用于金属的疏水表面涂覆系统和方法

文档序号:5267505阅读:315来源:国知局
专利名称:用于金属的疏水表面涂覆系统和方法
技术领域
本发明涉及系统及其制备和使用方法,其中该系统和方法涉及在金属材料上具有或形成疏水和超疏水表面层。该疏水或超疏水表面层形成以具有以预设方式生长在该金属表面上的非均勻分布的类似碳纳米管和碳纤维的碳结构的形态。该系统提供了热稳定性和电导性,使其可用于广泛的环境和应用中。该疏水表面层可以形成在非均勻层(一层或多层)中,其可使该疏水层在金属表面上具有具有强斥水性和自清洁特征的所需的类似莲花状结构的粗糙度(即形态)。本发明涉及的领域包括流体力学、涉及流动液体的机械和系统、 液体传输、浮动装置、电力和电子设备、防污表面、冰生长延缓材料和其他应用。
背景技术
在多个应用中,散出水或其他污染物的能力是重要的,已经开发了经设计以降低水或其他流体在疏水表面上的流动摩擦或保持力的该疏水表面。疏水材料具有难于被水或冰润湿的表面,具有通常超过120°的水接触角。超疏水表面通常具有150°或更大的接触角。疏水材料是由Cassie定律表征的,其描述了液体在表面上的有效接触角Θ。。Cassie 定律解释了表面的粗糙化是如何提高液体和该表面之间的表观表面角的。疏水表面的表面能直接与其斥水能力有关。随着表面能的降低,水滴提高了与附着表面相比附着到其自身的优先性。已经发现很多植物和动物的外表面都具有与理想表面化学结合的粗糙表面结构以产生自清洁的斥水表面。例如,在N. nucifera (白色莲花)的叶表面上发现该自清洁特征,很多昆虫的翼表面将描述高程度的表面粗糙度的拓扑结构与具有低表面能的化学物质相结合,由此产生超疏水表面,使得其使各种类型的液体散出,从而在受到外力(例如转动的水滴或流动的空气)时可以除去颗粒。使用纳米尺寸不规则度施加在表面上的超疏水涂层形成了高接触角,其阻止污垢和污染物的润湿和附着。例如,与例如航空或航天器外表面的结构相关的,热交换设备和很多其他的表面容易聚集冰、水和其他污染物,其能够干扰该表面的操作或降低其效率。例如,冰、水和/或其他污染物在机翼、螺旋桨、马达和其他功能表面上的聚集能够干扰或降低飞机、或热交换器设备等的操作性能。当发生这种聚集时,在其去除中能够花费大量的时间和成本。为了防止或缓解这种聚集,可以使用易于排斥水的疏水表面。在其他应用(例如水或其他液体输送管道、微流体装置等)中,该表面能够对液体施加流动阻力。限制液体输送的效力和速度以及液体内的主要物理障碍在于伴随着系统相对于该流体运动或液体输送通过管线的运动,流体或在流体中操作的系统必须克服显著的阻力。这种空气动力学或水力学阻力与该物体和流体的相对速度的立方成比例增大。提出降低液体的流动阻力的很多方法之一是有意改变与流动液体接触表面的理化和几何性质。
还有天然有机体(例如水黾)利用表面张力在水面上行走。水黾例如具有细的长腿,其具有约167°的水接触角,使其仅用表面张力就能站立在水面上。在物体穿透表面之前表面张力能够承受的重量与材料的周长成比例。已经尝试通过使物体配备涂覆有疏水材料(例如含氟化合物)的细长线而模仿水黾的行为。即使使用这种材料能够合成能够静止保持在水面上的系统,但是由于使用长线增大了周长而使该方法未小型化。提供制备小型化浮动装置的能力将会是适宜的。这种装置可能需要超过浮力范围的力以将其保持在水面上。使用浮力的常规装置需要相当于浮动物体质量的排水质量。如果物体的密度大于水的密度,那么该系统可能失败。在这些情况中可以使用表面张力。这些力取决于材料的疏水性。疏水表面阻止穿透水面。提供对穿透的阻力值取决于该材料的疏水性。已经尝试降低伴随液体或流体相对于固体表面的相对移动的流体摩擦阻力。已经尝试制备非常有效排斥水或其他液体的疏水表面。疏水表面(例如极疏水表面和超疏水表面)用于很多技术应用中。疏水表面能够降低和/或最小化在水中的摩擦阻力,最小化下层材料的腐蚀,并用作自清洁表面。一些疏水表面(例如极疏水表面和超疏水表面)具有表面能特征和/或形态特征(例如良好的表面粗糙度),其提供了较强的斥水性。然而,足够的形态特征是困难的,且制备昂贵,且大规模实施是困难的、不切实际的和/或不可能的。在一些所需的应用中,已知的疏水表面构造也是不切实际的和/或不可能实施的。这些尝试使用有机材料(例如聚合材料),其中技术例如蚀刻、溅射、平版技术、从溶液的膜沉积、电解沉积或其他技术。尽管这些方法已经显出了在特定材料上产生粗糙表面的能力,但这些方法在应用中收到相当的限制,且还需要昂贵复杂的工艺技术。此外,这些尝试尚未用于很多应用,因为所用的有机材料没有足够的热稳定性、电导性或很多应用所需的其他特征。提供克服这些限制的疏水或超疏水表面构造和方法将会是适宜的。因此,存在改进的疏水或超疏水表面或表面涂层以及形成疏水或超疏水表面的技术的需求,其中该表面的疏水特征具有长的寿命,且该表面或涂层能够以可重复且成本有效的方式形成,特别是与金属性表面和材料相关的。

发明内容
本发明的实施方案提供了疏水和超疏水表面构造和在金属性基体上形成疏水或超疏水材料的方法。金属性基体可以包括在其上具有金属性材料涂层的基体。该表面构造包括具有在其上生长的碳纳米管/碳纤维构造的金属性基体,该碳纳米管/碳纤维构造形成有分等级的结构,以具有与该表面相关的预设粗糙度。该方法包括提供具有预设构造的金属性基体;和生长多个碳纳米管/纤维或其他纳米结构,其形成支撑在该基体上的预设体系结构。该术语“疏水表面”表示具有约90°或更大的水接触角的表面。疏水表面描述为在前进和后退接触角之间具有小的滞后。而且,该术语“超疏水性”或“超疏水表面”表示具有约150°或更大的水接触角的表面。优选其具有尽可能低的接触角滞后。该预设体系结构以将该预设的纳米管/纤维体系结构附着到该金属性表面上的方式形成在该基体上,其纵横比能使该纳米管/纤维在暴露于外力时保持附着。该提供多个碳纳米管/纤维的步骤可以进一步设计该纳米管/纤维以具有基本上预设的宽度和长度,以及为多个纳米管/纤维限定至少一个取向。纳米管/纤维和/或纳米管/纤维的组之间的间距也可以控制。该碳纳米管/纤维体系结构以稳定该体系结构的方式附着到该金属性表面上。本发明的实施方案提供了包括以下的优点以可重复的方式在金属性材料上制备超疏水表面构造的能力。与该金属性材料相关的超疏水性质提高了该金属性材料和其中使用该金属性材料的相关结构的表面寿命,以成本有效和简化的方式形成疏水表面,导致与该金属性材料相关的维修和/或操作成本的降低,并提供独特的应用。这提供了简单、快速、廉价和容易地获得金属性构件和结构的所需性能特征的技术。该疏水表面构造是通过以下得到的在经处理的金属性表面基体上生长纳米结构以制备预设纳米粒度的不平整性(disconformity)。控制该金属性表面的预设不平整性以提供预设的疏水性质,其提供斥水、自清洁和/或防凝结性质的特征。依照本发明在金属性表面基体上形成的表面的疏水特征是由在该表面上通过纳米管结构形成的微粗糙度而提供的,提供低表面润湿性和自清洁特征。该纳米管结构的制备可以在高温进行,因为金属性基体可用于较高温度的环境,且由于该金属性基体和纳米管结构的特征,能够将该疏水材料用于高温和低温环境中,而不会破坏涂层。本发明提出了具有超疏水表面的材料及其制备方法,同时克服了现有技术方法的限制和不足。本发明还涉及包括该疏水材料的制品和系统,例如在电子、光学和结构应用中。本发明还提供了形成具有使用超疏水碳纳米管结构的一个或多个表面的微型金属性装置的能力,能使其承受比相当于其体积的浮力会承受的更高得多的质量。在依照附图和后附权利要求理解时,从本发明的以下描述中,本发明的其他特征、 益处和优点将变得显而易见。


为了更完整理解本发明,现在将参照附图中更详细描绘以及下面借助本发明的实施例描述的实施方案,其中
图1是描绘依照本发明的实施方案形成超疏水材料的方法的逻辑流程图。图2A-2G显示了可用于本发明中的不同金属性基体几何形状。图3显示了可用于形成依照本发明的材料的碳纳米管炉的示意图。图4A是在依照本发明形成的疏水材料上的水滴的示图,显示了与该表面的水接触角。图4B是在依照本发明形成的疏水材料上的水滴的示图,显示了与该表面的后退水接触角。图5A是依照本发明的在其上形成有碳纳米管结构以提供疏水表面的金属性基体的SEM图。图5B是图5A的改性疏水材料的更高放大倍数的SEM图。图5C是依照本发明的具有在其上形成的可替代构造的碳纳米管结构以提供疏水表面的金属性基体的SEM图。图6是该结构的TEM图,显示了该莲花状结构的基本构件块是碳纳米管。图7A显示了在依照本发明形成的表面上的冰滴的光学图像。图7B显示了在具有在其上形成的碳纳米管结构的金属性基体在水中沸腾并在冰中骤冷之后的SEM图和依照本发明的表面在其后的疏水特征的插图。
图7C显示了依照实施例的改性钢板的最大排水量的光学图像。图7D显示了改性钢板(例如图7C中所示)的最大力与相当于与该板的体积相等的排水量的浮力相比较的图表。图7E显示了依照本发明的实施例的浮动钢板的光学图像。图8A显示了依照本发明的实施例的浮动钢板的顶视图。图8B显示了位于该水中的图8A中所示的板的水下视图。图9显示了用于测定在浸没在水中之前金属板能够承受的力的测试装置的示意图。图10显示了对于依照本发明的具有表面构造的钢板和涂覆有PDMS的钢板的归一化浮力与归一化时间的关系图表。图11显示了依照本发明的实施方案的聚合物增强涂层的示意图。图12A显示了依照实施例的聚合物增强涂层的SEM图像,插图是其疏水特征。图12B和12C显示了依照本发明的实施例在非增强和聚合物增强的涂层实施例上的条测试的光学图像。图13显示了依照本发明的实施例的涂覆有碳纳米管结构的金属管,然后将该管浸没在水中。
具体实施例方式
在附图中,相同的附图标记可以用于表示相同或相似的构件。尽管本发明主要是关于形成超疏水材料和表面而描述的,然而这些材料和表面可以改变并应用于各种应用中,在本文中将描述其中的一些,但应当认识到预期了其他应用,且在本发明的范围内。在本发明中,超疏水材料形成在金属性表面和基体上以提供用于各种应用的基体系统,在所述应用中具有金属性材料物理、结构、电的、传导的、高或低温度或其他特征的基体是所需的。很多金属通常具有电和热传导特征、高密度和在应力下变形而不裂开的能力, 这使其可用于各种环境和应用。金属合金是两种或更多种元素在固溶体中的混合物,其中主要组分是金属。通常纯金属能够过于柔软的、脆的或对所需应用是化学活性的,且将不同比例的金属结合为合金改变了纯金属的性质以产生所需的特征。制备合金的目的通常是使其脆性下降、硬度更高、抗腐蚀性或具有其他特征。合金的实例是钢,例如不锈钢、黄铜、青铜、硬铝,其可用于各种应用。一些金属和金属合金具有高的结构强度/单位质量,使其成为可用于携带高载荷量或抵抗冲击损害的材料。能够加工金属合金以具有高的剪切、扭转和变形阻力。金属的强度和回弹性导致其常常用于结构、车辆和包括加热/冷却设备、工具、管道的很多用具和很多其他应用中。金属是良导体,使其用于电子设备并用于携带电流通过一段距离而能量损失极少方面是有价值的。金属的导热性使其可用于各种高温或低温应用。一些金属合金可以具有可用于例如管道和脉管支架或其他医学应用的应用的形状记忆特征。依照本发明并参照图1,提供金属性基体10,并将其处理以在至少一个表面20上形成微图案。在实例中,该微图案可以在该金属表面上提供多个不平整处,例如峰和谷。可以进行用于形成微图案的加工,作为金属表面的酸处理,其在表面上形成复杂的微米和纳米体系结构。然后该表面具有在该表面上生长的多个碳纳米管30。在该至少一个表面上形成多个碳纳米管可以通过例如化学气相沉积技术提供。可以由因素例如生长温度和金属表面和该表面上的催化剂纳米颗粒的性质控制该碳纳米管的特征。该碳纳米管可以直接生长在金属性基体上或与提供在该表面上的适合的催化剂层相结合。可以控制该纳米管的生长以形成碳纳米管的预设尺寸、密度、直径、长度和单壁对多壁性质。通过控制生长发生的温度,能够选择性改性和控制生长的碳纳米管的直径。也能够使用不同工艺以在钢上生长碳结构,例如通过使用乙炔作为碳源和钢中的铁作为催化剂,或其他适合的碳源和催化剂。然后将该金属性基体用于所需的应用中,其中具有多个纳米管的该至少一个表面具有疏水特征40。由于该金属性基体和碳纳米管结构的特征,本发明提供了成本有效和高效的用于形成超疏水材料表面的系统和方法。该表面能够通过其水排放和污染最小化性质而提高各种构件的使用寿命,同时为该表面或构件提供官能性。该碳纳米管的微图案提供了纳米结构化的表面构造。可以在典型小于约500nm,或小于约200nm或约IOOnm的长度规模上在至多三个维度上调节与该表面结合的微观结构。能够控制该碳纳米管的生长以制备各种尺寸和形状的纳米尺寸和/或微米尺寸结构的较小或较大的节点,以在该金属性基体上形成特定应用所需的表面拓扑学。在可替代的构造中,可以在该基体的表面上形成网状的碳纳米管/纤维,且也发现由于该表面的高粗糙度而具有超疏水性。杂乱的碳纳米管 /纤维的形成提供了超疏水性,而且在提供所需的疏水特征的同时,特定的表面形态可能略有不同。例如,对于小规模或大规模条件,可以实施制造方法使得依照实施方案该至少一个表面构造可以以成本有效的方式形成。在所述实例中,处理该金属性基体以在至少一个表面上形成微图案,这使用以所需且可重复的方式改性基体表面的方法来进行。在实例中,依照本发明的方法可以包括制备钢基体,例如不锈钢样品。例如,在实验和测试中使用不同等级的不锈钢,例如不锈钢304和不锈钢316。将不同的不锈钢样品切成预设的形状和尺寸。 各种基体构造可以包括在表面上生长有碳纳米管的不锈钢管(如图2A中)或环(图2B)、板 (图2C)、管的长度(图2D和2E)、网(图2F)、线(图2G)或可能是所需的其他几何形状。然后在肥皂水中清洗该样品以从表面上除去所有油或其他污染物。然后通过表面蚀刻处理该基体的至少一个表面。可以使用不同的蚀刻工艺。例如, 蚀刻可以从该基体表面上除去或溶解掉钝化氧化物层以增强碳纳米管在其上的生长。蚀刻还通过产生不同尺寸的蚀点而适宜地使该钢表面粗糙化。该方法能够包括例如表面的酸蚀刻,其中将该表面在预设温度暴露于酸浴中。在实例中,该处理可以包括用酸(例如在预设温度处理预设时间。在实例中,可以使用该酸蚀刻方法,其中典型的蚀刻条件是在60°c -95°c在9M H2SO4中5_10分钟。可替代地或除此之外,该表面可以具有接枝在其上的适合材料以提供所需的微图案。对于例如可能不支持在其上生长纳米颗粒的一些金属性基体,将会可以在该表面上提供金属催化剂层,然后在其上生长纳米管。设计在该基体表面上结构的微图案以提高该基体的表面粗糙度。然后,可以通过适合的技术在该经处理的基体上生长该碳纳米管/纤维结构。例如,可以使用两种不同的化学气相沉积工艺以在该金属性基体上生长碳纳米管。参照图3, 描述了第一方法,即浮动催化剂方法,其使用二茂铁作为催化剂,使用二甲苯作为碳源。例如,碳纳米管炉显示在图3的装置50中,其中提供M该催化剂源和碳源。作为实例,制备 Igm 二茂铁在IOOml 二甲苯中的溶液。在该炉56中在600°C _800°C的不同温度进行生长。 通过选择性改变温度,能够制备不同厚度的碳纳米管和不同的结构。作为实例,生长温度为 700°C,以制备本文中所示的实例。将该基体在由氩气源58和氢气源60提供的氩气/氢气气氛(85:15 V:V)中加热。将该二甲苯-二茂铁溶液在腔52中在190°C升华并以蒸气形式引入该炉56中。在本方法的实例中,该反应进行约40min-l小时,尽管该反应时间能够根据碳纳米管/纤维垫在该基体表面上生长的密度而改变。在第二可替代的方法中,不使用外部催化剂。在钢中存在的铁用作该工艺的催化剂。将该基体在由源58提供的氩气气氛中在例如约600°C加热。然后从源60注入氢气以还原铁。然后停止氢气流速,将乙炔从源 62引入该炉56中,引入时间根据在该金属性基体表面上所需的碳纳米管/纤维垫的密度和厚度为约30min-l小时。可以使用其他适合的在该表面上形成该碳纳米管/纤维的技术。一旦在该表面上生长了碳纳米管/纤维,由此形成了具有粗糙度的外(或内)表面构造,其导致了所需的疏水和超疏水特征。而且,由于对该表面的处理,纳米管的生长受到表面特征的影响,由于该表面上形成的微图案,不同的生长发生在该表面上。这又产生了所需的粗糙度,提供了 Lotus效应,并产生了疏水和超疏水特征。能够控制提高的表面粗糙度和提高的表面疏水性的结合以提供产生大于约150° 的水接触角和水后退角的超疏水表面,如图4A和4B中所见。在图4A中显示了前进水接触角,而在图4B中显示了后退水接触角,各自都是以本发明的方式在金属表面上形成的,用使用例如微升注射器放置在该表面上的10 μ L去离子水滴测定。该水滴形成具有低接触角滞后的大接触角。如同所示,水滴在该超疏水表面上形成水珠,使得其在上面接近球形,在实际实例中注意到水接触角大于170°。这种表面也是自清洁的,因为滚下该表面的水除去了该表面上的任何污染物。在某些实施方案中,能够特别设计在该金属性基体上形成的纳米结构的形状和尺寸,例如使用掩模技术,该碳纳米管生长在该表面上的特定区域或位置处。这样可以在该基体上形成例如特殊流型的液体。可替代地,该结构能够具有预设的纵横比,以形成描绘跨过该表面两侧的线、通道或其他特征的表面粗糙度图案,其进而能够控制通过该表面和/或其上的液体移动。在实例中,使用金属性基体形成微型浮式结构。依照本发明通过在其表面上生长碳纳米管的莲花状结构而对不锈钢(SS304)板的表面进行改性。该板用于测定例如如图4Α 和4Β中所示的水接触角,产生大于170°的水接触角,发现具有非常高的疏水稳定性。发现该经表面改性的钢的正方形板(IcmX lcmXO. Olcm)在实际穿透水面之前承受0. 5gm力。 这是该物体的体积的40倍大。这些表面改性钢板承受如此高载荷/单位长度的能力可使得甚至正方形的板也能够承受高载荷,从而提供了制备将会漂浮在水上的更小得多的结构的可能性。该碳纳米管可以通过作为实例描述的化学气相沉积工艺生长,图5A显示了在其上生长有碳纳米管且显示莲花状碳纳米管结构的不锈钢板的表面的第一 SEM图像。图5B 显示了更高放大倍数的SEM图像,显示了由碳纳米管形成的莲花状碳纳米管结构。图6显示了该结构的TEM图像,显示了莲花状结构的基本构件块是直径约20nm的碳纳米管。显示莲叶在其表面上具有二维粗糙度,这使其表面具有高疏水性。依照本发明形成的该碳纳米管结构具有甚至更高的粗糙度,因为该基本构件块是20nm碳纳米管,其形成小节点。然后这些小节点形成不同尺寸和形状的更大的节点。与其他碳纳米管结构不同的是,这种莲花状结构具有非常高的粗糙度和密实度。因此,所形成的表面不仅是超疏水的,而且也具有非常高的疏水稳定性。该小节点和更大的节点的层阶结构使得该结构具有超疏水性。该碳纳米管结构的微图案为纳米管提供了也具有自清洁特征的图案。在实例中,可以使用不同类型的钢作为基体材料。不锈钢304 =Grade 304是标准的“18/8”不锈钢。其是最通用且最广泛使用的不锈钢,与很多其他钢材料相比可以更宽范围的产品、形式和成品获得。其具有优良的成形和焊接特征。Grade 304的平衡奥氏体结构能使其非常深冲压而不进行中间淬火,这使得这种等级的钢在冲压不锈钢部件的制备中具有优势。不锈钢316是标准含钼等级,在奥氏体不锈钢中重要性仅次于Grade 304。钼赋予Grade 316比Grade 304更好的整体防腐蚀性质,特别是对在氯化物环境中的点蚀和缝隙腐蚀的抗性更高。这些或其他金属性材料的表面处理可以包括以下。不锈钢表面可以具有在其上的铬氧化物层。这种铬氧化物是惰性基体,且能够造成催化剂中毒。在存在强酸(例如的情况下,在室温,这种铬氧化物层溶解掉,由此有助于碳纳米管在该钢表面上更好的生长。可以在这种酸中在更高的温度(>80°C)处理该钢材料,以形成非常粗糙的表面。这种高度粗糙的表面有助于生长不同形态的碳纳米管。在实例中,能够通过在其上生长碳纳米管之前处理该钢材料而控制所得到的碳纳米管结构的粗糙度。以下温度范围代表了控制碳纳米管生长的实例。为了制备例如图5A中所示的莲花状结构,在约95°C进行10分钟的酸处理(9M H2SO4).在较低温度处理(例如40-60°C),形成了如图5C中所示的纳米管结构网。 尽管在这些实例中形成的各表面都是超疏水的,但表面的性质可以适用于不同的应用,具体取决于该碳纳米管结构所暴露的表面积。由其他试验也显示了所形成的表面的疏水特征。拍摄依照本发明制备的样品的扫描电子显微镜(SEM)图像以及透射电子显微镜(TEM)图像,用于观察个体单元的结构。通过如上所述观察在碳纳米管表面上的水接触角而测定疏水性。通过测定以下四个参数来测定所形成的涂层的环境稳定性(a)在极低温度(液队)时的稳定性;(b)在高温(在空气中在高达400°C的温度加热)时的稳定性;(c)在沸水中的稳定性和(d)淬火稳定性(将板在水中沸腾然后立即转移到冰浴中)。在这些环境测试的每一之后,拍摄碳纳米管的表面的SEM 图像以观察性质的任何变化。在恶劣环境处理之后还测定水接触角以关注疏水性的任何变化。在图7A中,显示了在其上形成有碳纳米管涂层的钢的表面上的冰滴的光学图像。当冷却到零度以下的温度时,将空气温度保持在室温,该碳纳米管表面与更具亲水性的表面相比延缓了冰的形成,这显示了其用于低温装置和应用的潜力。在图7B中,显示了在水中沸腾并在冰中淬火之后碳纳米管表面的SEM图像。该图像显示结构保持完整且没有脱层。图 7B中的插图是用Rame Hart量角计拍摄的光学图像。其显示在恶劣条件处理之后该表面仍是超疏水的。在图7C中,光学图像显示在其浸没在水中之前经碳纳米管改性的钢板的最大排水量。图7D显示了与相当于等于该板体积的排水量的浮力相比钢板能够接受的最大力。Y轴表示随着将该板在水中推动的以mN计的力。底线70对应于水的密度乘以板的体积。顶线72显示了在浸没之前该板承受的实际力。在图7E中,显示了具有在其上形成的碳纳米管表面构造且漂浮在水面上的0. 5mm厚不锈钢板的光学图像。在本实例中,能够通过监控在增大载荷时漂浮钢板实际上如何使水表面弯曲(就像弹性片一样)而使该板承受这种高载荷的能力的机理直观化。这种材料的表面的疏水性使得水表面伸长,使得在其实际克服表面张力并使该板沉没之前在水面上有5mm的微凹。 其实例示于图8A和8B中,其中2cmX2cmX0. Olcm板具有在其上形成的多个孔以提高其周界的表面积并降低其重量。该板的表面具有如上所述的碳纳米管结构,由于该表面的疏水性质,该板漂浮在水面上。图8B显示了随着用施加到其顶侧的载荷将其推入水中该板的侧视图,表明在拉伸水表面的同时其能够承受显著的载荷。该材料的超疏水性使其抵抗穿透到水表面中。一旦施加越来越大的载荷,水表面会变形。排水量比钢板体积大得多。不仅该材料能够承受更高的重量,而且是不润湿的,其能够在水面上形成不同类型的移动的基础。 在将该材料从水面拉出时,几乎没有或没有毛细下拉力。这可以产生能够在水面上移动和操作的水面行走机器人或结构。为了测定该样品板在沉没之前能够承受的力,如图9中所示使用载荷传感器装置80。载荷或力传感器82安装在机动台84上,其能够向下移动并将该板86推入水88中。将涂覆有这些碳纳米管涂层的不锈钢板的最大力与具有低表面能聚二甲基硅氧烷的另一涂层比较,结果示于图10中。在图10中,涂覆有PDMS的钢板的归一化浮力结果示为90,涂覆有碳纳米管的钢板的结果示为92。与仅依赖于物体体积的浮力不同,依照本发明的材料的排水量取决于其周长和疏水性。因此,能够通过降低材料的厚度而降低这些实例中板的重量。然后这样可以允许更大的有效载荷在该板上。为了进一步降低该板的质量,测试具有相同边长但在中心冲有孔的正方形不锈钢板能够承受的最大力。发现通过在板中提供孔,降低了质量,同时提高了板能够承受的最大力。这是由于向上的表面张力,其取决于该材料的周长。通过在板中冲孔,提高了作用于该板上的表面张力。由于高强度和化学耐受性,对于很多其他应用而言,不锈钢是有吸引力的材料选择。本发明还涉及用于其他应用的能够依照所公开的工艺形成的金属性表面改性基体。特别的,该表面改性的金属性基体能够包括具有在其上形成的碳纳米管/纤维结构以提供疏水特征的至少一个表面。该表面可以是金属性材料本身,在其上直接生长碳纳米管,或用催化剂层改性的金属性表面,用于在其上间接生长碳纳米管。该结构包括形成由碳纳米管形成的小节点,以及形成不同尺寸和形状的较大的节点,如图3A和;3B中所示。所形成的碳纳米管结构具有非常高的粗糙度和密实度,且能够在大表面积上形成。可以使用金属或具有金属性表面涂层的材料形成的结构的范围广泛,为其添加一个或多个疏水表面可以提供对于很多应用而言显著的益处。在可替代的实例中,也可以形成依照本发明的表面构造以具有其他合意的特征和/或品质。例如,可以通过在该结构中渗透适合的化合物而对在金属上的该碳纳米管/纤维涂层进一步增强和/或功能化。作为更特别的实例,将PDMS预聚物(sylgard 184)溶解在二甲苯中(lgm sylgard在IOml 二甲苯中)以制备稀溶液。然后将该溶液旋涂在碳纳米管改性的钢表面上。聚合物溶液的浓度可以使其插入碳纳米管网中但不在碳纳米管/纤维的表面上形成网。然后将整个系统在 70°C交联。PDMS链渗透入该碳纳米管网中并增强了整个结构,同时保持材料的表面粗糙度。 该材料表现出超疏水效果,但此外现在该涂层变得具有高度的抗刮伤性。进行类似ASTM D3359-02的试验以测试在金属性基体上的涂层的牢固性。观察到在用PDMS渗透之后,该涂层变得更耐久得多。其他增强技术(例如产生具有热塑性或热固性的碳纳米管/纤维涂层) 可以产生比没有碳纳米管/纤维的那些更强的涂层。这种结构为该涂层赋予非常高的抗刮伤性以及其高的环境稳定性。根据特定应用的需要,能够使用不同的聚合物。这种结构的实例示于图11中,其示意性地显示了在不锈钢基体表面上形成的碳纳米管网,在其间具有插层弹性体增强物。如图12A中可见,在SEM图像中显示了这种弹性体增强的碳纳米管网, 其中用聚二甲基硅氧烷增强碳纳米管网,插图显示了用其维持的超疏水特征。在图12B和 12C中,分别显示了在没有聚合物增强和有增强的碳纳米管表面上的带测试的光学图像,表明未经增强的表面构造能够在胶带上留下一些碳纳米管残渣,而聚合物增强的表面未留下
11任何这种残渣。类似地,能够通过使用类似的工艺或例如等离子体聚合的工艺对该涂层进行进一步功能化,其中能够在该碳涂层上沉积适合的聚合材料的薄层。作为更特别的实例,可以使用例如等离子体聚合的工艺或类似的工艺沉积含氟化合物,所述含氟化合物除了其超疏水性之外,还能够引发整个结构的疏液性质。本发明可以用于传热设备,例如航空应用、航海应用、汽车应用、医疗应用和商业和居家应用。还预期了具有本发明的下述特征的不同组合、具有不同于本文中描述的那些的特征、或者甚至缺少这些特征中的一个或多个的多种其他实施方案。同样地,认识到本发明可以以多种其他适合的方式实施。例如,在传热设备中,例如传热炉,蒸汽可能冷凝在金属管上。金属上的这种水冷凝层用作绝热层,由此降低了传热效率。有机疏水材料可能不是适用于这种应用的选择,因为其本身是热绝缘的。另一方面,碳纳米管具有非常高的导热性。将碳纳米管涂覆在金属表面上将会有助于提高传热效率。在与太阳能板一起使用时,碳纳米管具有高的热吸收系数。如果涂覆在太阳能加热器的金属表面上,这些材料能够更有效率得多地吸收太阳能辐射并传热给金属性基体。与金属表面上所用的黑漆不同,碳纳米管具有高的导热性,因此能够提高效率。在流体力学应用中,使用在金属上生长碳纳米管的工艺不仅可以涂覆外表面而且可以涂覆管的内表面。这能够在该管的内部上形成超疏水表面,使得流过这些管的水将与管的表面具有最小的相互作用。由于摩擦的降低,泵送水通过这些管将会需要较少的能量。在航海应用中,依照本发明形成的疏水表面的非润湿和非结垢特征也可能是非常有用的。具有这种外表面的船体将会减小与水的摩擦以提高燃料效率并有利于防止由于有机体产生的与水接触的表面的结垢。该改性的钢表面例如是非润湿的且保持干燥。这能够使这些表面不结垢。此外,这种材料能够用于制备能够更容易清洁和消毒的医疗仪器。例如在图13中,用该碳纳米管结构涂覆金属管,然后将该管浸没在水中。由于在该管的表面上截留的空气层,该管呈现银色。该管的内部也可以形成该碳纳米管结构,且可以适用于医疗应用中,包括导管、脉管支架或其他医疗应用。该材料也可以用于其他应用中,例如在轮胎弦(tire chord)的涂层中。钢弦用于增强轮胎,但钢本身与橡胶具有低粘合性。涂覆有碳纳米管的钢能够为钢增强轮胎提供可替代的选择,以在橡胶材料和弦之间例如在各种温度下都提供更好的粘合性。类似地,用依照本发明的材料可以提高金属材料在混凝土或其他材料中的增强。由于该金属性基体材料和该碳纳米管结构的导热性,还预期低温应用。如果材料表面比周围相对冷得多,那么水蒸气可能凝结在该材料的表面上,造成雪或冰在这些表面上聚集。使用依照本发明的超疏水表面可以为该材料提供保持表面干燥以及由此减少冰在表面上的聚集的特征。这种应用例如可以包括航天应用。该导热性特征也可以用于防止由水在更高温度而可能使金属材料发生的腐蚀,例如在存在一些水的烃或油地下储存中。由于本发明的疏水表面将保护下面的金属性基体且能够承受更高的温度环境,这种表面构造能够是非常有用的。在其他应用中,由于该碳纳米管的电特征,该表面可以用作抗静电表面,其驱散或防止静电荷的聚集,例如在电子或航空应用中。提供具有疏水性和抗静电性两者的表面可能用于多种环境和应用。而且,由于该碳纳米管微结构产生的该表面上显著提高的表面积,该表面可以用于其他电子应用,例如以形成电极。如应当认识的那样,依照本发明的疏水表面与金属或涂覆有金属的基体相结合, 能够用于广泛范围的应用中。除了以上,只要需要超疏水表面,本发明的超疏水表面就可适用。因此将认识到本文中要求保护或描述的特定用途/方法/应用等是示例性的而非限制性的。本发明的超疏水基体能够非必要地用于体积损失或保持受到关注的容器(例如用于配药或其他昂贵液体)中。能够构造具有本发明的超疏水表面的药物输送装置。这种药物输送装置能够帮助确保每次应用时递送完全正确计量的药物。而且,具有小容积的各种装置(例如毛细管和/或微流体装置)也可以具有本发明的超疏水基体以防止或降低流体滞留、或拖曳等。本发明的超疏水基体表面容易将水或其他液体散出到该表面之外的能力能够用于需要降低拖曳或流体摩擦的任意应用。此外,该表面的自清洁特征能够用于其他环境中, 例如清洁其他表面以除去污染物,并然后使其容易从表面上清除。本发明的其他应用能够包括用于烹饪器具(例如锅、盘、烹饪容器等)中以防止食物粘着并可使这种容器更容易清洁。基于现有烹饪器具的防粘涂层,本领域技术人员将相当熟悉类似的应用。在防止/减少水、雪或冰在结构上的聚集的应用中,还可以加热该结构以使液体容易散出。该超疏水表面也可以用于建筑材料中,例如屋顶材料、壁板、引水槽等,以有助于防止/减少冰和雪的聚集,并保持该材料和结构的完整性。类似的应用也能够提供防止在潮湿区域中形成霉菌或霉菌的防垢表面。本发明的另一非必要的应用包括制备防垢水加热器、锅炉或热交换器。当在交换器壁上的缺陷处发生局部沸腾时,包括液体的热交换器工作非常有效。蒸发热典型比液体的热容大得多。一旦气泡生长足够大,其从该表面分开并传热到工作流体本体中。依照本发明的超疏水表面便于水的局部沸腾,并防止这种设备表面结垢。依照本发明制备的表面可以用于构件部件的至少一个表面上,其中“构件”表示复合制品的各个部件之一。构件可以表示能够从系统中分开或结合到该系统中的部件、系统或组装件的一部分或本领域中已知的其他部件。此外,术语“表面”表示材料、构件或制品的外边界层。本发明还涉及具有超疏水表面物理性质的制品及其制备方法。该制品包括金属性材料基体,产生该基体的外表面的预设粗糙度。在该基体的外表面上形成具有纳米尺寸的至少一层碳纳米管/纤维微结构,该至少一层具有由碳纳米管形成的至少二维微图案,由此该表面构造的性质产生所需的超疏水特征。此处用水作为举例,但本发明覆盖的制品也可以类似地与其他流体反应。尽管已经结合一种或多种实施方案描述了本发明,但应当认识到所述的特别机理和技术仅是本发明的原理的举例,在不脱离本发明的精神和范围的情况下可以对所述的方法和设备进行多种改变。一旦阅读和理解了本说明书,就能够对其它进行改变和变化。本发明意于包括所有这些改变和变化,只要其落入后附权利要求或其等价方式的范围内。
权利要求
1.形成疏水表面的方法,包括提供具有预设构造的金属性基体,以预设方式处理该金属性基体以在该金属性基体的表面上提供所需的结构,在该金属性基体的该表面的至少一部分上生长多个碳纳米管/纤维并形成支撑在该基体上的预设体系结构,其中结合在该金属性基体上的该表面上的位置有效控制所述纳米管/纤维的生长以在该金属性基体的该表面上的该碳纳米管中提供预设的层阶结构。
2.权利要求1的方法,其中在该基体上形成的该预设体系结构将该碳纳米管体系结构附着到该金属表面上。
3.权利要求1的方法,其中所述疏水表面是超疏水表面。
4.权利要求1的方法,其中将该预设的层阶结构在500nm或更小的长度规模上在三个维度上进行调节。
5.权利要求1的方法,其中在该金属性基体上形成的该结构是该基体表面的微观图案。
6.权利要求1的方法,其中在该金属性基体上形成的该结构是通过选自由蚀刻、在该表面上接枝至少一种材料或其组合构成的组的工艺形成的。
7.权利要求1的方法,其中控制多个碳纳米管/纤维的生长以形成多个碳纳米管/纤维的小节点和大节点的所述层阶结构。
8.权利要求1的方法,其中控制在该金属性基体上形成的纳米结构的形状和尺寸。
9.权利要求8的方法,其中使用选自由掩模、形成具有预设纵横比的结构或其组合构成的组的技术来控制该形状和尺寸。
10.权利要求1的方法,其中该基体具有用催化剂层改性的金属性表面用于间接在其上生长该碳纳米管/纤维。
11.权利要求1的方法,其中将该碳纳米管/纤维选择性功能化。
12.权利要求11的方法,其中通过将预设的化合物渗透到该结构中而将该碳纳米管/ 纤维功能化。
13.具有疏水微结构的表面,包括具有在其上生长的碳纳米管/纤维构造的金属性基体,其中该碳纳米管构造形成有层阶结构,以具有与该表面结合的预设的粗糙度。
14.包括依照权利要求1形成的至少一个表面的设备。
15.权利要求14的设备,其中该疏水表面层是超疏水表面。
16.权利要求14的设备,其中该疏水表面层具有大于150°的水接触角。
17.具有疏水表面物理性质的制品,包括在其表面的至少一部分上涂覆有碳纳米管层的金属性基体,该碳纳米管层具有由多个碳纳米管的小节点和大节点形成的层阶结构,该小节点和大节点形成微结构。
18.权利要求17的制品的用途,用于需要防凝结表面且选自包括传热装置、炉、太阳能加热器、空调系统和低温系统的组的应用。
19.权利要求17的制品的用途,用于需要斥水表面且选自包括流体输送系统、船体、管道、导管、脉管支架、储罐、容器、微流体装置的组的应用。
20.权利要求17的制品的用途,用于需要抗静电和斥水表面且选自包括电气系统、电子装置、航空飞行器表面和电极的组的应用。
全文摘要
提供了疏水或超疏水表面构造和在金属性基体上形成疏水或超疏水材料的方法。该表面构造包括具有在其上生长的碳纳米管/碳纤维构造的金属性基体,该碳纳米管/碳纤维构造形成有层阶结构以具有与该表面相结合的预设粗糙度。该方法包括提供具有预设构造的金属性基体和生长多个碳纳米管/纤维或其他纳米结构,其形成负载在该基体上的预设结构。
文档编号B82B3/00GK102282096SQ200980154504
公开日2011年12月14日 申请日期2009年11月13日 优先权日2008年11月14日
发明者迪诺瓦拉 A., 塞蒂 S. 申请人:阿克伦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1