PEO包覆的中空Sn-Ni合金纳米线阵列、其制备方法及其应用的制作方法

文档序号:5269547阅读:212来源:国知局
PEO包覆的中空Sn-Ni合金纳米线阵列、其制备方法及其应用的制作方法
【专利摘要】本发明公开了一种PEO包覆的中空Sn-Ni合金纳米线阵列、其制备方法及其在锂电池负极材料中的应用,解决了现有现有三维结构纳米线作为锂电池负极材料稳定性差的问题,本发明包括步骤:1)恒流电沉积法制备Ni纳米线;2)以Ni纳米线为模板,通过电流置换反应制备中空Sn-Ni合金纳米线阵列;3)PEO溶液浸润法制得PEO包覆的中空Sn-Ni合金纳米线阵列。制得的PEO包覆的中空Sn-Ni合金纳米线阵列为负极,组装锂离子电池,并测试性能,PEO包覆中空Sn-Ni合金纳米线阵列200次循环后可逆比容量保持在0.88mAhcm-2,这主要得益于高分子的柔性和其内部中空结构对体积膨胀的缓冲作用。
【专利说明】PEO包覆的中空Sn-N i合金纳米线阵列、其制备方法及其应用

【技术领域】
[0001]本发明涉及纳米材料及其应用【技术领域】,特别涉及一种PEO包覆的中空Sn-Ni合金纳米线阵列、其制备方法及其应用。

【背景技术】
[0002]传统的二维薄膜锂离子电池锂离子扩散路径短、比容量高、电化学性能和安全性能优良,然而电池体积能量密度较低。与其相比,三维电极结构能够充分利用三维空间优势,这种微纳结构电极的活性物质在微米甚至纳米尺度下形成柱状、片状以及其它形状的微观结构,增加了活性物质的微观表面积,从而使活性物质利用率和电池总体性能得到提高,提高了电池的容量。三维锡基纳米线结构电极对于发展新一代高容量、大功率锂离子电池具有重要的作用,然而锡锂合金化过程中体积膨胀造成的电极稳定性差使锡为负极的锂离子电池充放电循环寿命很低。相对薄膜,三维结构具有更短的锂离子扩散距离,同时三维结构能够增大电极与电解质膜的接触面积。然而,三维结构纳米线电极在受应力或高温条件下可能会发生形变,由于长径比很大,纳米线容易根部断裂或者相互粘结而薄膜化,三维纳米线结构被破坏,导致电池容量下降,存在着三维电极结构稳定性差的问题。


【发明内容】

[0003]为了解决现有技术中三维结构纳米线作为锂电池负极材料稳定性差的问题,本发明提供了一种PEO包覆的中空Sn-Ni合金纳米线阵列、其制备方法及其应用。
[0004]本发明的技术方案为:
一种PEO包覆的中空Sn-Ni合金纳米线阵列,包括中空Sn-Ni合金纳米线阵列,所述中空Sn-Ni合金纳米线阵列外面由PEO包覆层包覆。
[0005]优选的,所述中空Sn-Ni合金纳米线阵列的阵列高度为8um-10um,相邻两纳米线的间距为60nm-70nm,所述中空Sn-Ni合金纳米线的空腔直径为260_280nm,所述PEO包覆层的厚度为15-25nm。
[0006]所述PEO包覆的中空Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
I)恒流电沉积法制备Ni纳米线阵列
a.在多孔阳极氧化铝模板的一面喷金,将喷金面用导电银胶粘覆在洁净的铜箔上,用硅胶密封露出多孔阳极氧化铝模板的铜箔,待硅胶凝固后真空干燥;
b.以饱和甘汞电极为参比电极、钼电极为对电极、以步骤a中处理过的多孔阳极氧化铝模板为工作电极,在0.1-0.5 mA的电流下恒电流沉积1-4 h,沉积结束后,分别用去离子水和酒精清洗,其中电解液由10-30 g/L的Ni2SO4 *6H20,20-50g/L的H3BO3和20_40g/L的聚乙二醇组成;
c.将沉积有Ni纳米线的多孔阳极氧化铝模板放入0.1-0.5 M的NaOH溶液中浸泡15-50min,对多孔阳极氧化铝模板进行微扩孔,之后清洗、干燥,得扩孔的Ni纳米线,保存备用;
2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.01-0.1 M的SnSO4溶液中浸泡反应5-30天,取出后清洗、干燥得中空Sn-Ni合金纳米线阵列;
3)PEO包覆中空Sn-Ni合金纳米线阵列
配制质量分数为2%-10%的PEO溶液,取5 μ L-1O μ L PEO溶液滴在多孔阳极氧化铝模板上,PEO溶液浸润多孔阳极氧化铝模板孔壁成膜,待溶剂挥发后,将多孔阳极氧化铝模板置于1-4Μ NaOH溶液中去除模板,清洗、干燥,得PEO包覆的中空Sn-Ni合金纳米线阵列。
[0007]优选的,步骤I) a中铜箔的厚度为10_25um,铜箔使用前去其表面的氧化物和油污。
[0008]优选的,步骤l)b中,电解前先将处理好的多孔阳极氧化铝模板放入电解液中超声3-5min以除去多孔阳极氧化铝模板孔道内的气体,然后在电解液中静置0.5_2h使电解液充分浸润到多孔阳极氧化铝模板孔道中。
[0009]所述PEO包覆的中空Sn-Ni合金纳米线阵列在锂电池负极材料中的应用。
[0010]本发明的有益效果为:
本发明所制PEO包覆的中空Sn-Ni合金纳米线阵列,制备方法简单,条件温和可控。制备的纳米线排列整齐,高度基本一致,直径均一。PEO包覆膜可以增加中空Sn-Ni合金纳米线阵列的刚性,避免其倒伏现象,起到隔膜的作用,从而增强电池的循环稳定性能。充放电性能测试结果表明PEO包覆后的中空Sn-Ni合金纳米线阵列具有较高的比容量和良好的循环稳定性,50次循环后容量仍保持在0.9mAhcm_2,200次循环后容量仍保持在0.88mAhcm_2,,除首次库伦效率较低外,其余几乎都在95 %以上。PEO包覆中空Sn-Ni合金纳米线阵列负极有望成为一种新型的锂离子电池负极材料,在实际应用领域具有广泛的研究前景。

【专利附图】

【附图说明】
[0011]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0012]图1为实施例1中制备的PEO包覆的中空Sn-Ni合金纳米线阵列的扫描电镜图,其中图1a为俯视图,图1b和图1c为截面图;
图2 a为实施例3中制备的PEO包覆的中空Sn-Ni合金纳米线阵列的透射电镜图;图2b为实施例4中制备的PEO包覆的中空Sn-Ni合金纳米线阵列的透射电镜图;
图3为实施例9组装的电池50次循环的循环性能曲线;
图4为实施例9组装的电池200次循环的循环性能曲线。

【具体实施方式】
[0013]实施例1
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
I)恒流电沉积法制备Ni纳米线阵列 a.多孔阳极氧化铝模板(AAO)的处理
剪取直径为20 mm、厚度为15 μ m的铜箔,分别在lmol/L的稀盐酸溶液和丙酮中超声波清洗5 min,以洗去其表面的氧化物和油污,然后用去离子水和酒精分别清洗3-5次,在90°C下真空干燥4h。
[0014]在多孔阳极氧化铝模板一面喷金,将喷金面用导电银胶粘覆在上述处理过的铜箔上,并用硅胶密封除AAO模板之外的部分,不让铜箔露出,待硅胶凝固后,80°C下真空干燥4h0
[0015]b.配制电解液(电解液由15 g/L的Ni2SO4 *6H20,35g/L的H3BO3和37g/L的聚乙二醇组成),将处理好的AAO模板放入电解液中超声3min以除去AAO模板孔道内的气体,然后在电解液中静置Ih使电解液充分浸润到AAO模板孔道中;以饱和甘汞电极为参比电极、钼电极为对电极、以在电解液中超声并静置后的AAO模板为工作电极,在0.35 mA的电流下恒电流沉积2 h,沉积结束后,分别用去离子水和酒精各清洗3-5次。
[0016]c.将沉积有Ni纳米线的AAO模板放入0.1M的NaOH溶液中浸泡40min,对AAO模板进行微扩孔,之后用去离子水和酒精各清洗3-5次、在100°C的真空干燥箱中干燥5h,得扩孔的Ni纳米线,保存备用。
[0017]2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.1M的SnSO4溶液中浸泡反应5d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。
[0018]3) PEO包覆中空Sn-Ni合金纳米线阵列
配制质量分数为2%的PEO (聚环氧乙烷PEO的分子量为60万)溶液,用移液枪移取5 μ L PEO溶液滴在AAO模板上,PEO溶液浸润AAO模板孔壁成膜,待溶剂挥发后,将多AAO模板置于IM NaOH溶液中去除模板,然后分别用水和酒精各清洗3-5次,在100°C的真空干燥箱中干燥5h,得PEO包覆的中空Sn-Ni合金纳米线阵列。对本实施例所得产物做扫描电镜(SEM)分析,结果如图1所不。
[0019]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8_10um,相邻两纳米线的间距为65-70nm,中空Sn-Ni合金纳米线的空腔直径为260_262nm,PEO包覆层的厚度为15-20nm。
[0020]实施例2
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤3)同实施例1。
[0021]步骤2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.1 M的SnSO4溶液中浸泡反应10d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。
[0022]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8_10um,相邻两纳米线的间距为60-65nm,中空Sn-Ni合金纳米线的空腔直径为262_265nm,PEO包覆层的厚度为15-20nm。
[0023]实施例3
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤: 步骤I)和步骤3)同实施例1。
[0024]步骤2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.1 M的SnSO4溶液中浸泡反应15d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。对本实施例所得产物做透射电镜分析,结果如图2a所示。
[0025]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8_10um,相邻两纳米线的间距为60-65nm,中空Sn-Ni合金纳米线的空腔直径为265_270nm,PEO包覆层的厚度为15-20nm。
[0026]实施例4
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤3)同实施例1。
[0027]步骤2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.1M的SnSO4溶液中浸泡反应30d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。对本实施例所得产物做透射电镜分析,结果如图2b所示。
[0028]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8-lOum,相邻两纳米线的间距为60-65nm,中空Sn-Ni合金纳米线的空腔直径为270_275nm,PEO包覆层的厚度为15-20nm。
[0029]实施例5
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤3)同实施例1。
[0030]步骤2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.01 M的SnSO4溶液中浸泡反应30d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。
[0031]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8_10um,相邻两纳米线的间距为65-70nm,中空Sn-Ni合金纳米线的空腔直径为260_263nm,PEO包覆层的厚度为15-20nm。
[0032]实施例6
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤3)同实施例1。
[0033]步骤2)电流置换法制备中空Sn-Ni合金纳米线阵列
将扩孔的Ni纳米线,放入0.05 M的SnSO4溶液中浸泡反应30d,取出后分别用去离子水和酒精各清洗3-5次,然后在100°C的真空干燥箱中干燥8h,得中空Sn-Ni合金纳米线阵列。
[0034]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8-lOum,相邻两纳米线的间距为65-70nm,中空Sn-Ni合金纳米线的空腔直径为265_270nm,PEO包覆层的厚度为15-20nm。
[0035]实施例7 本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤2)同实施例4。
[0036]步骤3 ) PEO包覆中空Sn-Ni合金纳米线阵列
配制质量分数为3.5%的PEO (ΡΕ0的分子量为60万)溶液,用移液枪移取5 μ L PEO溶液滴在AAO模板上,PEO溶液浸润AAO模板孔壁成膜,待溶剂挥发后,将多AAO模板置于IMNaOH溶液中去除模板,然后分别用水和酒精各清洗3-5次,在100°C的真空干燥箱中干燥5h,得PEO包覆的中空Sn-Ni合金纳米线阵列。
[0037]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8-lOum,相邻两纳米线的间距为60-65nm,中空Sn-Ni合金纳米线的空腔直径为270_275nm,PEO包覆层的厚度为20-25nm。
[0038]实施例8
本发明PEO包覆的Sn-Ni合金纳米线阵列的制备方法,包括以下步骤:
步骤I)和步骤2)同实施例4。
[0039]步骤3) PEO包覆中空Sn-Ni合金纳米线阵列
配制质量分数为5%的PEO (ΡΕ0的分子量为60万)溶液,用移液枪移取5 μ L PEO溶液滴在AAO模板上,PEO溶液浸润AAO模板孔壁成膜,待溶剂挥发后,将多AAO模板置于IMNaOH溶液中去除模板,然后分别用水和酒精各清洗3-5次,在100°C的真空干燥箱中干燥5h,得PEO包覆的中空Sn-Ni合金纳米线阵列。
[0040]本实施例所得PEO包覆的中空Sn-Ni合金纳米线阵列的阵列高度为8_10um,相邻两纳米线的间距为60-65nm,中空Sn-Ni合金纳米线的空腔直径为270_275nm,PEO包覆层的厚度为23-25nm。
[0041]实施例9
PEO包覆的中空Sn-Ni合金纳米线阵列在锂电池负极材料中的应用:
以分布着实施例1所制得的PEO包覆的中空Sn-Ni合金纳米线阵列的铜片为电极片,组装扣式半电池。
[0042]将电极、CR2032型电池壳体和工具一起放入真空干燥箱中,在120 °C下干燥6 h,以除去水分,然后迅速转移到手套箱(〈I X 10_4%水分、〈4 X 10_4%氧气)中装配电池。锂片为对电极,隔膜为聚丙烯微孔复合膜(Celgard 2400),加入适量lmol/L LiPF6 /EC+ DMC+ EMC (体积比1:1:1)电解液后封口。
[0043]使用LAND电池测试系统(CT2001 A)对所组装的电池进行恒电流充放电测试(测试结果如图3、图4所示),测试电压范围为0.002-3 V,电流密度为1-5 mAcm—2。充放电性能测试结果表明包覆后的中空Sn-Ni合金纳米线阵列具有较高的比容量和良好的循环稳定性,50次循环后容量仍保持在0.9mAhcnT2,200次循环后容量仍保持在0.88mAhcnT2,除首次库伦效率较低外,其余几乎都在95 %以上。
【权利要求】
1.一种PEO包覆的中空Sn-Ni合金纳米线阵列,其特征在于:包括中空Sn-Ni合金纳米线阵列,所述中空Sn-Ni合金纳米线阵列外面由PEO包覆层包覆。
2.如权利要求1所述PEO包覆的中空Sn-Ni合金纳米线阵列,其特征在于:所述中空Sn-Ni合金纳米线阵列的阵列高度为8um-10um,相邻两纳米线的间距为60nm-70nm,所述中空Sn-Ni合金纳米线的空腔直径为ZeOjSOnmJy^iiPEO包覆层的厚度为15_25nm。
3.如权利要求1所述PEO包覆的中空Sn-Ni合金纳米线阵列的制备方法,其特征在于,包括以下步骤: 1)恒流电沉积法制备Ni纳米线阵列 a.在多孔阳极氧化铝模板的一面喷金,将喷金面用导电银胶粘覆在洁净的铜箔上,用硅胶密封露出多孔阳极氧化铝模板的铜箔,待硅胶凝固后真空干燥; b.以饱和甘汞电极为参比电极、钼电极为对电极、以步骤a中处理过的多孔阳极氧化铝模板为工作电极,在0.1-0.5 mA的电流下,恒电流沉积1-4 h,沉积结束后,分别用去离子水和酒精清洗,其中电解液由10-30 g/L的Ni2SO4 *6H20,20-50g/L的H3BO3和20_40g/L的聚乙二醇组成; c.将沉积有Ni纳米线的多孔阳极氧化铝模板放入0.1-0.5 M的NaOH溶液中浸泡15-50min,对多孔阳极氧化铝模板进行微扩孔,之后清洗、干燥,得扩孔的Ni纳米线,保存备用; 2)电流置换法制备中空Sn-Ni合金纳米线阵列 将扩孔的Ni纳米线,放入0.01-0.1 M的SnSO4溶液中浸泡反应5-30天,取出后清洗、干燥得中空Sn-Ni合金纳米线阵列; 3)PEO包覆中空Sn-Ni合金纳米线阵列 配制质量分数为2%-10%的PEO溶液,取5 μ L-1O μ L PEO溶液滴在多孔阳极氧化铝模板上,PEO溶液浸润多孔阳极氧化铝模板孔壁成膜,待溶剂挥发后,将多孔阳极氧化铝模板置于1-4Μ NaOH溶液中去除模板,清洗、干燥,得PEO包覆的中空Sn-Ni合金纳米线阵列。
4.如权利要求3所述PEO包覆的中空Sn-Ni合金纳米线阵列的制备方法,其特征在于,步骤I) a中铜箔的厚度为10-25um,铜箔使用前去其表面的氧化物和油污。
5.如权利要求3所述PEO包覆的中空Sn-Ni合金纳米线阵列的制备方法,其特征在于:步骤l)b中,电解前先将处理好的多孔阳极氧化铝模板放入电解液中超声3-5min以除去多孔阳极氧化铝模板孔道内的气体,然后在电解液中静置0.5-2h使电解液充分浸润到多孔阳极氧化铝模板孔道中。
6.如权利要求1所述PEO包覆的中空Sn-Ni合金纳米线阵列在锂电池负极材料中的应用。
【文档编号】B82Y30/00GK104466103SQ201410599659
【公开日】2015年3月25日 申请日期:2014年10月31日 优先权日:2014年10月31日
【发明者】石永倩, 唐其伟, 刘军, 赵成龙 申请人:山东玉皇新能源科技有限公司, 山东玉皇化工有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1