变容式压缩机和具有其的制冷装置的制造方法_4

文档序号:9806828阅读:来源:国知局
0112]根据该具体实施例的变容式压缩机100与参考上述实施例描述的变容式压缩机100的其它结构可以相同,这里不再详细描述。
[0113]下面结合图14a和图14b,对根据本发明再一个实施例的变容式压缩机100的变容原理进行说明。图14a和图14b中示出了吸气口A、第一气缸23的工作腔28、变容气缸(例如第二气缸24)的压缩腔B、变容阀3、形成在变容阀3上的第一压力通道E、以及与变容阀3的一侧相通的供压通道41(也可以为一段管的形式)。本实施例与上述第一个实施例的区别仅在于:第一气缸23和第二气缸24均与同一个吸气口 A相连。本实施例的变容式压缩机100的基本工作原理如下:
[0114]当向变容阀3的一侧(例如,图14a中的下侧)通过供压通道41导入第一压力气体(例如,具有排气压力Pd)时,变容阀3在其下端面高压的作用下,将克服变容阀3的重力让变容阀3向上移动,使变容阀3隔断变容气缸的吸气通道,使吸气口 A处的低压无法传递到变容气缸的压缩腔B中,变容气缸无法吸入低压冷媒。并且,当变容阀3上移后,第一压力通道E连通供压通道41和压缩腔B,使得供压通道41中的第一压力气体被吸入到压缩腔B内。此时,由于滑片29尾部和头部均为排气压力,不能产生压差作用,因此,滑片29头部与活塞27的外周壁分离,变容气缸不参与压缩工作。此时,变容式压缩机100工作模式为部分容量工作模式。
[0115]当向变容阀3的上述一侧导入第二压力气体(例如,具有吸气压力Ps)时,变容阀3的下端面为低压,此时,在变容阀3自身重力的作用下,变容阀3向下移动,压缩腔B与第一压力通道E上下错开,压缩腔B与原先被变容阀3挡住的吸气口 A重新连通,此时变容气缸可正常吸入低压冷媒。此时,滑片29在其尾部为排气压力和头部为吸气压力的压差作用下,滑片29头部与活塞27外周壁止抵,使得变容缸正常参与压缩工作。此时,变容式压缩机100的工作模式为全容量工作模式。
[0116]在上述过程中,第一气缸23为常运转气缸,即无论第二气缸24处于何种状态,第一气缸23均正常工作,即对由吸气口 A吸入到其工作腔28内的低压冷媒进行压缩。
[0117]下面结合上述的变容原理参考图15-图20描述根据本发明再一个具体实施例的变容式压缩机100。
[0118]在该具体实施例中,第一气缸23和第二气缸24均与第二吸气管62(即吸气管)相连。由此,储液器6过来的待压缩冷媒(即低压冷媒)可以通过第二吸气管62分别供入第一气缸23和第二气缸24的工作腔28内。例如,如图15所示,吸气口A形成在隔板25上,第二吸气管62连接在储液器6和隔板25之间,该吸气口A始终与吸气压力连通。
[0119]参照图15并结合图16,隔板25上形成有吸气孔241,吸气口 A适于通过该吸气孔241与第一气缸23和第二气缸24的工作腔28连通。具体而言,吸气孔241包括彼此相连的第一吸气段2411和第二吸气段2412,第一吸气段2411沿隔板25的内外方向延伸(例如,沿隔板25的径向延伸),第一吸气段2411的一端(例如,图15和图16中的右端)贯穿隔板25的外周壁以构成吸气口 A,第二吸气段2412与第一吸气段2411的另一端(例如,图15和图16中的左端)相连且沿隔板25的轴向延伸,第二吸气段2412的一端(例如,图15和图16中的下端)贯穿隔板25的端面与用于容纳变容阀3的容纳腔221连通。进一步地,第一气缸23和第二气缸24的工作腔28的内壁上形成有与吸气孔241的第二吸气段2412连通的连通口。可选地,连通口形成为斜切口。供压通道41形成在第二气缸24上。
[0120]如图15所示,当通过供压通道41向变容阀3的下端面导入第二压力气体时,变容阀3在弹簧7和重力的作用下缩回容纳腔221的下部,变容阀3避让连通口,此时变容气缸(即第二气缸24)的压缩腔B通过连通口、吸气孔241与吸气口 A连通,压缩腔B吸入低压冷媒,由于第二气缸24的滑片29尾部始终连通壳体I内部空间,该滑片29的头部在其尾部压力的作用下将与第二气缸24内的活塞27的外周壁止抵,变容气缸参与压缩工作,此时变容式压缩机100为双缸工作模式,工作容量为全容量。当通过供压通道41向变容阀3的下端面导入第一压力气体时,变容阀3在其下端面压力作用下克服自身重力和弹簧7力,变容阀3进入容纳腔221的上部封闭第二吸气段2412以将连通口和第二吸气段2412隔断,即隔断第二气缸24的压缩腔B与隔板25的吸气口 A的连通,如图16所示,此时变容阀3中的第一压力通道E通过连通口与压缩腔B连通,供压通道41导入的第一压力气体可以通过第一压力通道E进入到第二气缸24的压缩腔B内,此时滑片29头部与尾部均为排气压力,不产生压差,因此,滑片29的头部与活塞27分离,第二气缸24不参与压缩工作,此时变容式压缩机100为部分容量工作模式。
[0121]在图17a和图17b的示例中,供压通道41形成在副轴承22上,供压通道41位于容纳腔221的下方且其与容纳腔221相连的一端的横截面积小于容纳腔221的横截面积,由供压通道41供入的第一压力气体或第二压力气体可以始终直接作用在变容阀3的下端面,从而变容阀3可以顺利地在容纳腔221内上下移动。此时变容阀3与容纳腔221的内壁之间可以不设置弹簧7。
[0122]第二吸气段2412的最小外接圆的直径为CU,变容阀3的截面形状可以为多边形,例如方形等。当变容阀3的截面形状形成为方形时,变容阀3的宽度为s,其中,s、cU满足:s >cU,以使变容阀3可以完全密封住吸气孔241。
[0123]当然,变容阀3的形状还可以为圆柱形,如图20所示,变容阀3的直径为d2,其中,Cl1、d2满足:d2>di。进一步地,d1、d2进一步满足:d2 > di+0.5mm。更进一步地,d1、d2满足:d2 > di+lmm。再进一步地,dhcb还可以满足:d2 2 dMmm。由此,变容阀3的端面可以紧贴隔板25的对应端面,实现第二吸气段2412与压缩腔B的密封隔断。
[0124]进一步地,如图17b所示,当变容阀3位于隔断位置时变容阀3适于进入第二吸气段2412内,此时第二吸气段2412的横截面形状可以为圆形,相应地,变容阀3的形状为圆柱形,通过变容阀3的周向与第二吸气段2412的内壁配合实现密封隔断。更进一步地,还可以设置限位件例如弹簧7等,以防止变容阀3完全进入吸气孔241中。
[0125]如图18所示,第一气缸23为变容气缸,供压通道41形成在主轴承21上。与图15和图16不同之处仅在于:弹簧7的作用相反。具体而言,当供压通道41导入第二压力气体时,弹簧7要克服变容阀3的重力将变容阀3向上拉动以使第一气缸23正常吸气;当供压通道41导入第一压力气体时,变容阀3的上端面受到的气体力要克服弹簧7的弹力和变容阀3的重力将变容阀3压下以隔断第一气缸23的吸气。
[0126]图19中所示的第一气缸23和第二气缸24均为变容气缸,相应地,变容阀3为两个,两个变容阀3均设在对应的气缸内。两个变容阀3的功能和控制原理等在以上的内容中均有介绍,在此不再赘述。
[0127]根据该具体实施例的变容式压缩机100与参考上述实施例描述的变容式压缩机100的其它结构可以相同,这里不再详细描述。
[0128]根据本发明实施例的变容式压缩机100,将变容阀3设计到壳体I内部,变容气缸在参与压缩工作时,其吸气路径与传统的双缸压缩机基本一致,即由于没有改变吸气路径的结构,对变容气缸的吸气效率基本无影响,从而不会影响变容气缸的运转效率,变容气缸的性能可以得到较好的保证。
[0129]而且,由于不存在使第一吸气管61额外加长或安装控制阀引起吸气阻力的增加的问题,且降低了成本,整个变容式压缩机100不易产生振动,从而不会出现噪音和可靠性的问题。而且,由于变容气缸的滑片腔242与壳体I内部直接连通,不仅简化了滑片腔242的结构,而且滑片29可以通过滑片腔242与壳体I底部油池内的润滑油直接接触,使得滑片29的润滑效果好,从而保证了变容式压缩机100长期运行的可靠性和性能。另外,根据本发明的变容式压缩机100具有结构简单合理、制作成本低、控制可靠的特点。
[0130]如图21-图24所示,根据本发明第二方面实施例的制冷装置200,包括第一换热器201、第二换热器202、第一控制阀203以及变容式压缩机100。变容式压缩机100可以为参考上述第一方面实施例描述的变容式压缩机100。制冷装置200可以应用于空调器,空调器通常用于通过使室内温度保持设定温度,而将室内保持在舒适状态。可选地,第一控制阀203为四通阀,但不限于此。
[0131]具体地,第二换热器202的一端(例如,图21和图22中的右端)相与第一换热器201的一端(例如,图21和图22中的右端)相连,第一控制阀203包括第一阀口 2031、第二阀口2032、第三阀口 2033和第四阀口 2034,第一阀口 2031与第一换热器201的另一端(例如,图21和图22中的左端)相连,第三阀口 2033与第二换热器202的另一端(例如,图21和图22中的左端)相连,其中变容式压缩机100的壳体I上形成有排气口 11(可以为一段管的形式),排气口11用于排出壳体I内压缩后的冷媒,排气口 11与第四阀口 2034相连,吸气口 A与第二阀口2032相连,供压通道41与吸气口 A或排气口 11相连,以将具有吸气压力Ps的低压冷媒(即第二压力气体)或具有排气压力Pd的高压冷媒(即第一压力气体)通入供压通道41。
[0132]进一步地,第一换热器201的上述一端和第二换热器202的上述一端之间设有节流元件204 ο可选地,节流元件204为毛细管或膨胀阀。
[0133]第一换热器201和第二换热器202中的其中一个为冷凝器,另一个为蒸发器。变容式压缩机100用于压缩冷媒。冷凝器用于冷凝经压缩机压缩的冷媒并将热量向外释放。节流元件204用于降低经冷凝器冷凝后的冷媒的压力。蒸发器用于蒸发已经通过节流元件204的冷媒并吸收外部热量。
[0134]根据制冷装置200的运行模式,可以实现第二换热器202与变容式压缩机100的吸气口 A连通的同时第一换热器201与变容式压缩机100的排气口 11连通的制冷模式(如图22所示),也可以实现第二换热器202与变容式压缩机100的排气口 11连通同时第一换热器201与吸气口 A连通的制热模式(如图21所示)。
[0135]在图21和图22的示例中,储液器6分别通过两个第一吸气管61与变容式压缩机100的第一气缸23和第二气缸24相连。供压通道41的上述一端设在第一控制阀203的第一阀口2031和第一换热器201的上述另一端之间,例如,变容式压缩机100的供压通道41连接到第一控制阀203与第二换热器202之间的管路上,这样,当制冷装置200在制冷模式下运行时,供压通道41导入的是高压冷媒,当制冷装置200在制热模式下运行时,供压通道41导入的是低压冷媒。第二气缸24为变容气缸。
[0136]图22为制冷装置200在制冷模式下运行时的示意图。其中,变容式压缩机100的排气口 11通过第一控制阀203与第一换热器20
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1