编程只读存储器(EPROM));高速时钟;模拟-数字转换(A/D)和数字-模拟转换(D/A)电路;以及输入/输出电路和设备(I/O)和合适的信号调节和緩冲电路。每个控制模块具有一组控制算法,所述控制算法包括常驻程序指令和标定,其存储在ROM中且被执行提供每个计算机的相应功能。各个计算机之间的信息传递优选地使用前述LAN总线6完成。在每个控制模块中,用于控制和状态估计的算法通常在预定循环周期期间执行,以便每个算法在每个循环周期执行至少一次。存储在非易失性存储设备中的算法通过中央处理单元之一执行且可操作监测来自感测设备的输入,并使用预定标定来执行控制和诊断例程以控制相应设备的操作。循环周期通常以规则间隔进行,例如在进行中的发动机和车辆操作期间每3.125,6.25,12.5,25和100毫秒。可替换地,算法可响应于事件发生而被执行。示范性双模式、复合-分离电动机械变速器以几个操作范围状态之一操作参见表1描述如下,所述操作范围状态包括固定传动比操作和连续可变操作。表1<table>tableseeoriginaldocumentpage11</column></row><table>表中所述的各个变速器操作范围表示对每个操作范围状态哪些具体的离合器CI,C2,C3,C4被接合或起用。当离合器C170被施用以将第三行星齿轮组28的外齿轮构件"接地,,时,选定第一连续可变操作范围状态,即模式I。发动机14可以运行或停机。当离合器Cl70被释放且离合器C262同时起用以将轴60连接到第三行星齿轮组28的行星架时,选定第二连续可变操作范围状态,即模式II。同样,发动机14可以运行或停机。为了描述,发动机停机由发动机输入速度Ne等于0转/分(RPM)定义,即,发动机曲轴未旋转,通常由于发动机从变速器分离。本^皮露的范围之外的其它因素影响电才几MG-A56和MG-B72何时操作为电机和发电机,且在此不讨论。第一和第二操作模式通过一个离合器施用(即,Cl62或C270)和电机56和72的受控速度和扭矩来控制,可以称为连续可变变速器模式。一些操作范围状态在下文描述,其中固定传动比借助于施用附加离合器实现。该附加离合器可以是离合器C373或C475,如上表所示。当附加离合器施用时,实现变速器输入-输出速度(即N!/No)的固定比操作。在固定传动比操作期间,电机MG-A56和MG-B72的转速(即,Na和Nb)取决于通过离合动作限定的机构的内部旋转且与轴12处测量的输入速度成正比。响应于由UI13捕获的操作者的动作,HCP监督控制模块5和一个和更多的其它控制模块确定在轴64处执行的操作者扭矩请求。最终车辆加速受其它因素影响,包括例如道路载荷、道路坡度和车辆质量。对示范性变速器基于动力系统的多个操作特性确定变速器操作范围状态。这包括操作者扭矩需求,通常通过输入传达给UI13,如前所述。此外,输出扭矩需求基于外部条件判定,包括例如道路坡度、道路表面状况或风力载荷。变速器操作范围状态可以基于由控制模块指令引起的动力系统扭矩需求判定,以将电机之一操作为发电机或电动电机。变速器操作范围状态可以用优化算法或例程确定,所述优化算法或例程可操作根据操作者动力需求、电池电荷状态、和发动机14以及MG-A56和MG-B72的能量效率确定最优系统效率。控制系统基于所执行的优化例程的结果管理来自发动机14以及MG-A56和MG-B72的扭矩输入,且进行系统优化以优化系统效率从而改进燃料经济性并管理电池充电。另外,操作可以根据部件或系统中的故障确定。HCP5监测扭矩发生设备的参数状态,且确定达到希望扭矩输出所需要的变速器输出,如下文所述。在HCP5的指导下,变速器IO操作跨过从慢到快的输出速度范围以满足操作者需求。示范性发动才几14包括多缸内燃冲几,所述内燃才几选4,性地以几个状态操作以经由轴12传递扭矩给变速器,发动机14可以为火花点火式或压缩点火式发动机。示范性的当前发动4几状态包括正常发动机操作(,ALL_CYL,)、汽缸停用的发动机操作(,DEACT,)、发动机燃料切断(,FCO,)、和汽缸停用的发动机燃料切断(,FCO—DEACT,)。在正常发动机操作中,所有发动机汽缸都供应燃料并点火。在汽缸停用状态中,通常一半汽缸(例如,V型发动机的一排)被停用。所述汽缸排通常借助于中断燃料传输并选择性地使排气门打开有降低发动机泵动损失而停用。在发动机燃料切断状态中,中断所有汽缸的燃料传输。在汽缸停用状态的发动机燃料切断状态中,中断所有汽缸的燃料传输并停用一排汽缸以降低泵动损失。再次参见图3-7,关于图1和2的示范性动力系统描述控制混合动力系统的操作的更详细说明。参见图3,在此所述的方法和系统包括动力系统控制优化方面,其中,来自MG-A和MG-B的扭矩输出基于操作者扭矩请求To—req、输入速度N!和输出速度No确定。战略控制优化包括战略控制110、换档执行和控制120、电机扭矩确定140和策略控制130。策略控制130的输出包括命令的或请求的发动机输入扭矩TjCMD,到ECM23的输入和希望的发动机状态Engine—StateDES。ECM23确定并输出发动机输入扭矩T!的参数值,以输入给电^/U丑矩确定方块(方块140)。用于优化和控制示范性动力系统的总体结构的其它方面在共同受让的美国专利申请No.11/561,140(代理号GP-308478-PTH画CD)中描迷且不需要在此描述,所述申请作为参考引入。现在参见图4,策略控制方法包括监测变速器的输出,通常为N0。执行策略控制130以确定内燃机命令(或希望)的发动机输入4丑矩Ti—cmd、和希望的发动才几状态Engine—StateDES,优选地在每25ms循环周期期间,其各输出给ECM23以在其中执行。策略控制130的关键输入优选地包括变速器输出速度N0、发动机输入速度N!、来自ECM23的当前发动4M犬态('Engine—State,)和各种发动才几状态的许可性(,Eng—State—allow,)、操作者扭矩请求T0_REQ、和方块120中先前确定的变速器的当前实际操作范围状态(,Op—Range')。内燃机命令(或希望)的发动机输入扭矩TLcmd传达给ECM23以在其中执行。策略控制130的前述输入是策略管理器220的输入,所迷策略管理器220产生输出给策略系统约束方块240和策略优化方块260。策略系统约束240的输出也输入给策略优化260。策略优化260的输出输入给发动机状态稳定和仲裁280,发动机状态稳定和仲裁280的输出包括发动机输入扭矩指令丁lcmd和希望的发动机状态Engine—StateDES。现在参见图5,策略管理器220的输入包括UI13的原始操作者输入,例如,加速踏板和制动踏板的操作者输入。传达成本结构信息,包括根据下文所述计算的与在具体操作条件下操作发动机有关的成本。策略管理器220的原始策略输入包括用于变速器操作范围状态(,Op—Range')的当前实际参数数据N0、和操作者扭矩请求T0—REQ、发动机状态许可性、和ESD74的动力输出限制(即,PBAT—min,Pbat—max)。策略管理器220的输出包括到策略优化方块260的成本结构输入;和用于变速器操作范围状态(,Op—Range')的当前实际参数数据的策略输入、N0、和操作者扭矩请求To—req以输入给系统约束方块240和策略优化方块260二者。现在参见图6和7,Op_Range的实际参数数据、N卜N0、和T0—req和电池功率约束Pba^min和Pbat—max输入给扭矩约束(方块230),以确定系统输出扭矩To的约束。扭矩约束部分230技术输入确定以每个发动机状态操作的最大和最小发动机输入扭矩。操作状态的发动才几输入4丑头巨牙尔为正常4犬态(丁iminallcyl,丁imaxallcyl);汽釭停用状态(I—MIN—DEACT,Tlmax;eact);发动机燃料切断状态(TLFCO);和发动机燃料切断和汽缸停用状态(TIFCODEACT)。该信息传达给策略系统约束240和策略优化260。策略系统约束240也接收Op—Range的实际参数数据、N卜N0、和To—req和电池功率约束pbat—min和Pba^max作为输入。策略系统约束(方块240)使用所述输入确定每个发动机操作条件的最大和最小发动机输入扭矩值。各种发动片几输入扭矩参数或范围连同T0—req和来自方块220的成本结构输入一起输出给策略优化260(沿线242,244,246,248所示)。在策略优化260中,基于输入确定以每个操作状态操作发动机的最优操作点和有关成本,包括正常操作(TIMIN—ALL—cyl,Tl—max—all—cyl);汽釭4f用4犬态(Ti_min—deact'Ti_max_deact)。对于发动机燃料切断状态(T_FCO)和发动机燃料切断和汽缸停用状态(TLFCO—DEACT),存在基于发动机输入扭矩(通常来自于ECM)、搡作者扭矩请求、和成本结构输入的系统操作成本评估。因而,来自242的输入被输入给正常发动机状态优化方块262,来自244的输入被输入给汽缸停用发动机状态优化方块264,来自246的输入i皮输入给发动机燃料切断评估方块266,来自248的输入被输入给发动才几燃料切断和停用评估方块268。最优操作点优选地包括对每个发动机状态在扭矩范围内可得到的花费最小操作成本的操作点,在部分260中确定并参见图8A-8D示出。优化部分260的输出输入给发动机状态稳定和仲裁部分280。在发动机状态稳定和仲裁部分280中,根据所计算的成本和与发动机、动力系统和车辆耐用性以及稳定性有关的其它因素选择来自策略优化260的发动机状态输入中的一个作为优选发动机状态。在发动机稳定和仲裁(方块280)中,确定最优操作点TLCMD和操作状态(Engine—StateDES),并随后在下一循环周期期间执行。通常,选择的发动机状态是最小成本操作状态。现在参见图8A,8B,8C和8D,现在描述每个发动机状态花费最小操作成本可得到的最优操作点的确定。参见图8A,对于正常发动机操作而言,变速器的容许发动机输入扭矩值范围(包括最小和最大发动机输入扭矩TLMIN—ALL_CYL,TLMAX—ALL—CYL)从部分242输入给用于方块262的部分360。方块360包括一维搜索引擎("IDSearchEngine"),其在容许发动机输入扭矩范围内迭代产生发动机输入扭矩的参数值[TYIj,以在迭代循环366中执行。下标"j"指的是具体的迭代次数,范围为从l到n的值。迭代数量n可以由多个方法中的任何一种产生,搜索引擎内置或作为总体方法的一部分。容许发动机输入扭矩包括与具体发动机实施例有关的实际约束,且基于所使用的具有与燃烧稳定性和燃料切断有关的限制的具体发动机的操作特性。发动机输入扭矩的参数值[T!]j输入给系统方程362。系统方程包括一维优化方程,从所述一维优化方程确定电机扭矩TA的最优参数值。当变速器以固定传动比橾作模式之一操作时,电机扭矩丁b的参数值基于对电机扭矩丁a所确定的最优参数值确定。电机扭矩Ta和Tb以及发动机输入扭矩T!输入给成本函数364,成本函数364计算操作示范性动力系统实现具体参数的发动机输入扭矩的成本(PcosT),。取决于搜索引擎360的具体情况,每次迭代所确定的成本在搜索引擎360中返回和捕获,或分析。搜索引擎360迭代计算成本(PcosT)j的参数值,且识别优选成本,在该实施例中,优选成本包括对所有迭代计算的参数值的最小成本。优选成本和发动机输入扭矩的相应值[丁lmx—cyl,PcsoT]pref输出给方块280。—维搜索引擎360包括在一个控制模块中作为算法执行的几个已知方法中的任何一种,所述控制模块可操作在容许值范围内产生1的参数值,并输出参数值[T!],给迭代循环366以确定相关成本(Pcost),,并在搜索引擎360中评估所述结果,即[丁1;PcsoT]j。搜索引擎借助于将每次迭代的结果与先前确定的结果比较而确定优选结果,即[T!,pcsot]pref。当优选结果包括相关成本的最小值时,搜索引擎360选择并捕获且存储所述结果和先前确定的结果的较小值。当搜索引擎已经跨过1的参数值范围执行搜索时,最终捕获的结果包括优选结果[T!,pcsot]pref,其然后输出给方块280。例如,一种这样的搜索引擎跨过容许发动机输入扭矩整个范围丁iMIN到丁lMAX迭代产生输入。例如,另一搜索引擎包括启发式取样搜索过程,其中基于^的先前确定的参数值和PcsoT确定Tt的参数值以输入给系统方程(方块362)。一维搜索方法解决寻找低于当前点的值的目标函数值(即成本方程的输出)的优化问题。与所采取的搜索引擎无关,它作为算法位于一个控制模块中以在车辆进行中的操作期间执行。参见图8B,类似于图8A,对于汽缸停用操作而言,变速器的容许发动机输入扭矩值范围(包括最小和最大发动机输入扭矩TLMIN—deact,TLMAX_DEACT)从部分244输入给用于方块264的部分360。方块360再次包括一维搜索引擎("IDSearchEngine"),其在容许发动机输入扭矩范围内迭代产生发动机输入扭矩的参数值[Ti].,,以在迭代循环366中执行。发动机输入扭矩的参数值[T!],输入给系统方程362,系统方程362包括一维优化方程,当变速器以固定传动比操作模式之一操作时,从所述一维优化方程确定电机扭矩丁a和TB的最优参数值。TA和TB以及发动机输入扭矩T^输入给成本函数364,成本函数364计算成本(Pcost)j。搜索引擎360迭代计算成本(PcosT),的参数值,且识别优选成本,在该实施例中,优选成本包括对所有迭代计算的参数值的最小成本。优选成本和发动机输入扭矩的相应值[丁ldeact,Pcsot]pref输出给方块280。现在参见图8C,发动机燃料切断的发动机输入扭矩T^rco从部分246输入且在方块266中评估。发动机输入扭矩T!FCO的参数值输入给系统方程362,所述系统方程362包括一维优化方程,变速器以固定传动比操作模式之一操作时,从所述一维优化方程确定电机扭矩TA和TB的参数值。TA和TB以及发动机输入扭矩TLFCO输入给成本函数364,成本函数364计算成本PcosT。优选成本和发动4几输入扭矩的相应值[Tjfco,PcSOT]pref输出给方块280。现在参见图8D,发动机燃料切断-汽缸4f用操作的发动机输入扭矩T—fco一deact从部分246输入且在方块266中评估。发动机输入扭矩TucoDEACT的参数值输入给系统方程362,所述系统方程362包括一维优化方程,变速器以固定传动比操作模式之一操作时,从所述一维优化方程确定电冲几扭矩T八和丁b的参数值。Ta和丁b以及发动机输入扭矩T^m—DEACT输入给成本函数364,成本函数364计算成本PCOST。优选成本和发动才几输入扭矩的才目应值[Tifco一deact,PcSOT]pref输出给方块280。现在参见图9,现在描述发动机状态仲裁(方块280),其结果包括确定希望的发动机状态和希望的或命令的发动机输入扭矩。在本发明中,可传递给变速器14的发动机输入扭矩对发动机状态确定,所述发动机状态选择性地分成全缸操作(即,正常状态和发动机燃料切断状态)、和汽缸停用操作(即,停用状态和发动机燃料切断-停用状态)。确定基本满足操作者扭矩请求的以所述发动机状态操作发动机和混合动力变速器的成本,如关于图8所述。发动机状态仲裁的输入包括许可发动机状态、和来自方块260的优化和评估的成本,包括来自262的Pcost(all—cyl);来自的Pcost(deact);来自266的PCOST(FCO);和来自268的PCOST(fcodeactj。当前实际发动机状态通过方块270评估,方块270评估并评价与发动机状态每次变化有关的成本,且输入给方块2犯。成本Pcost(all—cyl)、pc0st(deact)、pc0st(fc0)和Pcost(fco_deact)中的每一个根据方块270的输出偏移,且评估许可状态以识别使成本最小的用于操作动力系统的希望的发动机状态(Engine—StateDES)和发动机输入扭矩(T〗—CMD)。在该评估中,成本pcost(all—cyl)和pcost(fco)比较以识别在所有汽缸起用时的优选操作。类似地,成本Pcost(deact)和PCOST(fcodeactj比较以识别在汽缸停用时的优选操作。然后,优选的全缸操作与优选的汽缸停用操作基于成本比较,以确定优选操作。控制系统基于所述成本命令发动机操作状态为全缸操作和汽缸停用操作之一。应当理解,允许在本发明的范围内变型。本发明已经具体参考所披露的优选实施例及其变型描述。在阅读和理解说明书之后,可以想到进一步的变型和修改。因而,将包括落入本发明范围内的所有这样的变型。权利要求1.一种操作适于传递扭矩给混合动力变速器的内燃机的方法,所述方法包括确定对于多个发动机状态可传递给混合动力变速器的发动机输入扭矩,所述发动机状态包括全缸操作和汽缸停用操作;确定以所述发动机状态操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本;和基于所述成本将发动机状态控制为所述全缸操作和所述汽缸停用操作之一。2.根据权利要求1所述的方法,其特征在于,确定对于多个发动机状态可传递给混合动力变速器的发动机输入扭矩,所述发动机状态包括全缸操作和汽缸停用操作还包括确定对于正常发动机状态和汽缸停3.根据权利要求2所述的方法,其特征在于,确定以所述发动机状态操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本包括确定对正常发动机状态和汽缸停用状态中的每个的最小动力系统操作成本和以最小动力系统操作成本基本满足操作者扭矩请求的有关发动机输入扭矩。4.根据权利要求3所述的方法,其特征在于,确定最小动力系统操作成本和有关发动机输入扭矩包括在发动机输入扭矩范围上执行一维搜索。5.根据权利要求4所述的方法,其特征在于,所述一维搜索包括对于在发动机输入扭矩范围上的发动机输入扭矩迭代选择参数值;和对发动机输入扭矩的每个迭代选择的参数值执行系统方程和成本函数。6.根据权利要求5所述的方法,其特征在于还包括基于所述成本将发动机状态控制为正常状态和所述汽缸停用状态之一。7.根据权利要求1所述的方法,其特征在于还包括对发动机燃料切断状态和发动机燃料切断-汽缸停用状态确定可传递给混合动力变速器的发动机输入扭矩。8.根据权利要求7所述的方法,其特征在于,确定以所述发动机状态操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本包括评估基本满足操作者扭矩请求的动力系统操作成本和有关发动机输入扭矩。9.根据权利要求8所述的方法,其特征在于包括对发动机燃料切断的发动机输入扭矩执行系统方程和成本函数,和对发动机燃料切断-汽缸停用状态的扭矩执行系统方程和成本函数,以确定动力系统操作成本。10.根据权利要求9所述的方法,其特征在于还包括基于发动机燃料切断操作时的成本将发动机状态控制为发动机燃料切断状态和发动机燃料切断-汽缸停用状态之一。11.根据权利要求1所述的方法,其特征在于,对于每个发动机状态,可传递给混合动力变速器的发动机输入扭矩可基于操作者扭矩请求、发动机操作条件和发动机操作约束确定。12.根据权利要求1所述的方法,其特征在于还包括基于混合动力变速器的当前操作范围确定对多个发动机状态中的每个可传递给混合动力变速器的发动机输入扭矩。13.根据权利要求12所述的方法,其特征在于,混合动力变速器的当前操作范围包括多个固定传动比模式和两个连续可变模式中的一个。14.根据权利要求13所述的方法,其特征在于,所述发动机状态包括正常发动机操作状态、汽缸停用状态、发动机燃料切断状态和发动机燃料切断汽缸停用状态。15.—种用于操作混合动力系统的方法,所述混合动力系统包括内燃机、能量存储系统、电机和电动机械变速器,所述能量存储系统和电机电操作地联接以进行它们之间的电力流;发动机、电机、和电动机械变速器机械操作地联接,以在它们之间传递动力,从而将扭矩传递给输出,所述方法包括确定许可发动一几状态和操作者扭矩请求;确定对于包括全缸操作和汽缸停用操作的发动机状态可传递给所述电动枳4成变速器的发动4几输入扭矩;确定以所述发动才几状态*捧作发动才几和电动枳4成变速器以基本满足操作者扭矩请求的成本;和基于所述成本将发动机状态控制为包括全缸操作和汽缸停用操作的发动机状态之一。16.根据权利要求15所述的方法,其特征在于,每个发动机状态的发动机输入扭矩基于至变速器的发动机输入速度、变速器输出速度、变速器的当前操作范围状态、操作者扭矩请求、和从可操作地连接到所述电机的电存储设备可得到的功率确定。17.根据权利要求15所述的方法,其特征在于,确定以所述发动机状态操作发动机和电动机械变速器以基本满足操作者扭矩请求的成本包括确定对全缸操作和汽缸停用状态中的每个的最小动力系统操作成本和以最小动力系统操作成本基本满足操作者扭矩请求的有关发动才几输入扭矩。18.根据权利要求17所述的方法,其特征在于,确定最小动力系统操作成本和有关发动机输入扭矩包括执行一维搜索,从而在发动机输入扭矩范围上迭代选择发动机输入扭矩的参数值;和对发动机输入扭矩的每个迭代选择的参数值执行系统方程和成本函数。19.一种制品,包括具有编码在其中的计算机程序的存储介质,述程序包括确定对于多个发动机状态可传递给混合动力变速器的发动机输入扭矩的代码,所述发动机状态包括全缸操作和汽缸停用操作;确定以所述发动机状态操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本的代码、;,和i、、。,、_*操作之一的代码。20.根据权利要求19所述的制品,其特征在于,混合动力变速器包括选择性地可操作地连接到第一和第二电机的电动机械变速器,所述21.根据权利要:19所述的:'j品,其特征在于还包括变速器通过多个扭矩传递离合器的选择性起用而选择性地以多个操作范围状态之一操作,所述操作范围状态包括多个固定传动比操作范围状态和两个连续可变操作范围状态。22.根据权利要求19所述的制品,其特征在于,确定以所述发动机状态操作发动机和电动机械变速器以基本满足操作者扭矩请求的成本的代码包括确定对处于正常发动机操作的全缸状态和处于全缸发动机操作的汽缸停用状态中的每个的最小动力系统操作成本和以最小动力系统操作成本基本满足操作者扭矩请求的有关发动机输入扭矩的代码。23.根据权利要求19所述的制品,其特征在于,确定最小动力系统操作成本和有关发动机输入扭矩的代码包括执行一维搜索,从而在发动机输入扭矩范围上迭代选择发动机输入扭矩的参数值;和对发动机输入扭矩的每个迭代选择的参数值执行系统方程和成本函数。24.根据权利要求19所述的制品,其特征在于还包括执行发动机启动/停止操作以实现优选发动机状态的代码。全文摘要本发明涉及优化汽缸停用选择和发动机输入扭矩的方法和控制结构。提供一种操作适于传递扭矩给混合动力变速器的内燃机的方法和制品。所述方法包括确定对于多个发动机状态可传递给混合动力变速器的发动机输入扭矩,所述发动机状态包括全缸操作和汽缸停用操作。确定在发动机状态中操作发动机和混合动力变速器以基本满足操作者扭矩请求的成本。发动机状态基于所述成本控制为所述全缸操作和所述汽缸停用操作之一。文档编号F02D17/02GK101397938SQ200810168738公开日2009年4月1日申请日期2008年9月26日优先权日2007年9月26日发明者A·H·希普申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1