用于筛选蛋白活性的高密度蛋白阵列的制作方法

文档序号:6137430阅读:262来源:国知局

专利名称::用于筛选蛋白活性的高密度蛋白阵列的制作方法本申请是申请日为2001年5月4日,申请号为01812230.2,发明名称为“用于筛选蛋白活性的高密度蛋白阵列”的发明专利申请的分案申请。根据美国法典第35章第119条e款(35U.S.C.§119(e)),本申请要求2000年5月4日提交的美国临时专利申请序号60/201,921以及2000年7月27日提交的美国临时专利申请序号60/221,034的权益,这两个临时专利申请都通过引用整体结合到本文中。本发明受到政府资助,资助号为DARPA/ONRR13164-41600099和NIH(美国国立卫生研究院)RO1CA77808。政府对本发明拥有一定权益。I.发明领域本发明涉及用于大规模研究蛋白功能的蛋白芯片,其中所述芯片包含密集反应孔。本发明涉及蛋白芯片的使用方法,这些方法用于同时测定存在于蛋白样品中或一块蛋白芯片上的蛋白的有无、多少和/或功能,或者用于测定该芯片上每种蛋白的探针混合物中每种探针的有无、相对特异性和结合亲和性。本发明还涉及使用蛋白芯片进行高密度微量化学反应的方法。此外,本发明还涉及用作蛋白芯片支持物的聚合物和蛋白芯片的制备方法。本发明还涉及用于衍化蛋白芯片支持物的化合物。II.发明背景全基因组测序已鉴定出大量的可读框(ORF)。目前,人们在利用mRNA表达谱和基因破坏的表型认识基因功能方面作出了巨大努力。这种努力之所以有可能获得重大进步,部分是缘于使用基因芯片技术以单个实验分析成千上万种基因序列。然而,有关基因功能的更多信息还是来自对编码蛋白生化活性的分析。目前,这些类型的分析是一个研究者每次研究一种蛋白。这是一个非常耗时的过程,因为基于蛋白的生化活性纯化和鉴定一种蛋白可能要耗时若干年。利用全基因组序列使得可对所述基因组编码的每种蛋白进行生化测定。迄今为止,使用一个蛋白芯片能有效分析数百或数千种蛋白样品。这些方法非常适合于可产生和分析大量数据的高通量实验。多年前本领域就知道含96孔或384孔的微量滴定板。但是,这些板的尺寸(至少12.8×8.6cm)使其不适于进行大规模的蛋白质分析,因为孔密度不够高。如上所述,已经设计出其它类型的用于DNA合成和杂交反应的阵列,例如WO89/10977描述的阵列。然而,这些阵列不适于独立体积的蛋白分析,因为这些阵列构建在平面上,而这往往导致特性之间交叉影响。已应用光刻法制备各种阵列,涵盖平面寡核苷酸阵列(Pease等,1994,“快速分析DNA序列的光性寡核苷酸阵列”,PNAS915022-5026)、流路阵列(美国专利第5,843,767号)和通过流路连接的孔阵列(Cohen等,1999,“基于微芯片的蛋白激酶A的酶测定”,AnalBiochem.27389-97)。而且,微加工和微光刻法在半导体加工领域是众所周知的。参见例如Moreau,半导体光刻法原理、操作和材料,PlenumPress,1988。最近开发出设计用于在芽生酿酒酵母中表达大量具潜在生化基因组用途的蛋白的方法。已将ORF克隆入使用GAL启动子并将蛋白融合至多聚组氨酸(例如HISX6)标记的表达载体。因此,该方法还用于制备和证实了约2000种酵母蛋白融合体的表达(Heyman等,1999,“使用拓扑异构酶I介导的连接以基因组规模克隆和表达单个可读框”,GenomeRes.9383-392)。使用重组策略将约85%的酵母ORF和GST编码区按照阅读框架克隆入含CUP1(铜诱导型)启动子的载体中,由此产生GST融合蛋白(Martzen等,1999,“根据其产物活性鉴定基因的生化基因组学方法”,Science2861153-1155)。Martzen等人使用组合策略筛选具有几种生化活性(例如磷酸二酯酶活性和Appr-1-P-加工活性)的融合蛋白集合物,并鉴定编码这些活性的相关基因。然而,还没有描述过分析大量单个蛋白样品的策略。因此,需要一种蛋白芯片,该芯片上的孔高度密集,以获得超越先有技术芯片和方法的成本和时间优势。不能将本申请第II章或其它任何章节对任一参考文献的援引或认同理解为允许将所述参考文献作为本发明的先有技术。III.发明概述本发明涉及蛋白芯片,即用于大规模研究蛋白功能的位于固体支持体上的定位寻址蛋白阵列,其中所述蛋白芯片包含密集反应孔。本发明还涉及使用蛋白芯片测定至少一个样品中存在蛋白的有无、多少和/或功能的方法。本发明还涉及使用蛋白芯片进行高密度微量化学反应的方法。此外,本发明还涉及用作蛋白芯片支持物的聚合物和蛋白芯片的制备方法。本发明还涉及用于衍化蛋白芯片的化合物。在一个实施方案中,本发明提供一种包含平面(例如但不限于载玻片)的蛋白芯片。可在例如载玻片上生产密集蛋白阵列,使得可进行化学反应和测定,由此可以大规模平行分析蛋白的存在与否、存在多少和/或功能性。在一个具体实施方案中,所述平面阵列上的蛋白通过3-缩水甘油氧丙基三甲氧基硅烷(GPTS)连接体与阵列表面结合。此外,在另一个具体实施方案中,本发明通过提供含密集孔的蛋白芯片克服了本领域已知方法和装置的缺点和局限,在所述芯片中可进行化学反应和测定,由此可以大规模平行分析蛋白的存在与否、存在多少和/或功能性。测定阵列相比于一个接一个的测定的整体优势包括能够同时鉴定许多蛋白-探针的相互作用以及能够测定这些相互作用的相对亲合性。将探针的复合混合物应用于芯片的优势包括能够在更能代表细胞的环境中测定相互作用以及能够同时评价许多潜在配体。在一个实施方案中,本发明是一种定位寻址阵列,包含位于固体支持体上的多种不同物质,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种物质由至少100种不同物质/cm2组成。在另一个实施方案中,本发明是一种定位寻址阵列,包含位于固体支持体上的多种不同蛋白或含所述蛋白功能域的分子,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种不同蛋白或分子包括在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%。在再另一个实施方案中,本发明是一种定位寻址阵列,包含位于固体支持体上的多种不同物质,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述固体支持体选自陶瓷制品、无定形碳化硅、可铸氧化物(castableoxide)、聚酰亚胺、聚甲基丙烯酸甲酯、聚苯乙烯和硅氧烷弹性体。在再另一个实施方案中,本发明是一种定位寻址阵列,包含位于固体支持体上的多种不同物质,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质通过3-缩水甘油氧丙基三甲氧基硅烷连接体与固体支持体连接。在另一个实施方案中,本发明是一种在固体支持体表面含多个孔的阵列,其中所述孔的密度为至少100孔/cm2。本发明还涉及一种在固体支持体表面制备含多个孔的定位寻址阵列的方法,该方法包括以下步骤由设计用于在固体表面生产100孔/cm2以上密度孔的微加工模铸造阵列。在另一个实施方案中,本发明为一种在固体支持体表面制备含多个孔的定位寻址阵列的方法,该方法包括以下步骤由设计用于在固体表面生产100孔/cm2以上密度孔的微加工模铸造副模(secondarymold),并由副模铸造至少一种阵列。在另一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤使探针与所述阵列接触,并检测蛋白/探针相互作用,所述阵列在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成。在再一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤使探针与所述阵列接触,并检测蛋白/探针相互作用,所述阵列在固体支持体上包含多种不同蛋白或含所述蛋白功能域的分子,每种不同蛋白或分子都在固体支持体上的不同位置,其中所述多种蛋白或分子包括在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%。在另一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤使探针与所述阵列接触,并检测蛋白/探针相互作用,所述阵列在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述固体支持体选自陶瓷制品、无定形碳化硅、可铸氧化物、聚酰亚胺、聚甲基丙烯酸甲酯、聚苯乙烯和硅氧烷弹性体。在再一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤使探针与所述阵列接触,并检测蛋白/探针相互作用,所述阵列在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质通过3-缩水甘油氧丙基三甲氧基硅烷连接体与固体支持体连接。在再一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤在固体支持体上沉积多种不同物质,使探针与所述阵列接触,并检测蛋白/探针相互作用,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成。在一个具体实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤在固体支持体上沉积多种不同物质,使探针与所述阵列接触,并检测蛋白/探针相互作用,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成,并且其中所述固体支持体为载玻片。在另一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤在固体支持体上沉积多种不同蛋白或含所述蛋白功能域的分子,使探针与所述阵列接触,并检测蛋白/探针相互作用,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种不同蛋白或分子包括在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%。在另一个实施方案中,本发明是一种定位寻址阵列使用方法,该方法包括以下步骤在固体支持体上沉积多种不同蛋白或含所述蛋白功能域的分子,使探针与所述阵列接触,并检测蛋白/探针相互作用,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种不同蛋白或分子包括在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%,并且其中所述固体支持体为载玻片。在另一个实施方案中,本发明是一种定位寻址阵列制备方法,该方法包括以下步骤由设计用于在固体表面生产100孔/cm2以上密度孔的微加工模铸造阵列,并在固体支持体上的所述孔中沉积多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同孔中。在另一个实施方案中,本发明是一种定位寻址阵列制备方法,该方法包括以下步骤由设计用于在固体表面产生100孔/cm2以上密度孔的微加工模铸造副模,由副模铸造至少一种阵列,并在所述孔中沉积多种不同物质,这些物质未与固体支持体连接,它们选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在不同孔中。在再一个实施方案中,本发明是一种定位寻址阵列制备方法,该方法包括以下步骤由设计用于在固体表面生产100孔/cm2以上密度孔的微加工模铸造副模,由副铸模铸造至少一种阵列,并在所述孔中沉积多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在不同孔中。A.定义本申请使用的“蛋白”是指全长蛋白、蛋白部分或肽。蛋白可在生物体(优选细菌、酵母、昆虫细胞或哺乳动物细胞)中重组过量表达制备,或经过较大蛋白片段化产生,或者化学合成。本申请使用的“功能域”是适合获得目的功能活性的必需蛋白结构域。功能域的实例特别包括具有激酶、蛋白酶、磷酸酶、糖苷酶、乙酰基转移酶、转移酶或其它酶活性的结构域。功能域的其它实例包括那些对DNA、RNA、蛋白、激素、配体或抗原具有结合活性的结构域。本申请使用的“探针”是指任何结合核酸(例如DNA或RNA)或蛋白的化学试剂。探针的实例特别包括其它蛋白、肽、寡核苷酸、多核苷酸、DNA、RNA、小分子底物和抑制剂、药物侯选物、受体、抗原、激素、类固醇类、磷脂、抗体、辅因子、细胞因子、谷胱甘肽、免疫球蛋白区、碳水化合物、麦芽糖、镍、二氢胰蛋白酶(dihydrotrypsin)和生物素。芯片上的每种蛋白或探针最好都位于固体支持体上的已知预定位置,使得可根据其在固体支持体上的位置确定每种蛋白或探针。而且,蛋白和探针在固体支持体上形成定位寻址阵列。IV.附图简述图1a.使用图示重组策略将119种酵母蛋白激酶克隆在高拷贝URA3表达载体(pEGKG)中,URA3表达载体在半乳糖诱导型GAL10启动子控制下生产GST融合蛋白。GST∷激酶构建物导入大肠杆菌中,并测定每种构建物的5′末端序列。在观察到突变时再将整个步骤重复一遍。图1b.如所述纯化的GST∷激酶融合蛋白的免疫印迹。由3次实验纯化出106种激酶蛋白。尽管进行了重复实验,但在119种GST中仍有14种未能通过免疫印迹分析检测出来(例如星号标记泳道中的Mps1)。图2a.按照以下图示方法生产用于激酶研究的蛋白芯片。将聚二甲基硅氧烷(PDMS)倾注在丙烯酸主模之上。固化后剥离含孔的芯片,并安放在载玻片上。接着衍化芯片表面,然后将蛋白附着至所述孔。先用1%BSA封闭孔,此后加入激酶、33P-γ-ATP和缓冲液。于30℃温育30分钟后彻底清洗蛋白芯片,并将蛋白芯片对分辨率50μm的定量性X光片和MolecularDynamicsPhosphorImager曝光。对于12种底物来说,每种激酶测定都重复进行至少2次;对于其余的5种底物,所述测定进行1次。图2b.蛋白芯片放大图。图3.蛋白芯片和激酶测定结果。每个芯片上的位置I9表示阴性对照信号。尽管蛋白质印迹未能检测到可见信号(图1b),但在全部12个激酶反应中位置B4的Mps1都显示强激酶活性。图4a.蛋白激酶反应的定量分析。使用MolecularDynamicsPhosphorImager测定激酶活性,并将数据以Excel电子表格输出。然后通过使数据对阴性对照归一化将激酶信号转变为增加倍数。119种激酶在4个反应中的信号以对数显示。倍数增加范围为1-1000倍。图4b.为测定底物特异性,使用下式计算特异性指数(SI)SIir=Ftr/[(Fi1+Fi2+......+Fir)/r],其中i表示所使用激酶的标识,r代表底物标识,而Fir代表与单独的GST相比激酶i对底物r作用的增加倍数。列出了几个SI大于3的激酶特异性实例。图5a.激酶核心结构域多序列比对产生的系统树,表明了功能特异性和多聚(Tyr-Glu)激酶氨基酸序列之间的相关性。可使用多聚(Tyr-Glu)作为底物的激酶经常在序列比较树形图上作图到特异性区。有效磷酸化多聚(Tyr-Glu)的激酶用阴影表示;用方框表示微弱利用该底物的两种激酶。用星号表示不能磷酸化多聚(Tyr-Glu)的Rad53和Ste7。如图所示,这些激酶中有70%属于4个序列组(圆圈内)。图5b.兔肌肉磷酸化酶激酶(PHK)28的结构。标明了优选存在于可利用多聚(Tyr-Glu)作为底物的激酶中的三种碱性残基和甲硫氨酸(Met)残基的位置。天冬酰胺(Asp)残基通常在不使用多聚(Tyr-Glu)的激酶中。图6.在蛋白芯片制备工艺中光刻步骤的截面图。a.在氧化层两侧具有两层硅的硅片。b.在顶部具有防护掩蔽层的硅片。c.蚀刻工艺去除表面未受防护掩蔽层保护的位置的硅。蚀刻深度受控于氧化层的位置,即蚀刻工艺不去除氧化层。d.去除掩蔽层,留下蚀刻硅片。e.将蛋白芯片材料施加于模板上。f.固化后,将蛋白芯片从模板上取下。蛋白芯片的影象为模板的对应蚀刻物。图7.蛋白芯片上的激酶/抑制剂测定。使用不同浓度的特异性人体PKA抑制剂PKIα或MAPK抑制剂SB202190测定针对两种底物(即PKA蛋白底物和通常使用的激酶底物MBP)的人体蛋白激酶A(PKA)、人体促细胞分裂剂激活性蛋白激酶(MAPK)、三种酵母PKA同系物(TPK1、TPK2和TPK3)和两种其它酵母蛋白激酶(HSL1和RCK1)。如图所示,PKIα可特异性抑制使用肽和MBP二者作为底物的PKA活性。但是,SB202190对PKA活性未显示出任何抑制作用。另外饶有兴趣的是,PKIα不抑制所测试的三种酵母PKA同系物(TPK1、TPK2和TPK3)和所测试的其它两种酵母蛋白激酶HSL1和RCK1。V.发明详述本发明涉及用于大规模研究蛋白功能的蛋白芯片,即在固体支持体上的定位寻址蛋白阵列,其中所述蛋白芯片包含密集反应孔。定位寻址阵列提供一种使每种目的探针或蛋白都位于固体支持体上的已知预定位置的构型,使得可根据其在阵列上的位置确定每种探针或蛋白。本发明还涉及使用蛋白芯片测定至少一种样品中存在蛋白的有无、多少和/或功能性的方法。本发明还涉及使用蛋白芯片进行高密度微量化学反应的方法。此外,本发明还涉及用作蛋白芯片支持物的聚合物和蛋白芯片的制备方法。本发明还涉及用于衍化蛋白芯片支持物的化合物。在一个实施方案中,本发明是一种定位寻址阵列,其在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成。在一个实施方案中,所述多种不同物质由100-1000种不同物质/cm2组成。在另一个实施方案中,所述多种不同物质由1000-10,000种不同物质/cm2组成。在另一个实施方案中,所述多种不同物质由10,000-100,000种不同物质/cm2组成。在再一个实施方案中,所述多种不同物质由100,000-1,000,000种不同物质/cm2组成。在再一个实施方案中,所述多种不同物质由1,000,000-10,000,000种不同物质/cm2组成。在另一个实施方案中,所述多种不同物质由10,000,000-25,000,000种不同物质/cm2组成。在再一个实施方案中,所述多种不同物质由至少25,000,000种不同物质/cm2组成。在再一个实施方案中,所述多种不同物质由至少10,000,000,000种不同物质/cm2组成。在再一个实施方案中,所述多种不同物质由至少10,000,000,000,000种不同物质/cm2组成。在另一个实施方案中,本发明是一种定位寻址阵列,其在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成,并且其中所述固体支持体为载玻片。在另一个实施方案中,本发明是一种定位寻址阵列,其在固体支持体上包含多种不同物质,这些物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由约30-100种不同物质/cm2组成。在一个具体实施方案中,所述多种不同物质由约30种不同物质/cm2组成。在一个特定实施方案中,所述多种不同物质由30-50种不同物质/cm2组成。在另一个特定实施方案中,所述多种不同物质由50-100种不同物质/cm2组成。在各种具体实施方案中,本发明是一种定位寻址阵列,其在固体支持体上包含多种不同蛋白或含所述蛋白功能域的分子,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种不同蛋白或分子包括在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%、75%、90%或95%。例如,所述生物体可以为真核生物或原核生物,优选为哺乳动物、人或非人动物、灵长类动物、小鼠、大鼠、猫、犬、马、母牛、小鸡、酵母之类的真菌、果蝇、C.elegans等。所述类型的目的生物活性可以是但不限于酶活性(例如激酶活性、蛋白酶活性、磷酸酶活性、糖苷酶活性、乙酰基转移酶活性以及其它化学基团转移酶活性)、核酸结合、激素结合等。A.生产蛋白芯片最好用已使用常规微加工或微光刻法模压(stamped)、切削(milled)或蚀刻的主模铸造本发明的具有高密度阵列孔的蛋白芯片。优选将常规微光刻法和材料用于生产主模。一旦生产出主模,就可将主模直接用于浇铸蛋白芯片本身。或者,可用主模铸造副模或三模,并由这些副模或三模铸造蛋白芯片。主模可用任何适于微加工或微光刻法的材料制备,优选硅、玻璃、石英、聚酰亚胺和聚甲基丙烯酸甲酯(有机玻璃)。对于微光刻法来说,优选材料为硅片。一旦生产出合适的主模、副模或三模,就可铸造蛋白芯片。蛋白芯片可铸造在任何适于铸造的固体支持体上,包括多孔或无孔固体支持体。固体支持体优选陶瓷制品、无定形碳化硅、固化时形成SiO2铸件的可铸氧化物、聚酰亚胺、聚甲基丙烯酸甲酯和聚苯乙烯,最优选硅氧烷弹性体材料。在硅氧烷弹性体材料中,聚二甲基硅氧烷(PDMS)是最优选的固体支持体。硅氧烷弹性体材料的优势在于由于其柔韧的特性而易于由模板上取下。图6显示了一个用于在本发明蛋白芯片上实现高密度阵列孔的方法实例。提供一种在硅层之间夹有氧化层的硅片(图6a)。这些硅片通常称作硅绝缘体或SOI片,通常可得自硅片供应公司(例如BelleMeadResearch,BelleMead,NJ和VirginiaSemiconductor,Fredericksburg,VA)。然后定型硅片并通过蚀刻方法蚀刻(图6b-d)。掩埋的氧化层起非常有效的蚀刻终止作用,使穿过硅片的蚀刻深度高度均一。蚀刻深度与蚀刻方法无关,仅取决于顶部硅层的厚度。可使用湿性化学蚀刻方法(例如使用KOH或四甲基肼(TMAH))。但是,该技术对硅片的晶体方向依赖性稍强。因此,优选在活性离子蚀刻(RIE)中使用稀薄气体(一般为SF6)的技术。RIE蚀刻技术能够在硅上刻出与硅片晶体方向无关的高度各向异性孔。参考文献G.Kovacs,MicromachinedTransducersSourcebook,AcademicPress(1998)和M.Madou,FundamentalsofMicrofabrication,CRCPress(1997)提供了蚀刻技术的背景材料。可在单个芯片上使用两种形式的微光刻,以获得需要组合的孔形状。湿性化学蚀刻是获得U型孔的各向同性方法,而RIE是获得方底孔的各向异性方法。蚀刻硅片获得主模后,主模就可用于铸造蛋白芯片(图6e-f)。这些构建物可以为蛋白芯片,或者自身为副模或三模,再由副模或三模铸造蛋白芯片。因此,在一个实施方案中,一种制备定位寻址阵列(在固体支持体表面含多个孔)的方法包括用设计用于在固体表面生产100孔/cm2以上密度孔的微加工模铸造阵列。在另一个实施方案中,一种制备定位寻址阵列(在固体支持体表面含多个孔)的方法包括用设计用于在固体表面生产100孔/cm2以上密度孔的所述微加工模铸造副模,并由副模铸造至少一种阵列。在再一个实施方案中,一种制备定位寻址阵列的方法包括用液体铸件材料覆盖模板,并固化铸件材料直至铸件成为固体。所述液体铸件材料优选为硅氧烷弹性体,最优选为聚二甲基硅氧烷。可将多种不同物质沉积在任何这些定位寻址阵列中,以使每种不同物质都位于固体支持体上的不同孔中,其中所述不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质。B.蛋白芯片的特征本发明的蛋白芯片不限于其外形尺寸,可拥有任何便利的尺寸。为了与当前实验室装置兼容,优选标准显微镜载玻片或更小尺寸的蛋白芯片。最优选其大小使两个芯片拼装成一个显微镜载玻片的蛋白芯片。还优选其大小适合质谱仪样品池的蛋白芯片。本发明蛋白芯片的孔可具有任何形状,例如矩形、正方形或椭圆形,优选环形。蛋白芯片的孔可具有方底或圆底、V形底或U形底。方形略为优选,因为优选的各向异性活性离子蚀刻(RIE)方法提供方底孔。特定芯片的孔底形状不需要一致,但可根据芯片上要进行的具体测定的需要有所变化。本发明蛋白芯片的孔可具有任意的径高比,优选的径高比约为10∶1至约1∶10。本发明蛋白芯片的孔可具有任意体积,孔体积优选1pl-5μl,孔体积更优选1nl-1μl。最优选的孔体积为100nl-300nl。对于很高密度孔的蛋白芯片,优选的孔体积为10pl-100nl。本发明蛋白芯片的孔/cm2密度可广泛变化。优选的孔密度为约25孔/cm2至约10,000,000,000,000孔/cm2。激光切削有机玻璃主模铸造的蛋白芯片孔密度一般为1-2,500孔/cm2。合适切削工具产生的孔直径小至100μm,间距100μm。湿性化学微光刻法蚀刻的主模铸造的蛋白芯片的孔密度一般为50-10,000,000,000孔/cm2。湿性化学蚀刻产生的孔深10μm,间距10μm,再产生直径小于10μm的孔。RIE微光刻法蚀刻的主模铸造的蛋白芯片的孔密度一般为100-25,000,000孔/cm2。RIE与光刻组合可产生直径500nm、间距500nm的孔。使用电子束光刻与RIE的组合可产生直径50nm、间距50nm的孔。具有这种尺寸和相等间距的孔产生孔密度为10,000,000,000,000孔/cm2的蛋白芯片。RIE优选用于产生直径20μm、间距20μm的孔。等间距的该尺寸孔的密度为25,000,000孔/cm2。上述微加工和微光刻法已成功用于560μm或280μm孔径、间隔约1mm的湿性化学蚀刻硅片。这种孔和间距的组合分别产生约410,000孔/cm2和约610,000孔/cm2的阵列。当孔径和间距相等时,产生约3.19×106孔/cm2和12.75×106孔/cm2的蛋白芯片。在一个实施方案中,所述阵列在固体支持体表面含多个孔,其中孔密度为至少100孔/cm2。在另一个实施方案中,所述孔密度为100-1000孔/cm2。在另一个实施方案中,所述孔密度为1000-10,000孔/cm2。在另一个实施方案中,所述孔密度为10,000-100,000孔/cm2。在再一个实施方案中,所述孔密度为100,000-1,000,000孔/cm2。在再一个实施方案中,所述孔密度为1,000,000-10,000,000孔/cm2。在再一个实施方案中,所述孔密度为10,000,000-25,000,000孔/cm2。在另一个实施方案中,所述孔密度为至少25,000,000孔/cm2。在再一个实施方案中,所述孔密度为至少10,000,000,000孔/cm2。在再一个实施方案中,所述孔密度为至少10,000,000,000,000孔/cm2。C.蛋白芯片的应用在一个实施方案中,本发明提供一种含平整表面(例如但不限于载玻片)的蛋白芯片。可在例如载玻片上生产密集蛋白阵列,使得可以进行化学反应和测定,由此允许大规模平行分析蛋白(例如蛋白激酶)的有无、多少和/或功能性。蛋白或探针共价或非共价结合至固体支持体的平整表面。蛋白或探针可直接结合至固体支持体的平整表面,或者可以通过连接分子或连接化合物附着于固体支持体。连接体可以为任何衍化固体支持体表面从而使蛋白或探针易于连接至固体支持体表面的分子或化合物。所述连接体可以共价或非共价地将蛋白或探针结合至固体支持体表面。另外,连接体可以为无机或有机分子。优选的连接体为具有游离胺的化合物。最优选的连接体为3-缩水甘油氧丙基三甲氧基硅烷(GPTS)。在另一个实施方案中,本发明的蛋白芯片具有几个超越平面阵列的优势。即使用孔消除或降低了孔内容物交叉污染的可能性。另一个超越平面阵列的优势是增加了信噪比。孔允许在较密集的构型中使用较大体积的反应溶液,并因此有可能获得较强信号。而且,与平面阵列相比孔降低了芯片反应溶液的蒸发率,因此允许更长的反应时间。孔超越平整表面的另一个优势在于应用孔可以用固定有限量探针对芯片上的每个孔进行结合研究,而使用平整表面通常是将探针不加选择地应用于整个底物。当探针混合物中的探针具有高亲和性但低特异性时,对底物不加选择地应用探针混合物将饱和许多与探针具有高亲和性的蛋白。这种饱和有效限制了混合物中其它探针的检测。通过使用孔,可将有限量的探针应用于芯片上的各个孔。因此,应用于每种蛋白的探针量可受到控制,不同蛋白的探针可各不相同(位于不同孔中)。一旦如上所述生产出蛋白芯片,则可用其进行测定和其它化学反应。对于测定来说,蛋白或探针通常位于孔中。蛋白或探针的存在与否将通过分别将探针或蛋白施用于蛋白芯片测定。可以使用各种本领域已知的技术(其中一些在下文论述)观测蛋白-探针相互作用。用于本发明的蛋白可以为融合蛋白(其中限定结构域连接至各种天然蛋白中的一种),或者可以为完整的非融合蛋白。在另一个实施方案中,含蛋白的细胞物质(例如但不限于囊泡、核内体、亚细胞器和膜碎片)可置于蛋白芯片上(例如孔中)。在另一个实施方案中,可将完整细胞置于蛋白芯片上(例如孔中)。在再一个实施方案中,可将蛋白、含蛋白的细胞物质或完整细胞连接至蛋白芯片的固体支持体。在放置于蛋白芯片上之前或过程中可通过使用结合特定蛋白的试剂纯化蛋白,其中所述试剂先前已经放置在蛋白芯片上。可通过标准技术(例如亲和层析或柱层析)或通过分离离心样品(例如P1或P2组分)获得部分纯化的含蛋白的细胞物质或细胞。此外,蛋白、含蛋白的细胞物质或细胞可在放置于蛋白芯片上之前或同时嵌入人工或天然膜中。在另一个实施方案中,蛋白、含蛋白的细胞物质或细胞可在放置于蛋白芯片上之前或同时嵌入胞外基质组分(例如胶原蛋白或基底层)中。本发明的蛋白可以为溶液,或者结合至固体支持体表面(例如孔中或在平整表面上),或者结合至放置于固体支持体孔中的支持物(例如珠)。可使用任何分配工具(例如气泡喷点或喷墨打印头)将蛋白或探针放置于孔中。优选微量移液分配器。蛋白或探针的放置可手动进行,或者可通过使用连接机器的计算机将该过程自动进行。因为所述孔是自含式的,所以蛋白或探针不需要连接或结合至固体支持体表面,而是可以简单地将蛋白或探针放置于孔中或结合至放置于孔中的支持物(例如珠)。其它的支持物包括但不限于硝基纤维素颗粒、玻璃珠、塑料珠、磁性粒子和乳状粒子。另一方面,蛋白或探针共价或非共价结合至孔中的固体支持体表面。蛋白或探针可直接结合至固体支持体表面(在孔中),或者可以通过连接分子或连接化合物附着于固体支持体。连接体可以为任何衍化固体支持体表面从而使蛋白或探针易于连接至固体支持体表面的分子或化合物。所述连接体可以将蛋白或探针共价结合至固体支持体表面,或者可通过非共价作用结合。另外,连接体可以为无机或有机分子。优选的连接体为具有游离胺的化合物。最优选的连接体为3-缩水甘油氧丙基三甲氧基硅烷(GPTS)。非共价结合至孔表面的蛋白或探针可利用各种分子作用实现与孔表面的连接,例如氢键结合、范德华力结合、静电结合或金属螯合配位结合。此外,DNA-DNA、DNA-RNA和受体-配体相互作用也是用于非共价结合的作用类型。受体-配体相互作用的实例包括抗体和抗原、DNA结合蛋白和DNA、酶和底物、抗生物素蛋白(或链霉抗生物素蛋白)和生物素(或生物素化分子)之间的相互作用,以及脂质结合蛋白和磷脂膜或囊泡之间的相互作用。例如,可表达具有融合蛋白结构域的蛋白,所述融合蛋白结构域对连接至孔表面的底物具有亲和性。适于融合蛋白结合的底物包括胰蛋白酶/脱水胰蛋白酶、谷胱甘肽、免疫球蛋白区、麦芽糖、镍或生物素及其衍生物,它们分别结合牛胰腺蛋白酶抑制剂、谷胱甘肽-S-转移酶、抗原、麦芽糖结合蛋白、多聚组氨酸(例如HisX6标记)和抗生物素蛋白/链霉抗生物素蛋白。D.蛋白芯片测定在一个实施方案中,通过使用产生化学发光或荧光的标准酶测定将蛋白芯片用于测定。可使用例如光致发光、使用非蛋白底物的荧光、酶显色、质谱特征标记和寡核苷酸标记扩增(例如通过PCR)检测各种蛋白或分子修饰。因此,特别可通过化学发光、荧光、放射标记或原子力显微镜检测蛋白/探针相互作用。还可以通过直接质谱鉴定在阵列中结合特定组分的探针。例如,可通过质谱分析鉴定通过解离探针与阵列组分的非降解方法释放到溶液中的探针(参见例如WO98/59361)。在另一个实施例中,可通过质谱分析鉴定通过酶消化阵列组分释放到溶液中的肽或其它化合物。阵列类型可分成几个大类。作为第一个实例,阵列上的每个孔都接触单一探针,检测并定量它们的结合。这些测定结果的观测方法包括但不限于1)使用放射标记配体,接着放射自显影和/或磷成象分析;2)结合半抗原,然后通过荧光标记或酶标记抗体或高亲和性半抗原配体如生物素或链霉抗生物素蛋白检测;3)质谱分析法;4)原子力显微镜;5)荧光偏振法;6)滚环扩增检测法(Hatch等,1999,“滚环扩增固定在固体表面上的DNA及其在多重突变检测中的应用”,Genet.Anal.15(2)35-40);7)竞争性PCR(Fini等,1999,“化学发光竞争PCR在使用微量板发光计检测和定量细小病毒B19DNA方面的进展”,Clin.Chem.45(9)1391-6;Kruse等,1999,“使用半嵌套竞争PCR测定检测和定量转化生长因子-β1(TGF-β1)基因表达”,Cytokine11(2)179-85;Guenthner和Hart,1998,“使用微量板型检测系统定量竞争性PCR测定HIV-1”,Biotechniques24(5)810-6);8)比色法;和9)生物测定,例如测定病毒滴度。作为第二个实例,阵列上的每个孔都同时接触多种探针,包括几种来源探针的混合物,检测并定量其结合。这些测定结果的观测方法包括但不限于1)质谱分析法;2)原子力显微镜;3)红外或荧光标记化合物或蛋白;4)扩增寡核苷酸、肽或分子量标记;和5)刺激或抑制蛋白的酶活性。由于本发明阵列的定位寻址特性,所以信息由探针混合物搜集,即通过放置在蛋白芯片上已知位置的限定蛋白,了解有关结合探针结合物的信息。假如理想的话,那么可以用单个探针探测阵列上显示结合的位置,以鉴定感兴趣的的特异性相互作用。还可以通过例如将蛋白芯片和细胞提取物温育,获得有用的信息,其中芯片上的每个孔都含有测定目的酶活性的反应混合物,并且测定其中多种不同酶和/或底物活性,由此鉴定和检测细胞所有组成成分的具体酶活性。同样,蛋白芯片可与完整细胞或浆膜制备物温育,以测定例如膜结合蛋白或分子的表达,或者测定细胞表面蛋白或分子的结合特性。可使用本领域已知的技术检测结合至蛋白芯片上特定位置的细胞、细胞标记或细胞分泌物。例如,可用B细胞或T细胞筛选含抗原阵列的蛋白芯片,其中所述抗原选自合成抗原、组织特异性抗原、疾病特异性抗原、病原体抗原和自身组织抗原。可通过确定阵列上抗原活化细胞的位置测定淋巴细胞识别的抗原或抗原决定簇。可通过各种方法测定淋巴细胞活化,包括但不限于检测抗体合成、检测掺入的3H-胸苷、用标记抗体探测细胞表面分子来鉴定通过抗原识别或活化诱导或抑制的分子(例如IgD、C3b受体、IL-2受体、转铁蛋白受体、膜MHCII类分子、CD23、CD38、PCA-1分子、HLA-DR)以及鉴定表达和/或分泌的细胞因子。在另一个实例中,可通过使细胞与含推定有丝分裂原阵列的蛋白芯片温育测定特定细胞类型的有丝分裂原,包括将定位寻址阵列与细胞群接触的步骤;所述阵列包含位于固体支持体上的多种不同物质,这些物质选自蛋白、包含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中不同物质的密度至少为100种不同物质/cm2;并检测固体支持体上诱导细胞促有丝分裂活性的位置。可通过例如检测掺入细胞的3H-胸苷测定细胞分裂。细胞可以是相同细胞类型(即同类细胞群),或者可以是不同细胞类型。在再一个实例中,可通过例如使用放射性标记的蛋白底物并检测放射性底物浓度的降低或细胞吸收的放射性底物测定蛋白芯片上的细胞吸收和或蛋白加工。这些测定可用于诊断或治疗目的。本领域普通技术人员能知道检测各种类型细胞相互作用的合适测定方法。因此,使用几种类型的探针(例如已知的探针混合物、细胞提取物、亚细胞器、细胞膜制备物、完整细胞等)可提供对细胞活性的大规模或彻底的分析。具体来说,一种或若干种筛选可构成鉴定细胞类型的“足迹”或细胞、组织、器官或系统生理状态的基础。例如,可通过由蛋白芯片测定的细胞活性或表达谱区分不同的细胞类型(或多态性或功能性)。该方法还可用于测定例如细胞周期的不同阶段、疾病状态、改变的生理状态(例如低氧)、治疗(例如药物治疗)前后的生理状态、代谢状态、分化和发育阶段、对环境刺激物(例如光、热)的反应、细胞-细胞相互作用、细胞特异性基因和/或蛋白表达以及疾病特异性基因和/或蛋白表达。可使用本发明的蛋白芯片进行酶反应和测定酶活性。在一个具体实施方案中,可鉴定调节芯片上一种或多种蛋白酶活性的化合物。例如,通过使一种化合物或多种化合物的混合物与蛋白芯片孔中的酶反应混合物温育,检测和定量酶活性水平的变化,信号在芯片孔中产生(例如由有酶活性时出现荧光的底物产生)。记录化合物有无之间的差异。而且,化合物对不同蛋白酶活性作用的差异可通过对比其对蛋白芯片中和芯片之间样品的相对作用而容易地检测到。以上详述的各种使用本发明高密度蛋白芯片的策略可用于测定蛋白的各种物理和功能特征。例如,通过用抗体探测,可使用蛋白芯片评价蛋白的有无和存在量。在一个实施方案中,可探测GST融合蛋白的聚二甲基硅氧烷(PDMS)芯片测定蛋白的存在与否和/或其活性水平。可使用标准检测方法(如发光、化学发光、荧光或化学荧光)检测蛋白。例如,用荧光标记的二抗识别针对目的蛋白的一抗,然后用由光源激发荧光产物并检测随后的荧光的设备(例如MolecularDynamics扫描仪)检测二抗。为增强敏感性,用缀合酶(例如碱性磷酸酶或辣根过氧化物酶)的二抗识别目的蛋白的一抗。当存在发光底物(化学发光)或荧光底物(化学荧光)时,酶切产生一种高度发光或荧光的产物,这种产物可通过使用例如MolecularDynamics扫描仪检测并定量。或者,可使用缀合碱性磷酸酶或辣根过氧化物酶的三抗增强荧光标记二抗的信号。还可以在本发明的蛋白芯片上鉴定蛋白激酶、磷酸酶、蛋白酶、糖苷酶、乙酰基转移酶或其它基团转移酶的底物。例如,将各种各样的不同探针连接至蛋白芯片,测定其起特定酶底物作用的能力,例如测定其被蛋白激酶磷酸化的能力。检测激酶活性的方法包括但不限于使用33P-ATP和35S-γ-ATP之类的放射性标记或结合磷酸氨基酸的荧光抗体探针。例如,鉴于掺入到蛋白中的放射性标记的磷在一个测定中代表激酶活性,另一个测定可检测释放到介质中的放射性标记磷(代表磷酸酶活性)。在另一个实例中,可通过使用标准测定(例如质谱分析、荧光标记肽片段的抗体或荧光标记底物荧光信号的消失)鉴定由蛋白酶活性产生并释放到介质中的肽片段,从而检测蛋白酶活性。因此,可使用本领域普通技术人员了解的几种方法和许多独立检测工具容易地测定基团转移酶活性。蛋白芯片可用于鉴定芯片上具有特异性活性(例如特定激酶、蛋白酶、核酸结合特性、核苷酸水解、激素结合和DNA结合)的蛋白。因此,所述芯片可用指示目标活性存在与否的探针探测。例如,如果DNA结合是目标活性,那么用DNA探测含侯选DNA结合蛋白的芯片。为蛋白或核酸配体的探针(天然或合成)对蛋白阵列的搜索可在蛋白芯片上平行进行。探针可以是细胞、含蛋白的细胞物质、蛋白、寡核苷酸、多核苷酸、DNA、RNA、小分子底物、药物侯选物、受体、抗原、类固醇、磷脂、抗体、免疫球蛋白区、谷胱甘肽、麦芽糖、镍、二氢胰蛋白酶或生物素。或者所述探针可以为酶底物或抑制剂。例如,所述探针可以为选自以下酶的底物或抑制剂激酶、磷酸酶、蛋白酶、糖苷酶、乙酰基转移酶和其它基团转移酶。将芯片上的蛋白与核酸或蛋白探针组合物温育后,可通过质谱法鉴定结合的核酸或蛋白探针(Lakey等,1998,“检测蛋白-蛋白相互作用”,CurrOpinStructBiol.8119-23)。可通过使用本发明的蛋白芯片测定在康复或非康复患者的免疫应答中起抗原作用的病原体(例如感染性疾病因子,如病毒、细菌、真菌或寄生物)靶蛋白或异常细胞(例如癌细胞、患病细胞或损伤细胞)靶蛋白。例如,分离自患者的淋巴细胞可用于筛选在蛋白芯片上含病原体蛋白阵列的蛋白芯片。一般来说,这些筛选包括使多种淋巴细胞接触定位寻址阵列,并检测固体支持体上发生淋巴细胞活化的位置,所述阵列在固体支持体上含多种潜在抗原,每种不同抗原都在固体支持体上的不同位置,其中不同抗原的密度为至少100种不同抗原/cm2。在一个具体实施方案中,淋巴细胞与阵列上的病原体蛋白接触,此后测定被抗原或抗原混合物活化的B细胞或T细胞,由此鉴定来自病原体的靶抗原。另一方面,通过例如筛选潜在抗原阵列,可使用所述蛋白芯片表征免疫应答,以鉴定患者B细胞和/或T细胞靶。例如,B细胞可与潜在抗原(即具有抗原决定簇的分子)阵列温育,以鉴定体液型免疫的抗原靶。抗原的来源可以是例如自身组织、已知或未知抗原的收集物(例如病原性微生物的收集物)、组织特异性或疾病特异性抗原收集物或合成抗原。在另一个实施方案中,可使用分离自患者的淋巴细胞筛选含患者自身组织蛋白阵列的蛋白芯片。这样的筛选可鉴定引起自身免疫或变态反应的蛋白的底物,并由此诊断自身免疫或变态反应和/或鉴定潜在的目的药物侯选物。在另一个实施方案中,本发明的蛋白芯片用于鉴定能够激活B细胞或T细胞的物质。例如,淋巴细胞与芯片上测试分子或蛋白阵列接触并测定淋巴细胞活化,由此鉴定通常能够活化B细胞或T细胞或淋巴细胞亚群(例如细胞毒性T细胞)的物质。可通过各种方法测定抗原识别诱导的B细胞活化,所述方法包括但不限于检测抗体合成、3H-胸苷掺入、标记抗体与新表达或抑制的细胞表面分子的结合以及分泌表明B细胞活化的因子(例如细胞因子)。同样,可通过各种测定检测使用本发明蛋白芯片筛选的T细胞活化。例如,铬(51Cr)释放测定可检测抗原识别以及随后的细胞毒性T细胞活化(参见例如Palladino等,1987,CancerRes.475074-9;Blachere等,1993,J.Immunotherapy14352-6)。通过使用本发明的蛋白芯片可测定抗体制备物的特异性,包括使抗体制备物接触定位寻址阵列,并检测固体支持体上抗体制备物中的抗体发生结合的位置,所述阵列在固体支持体上含多种潜在抗原,每种不同抗原都在固体支持体上的不同位置,其中不同抗原的密度为至少100种不同抗原/cm2。所述抗体制备物可以是但不限于Fab片段、抗血清以及多克隆抗体、单克隆抗体、嵌合抗体、单链抗体、人源化抗体或合成抗体。例如,可通过筛选疾病特异性抗原、组织特异性抗原或其它已鉴定的抗原收集物,并测定识别哪种抗原,特征鉴定抗血清。在一个具体实施方案中,用单克隆抗体筛选具有相似或相关抗原的蛋白芯片阵列,通过测定单克隆抗体结合阵列上的哪种抗原评价特异性程度。可通过用复合蛋白混合物(例如细胞提取物)处理蛋白芯片并测定蛋白活性检测特异性细胞活性靶的身份。例如,可使含不同激酶阵列的蛋白芯片接触化合物(例如药物)处理细胞的细胞提取物,并测定激酶活性。在另一个实例中,可使含不同激酶阵列的蛋白芯片接触特定细胞分化阶段细胞(例如多能细胞)或特定代谢状态细胞(例如有丝分裂细胞)的细胞提取物,并测定激酶活性。将由这些测定获得的结果与例如存在或不存在药物时的细胞、几个分化阶段的细胞或不同代谢状态的细胞进行对比,可提供不同条件下细胞生理变化的信息。或者,可通过用复合蛋白混合物(例如细胞提取物)处理含多种不同蛋白(例如肽文库)的本发明蛋白芯片并测定芯片上蛋白的修饰,检测特异性细胞活性靶的身份。例如,可使含不同蛋白阵列的蛋白芯片接触化合物(例如药物)处理细胞的细胞提取物,并测定例如激酶、蛋白酶、糖苷酶、乙酰基转移酶、磷酸酶或其它转移酶活性。在另一个实例中,可使含不同蛋白阵列的蛋白芯片接触特定细胞分化阶段细胞(例如多能细胞)或特定代谢状态细胞(例如有丝分裂细胞)的细胞提取物。将由这些测定获得的结果与例如存在或不存在药物时的细胞、几个分化阶段的细胞或不同代谢状态的细胞进行对比,可提供在这些条件下细胞生理作用的信息。所述蛋白芯片可用于鉴定结合特定生物目标分子的探针,所述特定生物目标分子包括但不限于潜在配体分子的受体、病毒受体以及孤独受体的配体。所述蛋白芯片还可用于检测结合蛋白芯片上蛋白的DNA或RNA以及测定结合特异性。另外,可通过用核酸序列筛选这些蛋白阵列并测定结合特异性和结合强度,用蛋白芯片研究特定类型的RNA结合蛋白或DNA结合蛋白(例如锌指蛋白)。可用本发明的蛋白芯片分析相似生物实体中功能、配体结合或酶活性不同的蛋白的身份。例如,测定来自不同等位基因的蛋白同种型互相之间的活性差异。高密度蛋白芯片可用于药物寻找、药物作用模式分析、药物特异性和药物毒性的预测。例如,可通过使芯片上蛋白与药物或药物侯选物在不同测定条件下温育,通过测定阵列上药物结合的位置测定药物特异性并检测每种不同蛋白的药物结合量,测定结合药物的蛋白的身份及其相对亲和性。另一方面,可在同一蛋白芯片或在相同的第二块芯片上进行测定生物活性(而不是结合测定)的生物测定。因此,使用本发明蛋白芯片的这些测定类型可用于研究药物特异性、预测药物潜在的副作用以及药物分类。此外,本发明的蛋白芯片适于筛选药物侯选物的复杂文库。具体地说,可使芯片上的蛋白与药物侯选物文库温育,然后可通过例如质谱法鉴定结合组分,可同时鉴定优先结合特定亚组蛋白或结合芯片上几个或全部蛋白的所有文库组分。此外,可测定药物侯选物对阵列中不同蛋白的相对亲和性。而且,可在先前观测到的相互作用、酶活性或生物反应的潜在抑制剂、催化剂、调节剂或增强剂存在的情况下探测本发明的蛋白芯片。以此方式,通过使用本发明的蛋白芯片,可分析例如药物结合的封闭或病毒的破坏或特定类别蛋白的生理效应物。本发明的蛋白芯片可用于测定药物对复杂蛋白混合物的多个靶的修饰作用,所述复杂蛋白混合物例如完整细胞、细胞提取物或组织匀浆。可通过用药物处理细胞、组织或提取物筛选一种或多种蛋白芯片分析药物的净效应,然后可提供药物处理状态的“信号”,并且当与未处理状态的“信号”相比时,可提供例如效力、毒性和副作用的预测值。而且,通过例如向细胞、细胞提取物、组织匀浆或完整生物加入药物,并将不同处理时间点的药物处理细胞或提取物应用于蛋白芯片,可测定随时间变化的药物作用。可通过使文库与本发明的蛋白芯片温育进行噬菌体展示文库的筛选。可通过本领域已知的各种方法(例如质谱法)测定阳性克隆的结合,由此鉴定目的克隆,此后可通过标准方法鉴定编码目的克隆的DNA(参见例如Ames等,1995,J.Immunol.Methods184177-86;Kettleborough等,1994,Eur.J.Immunol.24952-8;Persic等,1997,Gene1879-18)。芯片以此方式可用于选择具有结合芯片上特定蛋白的表面组分的细胞。或者,可将噬菌体展示文库连接至芯片,以产生所述文库的定位寻址阵列,此后可用不同的探针混合物重复筛选所述阵列。本发明还提供实施本发明测定方案的试剂盒。在一个具体实施方案中,本发明的试剂盒包括一种或多种本发明的阵列。所述试剂盒还可以在一个或多个容器中包括用于测定蛋白或分子的生物活性的试剂、用于测定探针和蛋白或分子相互作用的试剂、用于测定具有目的生物活性的蛋白或分子的生物活性的试剂和/或一种或多种探针、蛋白或其它分子。用于测定蛋白或分子生物活性的试剂或测定探针和蛋白或分子之间相互作用的试剂可包含在蛋白芯片上的每一个孔中或选定孔中。所述试剂可为溶液形式或固体形式。所述试剂可包括进行目的测定需要的蛋白或分子和探针中的任一种或两种都包括。在一个实施方案中,试剂盒包含一种或多种芯片(即在固体支持体上含多种不同物质的定位寻址阵列,所述物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成),并在一个或多个容器中包含一种或多种探针、试剂或其它分子。阵列物质可连接至固体支持体上的孔表面。在另一个实施方案中,试剂盒中的蛋白芯片可具有已连接至固体支持体孔的蛋白或探针。在再一个实施方案中,试剂盒中的蛋白芯片可具有用于测定蛋白或分子生物活性或测定探针和蛋白或分子相互作用的试剂或反应混合物,它们已连接至固体支持体孔。在又一个实施方案中,所述试剂未连接至固体支持体孔,但包含在孔中。在再一个实施方案中,所述试剂未连接至固体支持体孔,但包含在一个或多个容器中,并可加入到固体支持体孔中。在再一个实施方案中,所述试剂盒还包括一个或多个容器,容器中含有用于测定蛋白或分子生物活性的溶液反应混合物。在另一个实施方案中,所述试剂盒提供一种可结合用于进行一个或多个测定的目的探针、蛋白或分子和/或其它试剂的支持物(例如珠),此后可将附着探针、蛋白或其它试剂的支持物放置到芯片孔中。在另一个实施方案中,试剂盒中的一种或多种蛋白芯片具有连接至固体支持体孔的目的生物活性的蛋白。在另一个实施方案中,试剂盒中的一种或多种蛋白芯片具有在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%、75%、90%或95%,它们连接至固体支持体孔。在一个具体的实施方案中,试剂盒中的一种或多种蛋白芯片具有在生物体(例如特定物种)基因组中全部表达的激酶、磷酸酶、糖苷酶、蛋白酶、乙酰基转移酶、其它基团转移酶、核酸结合蛋白、激素结合蛋白或DNA结合蛋白的至少50%、75%、90%或95%,它们连接至固体支持体孔。E.用于蛋白芯片的蛋白全长蛋白、全长蛋白的部分和肽,无论是由生物体重组过表达制备,还是较大蛋白片段化产生,还是化学合成,都可在本发明中用于形成蛋白芯片。过表达蛋白的生物体包括但不限于细菌、酵母、昆虫、人和非人哺乳动物,例如小鼠、大鼠、猫、犬、猪、母牛和马。此外,可使用其中一种限定结构域连接至各种天然或合成蛋白中的一种蛋白的融合蛋白。可在连接至蛋白芯片孔或沉积在蛋白芯片孔中之前纯化用于本发明的蛋白,或在通过使用先前已连接或沉积在蛋白芯片孔的试剂在连接过程中纯化用于本发明的蛋白。这些试剂包括通常特异性结合蛋白或结合特定类型蛋白的试剂。蛋白可在连接至蛋白芯片之前或与其同时嵌入人工或天然膜(例如脂质体、膜囊泡)中。或者可将蛋白分配到蛋白芯片孔中。优选通过本领域已知的方法表达用于本发明蛋白芯片的蛋白。优选的表达系统是Invitrogen的InsectSelect系统(Carlsbad,CA,目录号K800-01),该系统是一种非裂解型单载体昆虫表达系统,其简化了高质量蛋白的表达,并消除了产生和扩增病毒母液的需要。该系统中的优选载体是pIB/V5-HisTOPOTA载体(目录号K890-20)。可使用生产商描述的方法将聚合酶链反应(PCR)产物直接克隆入该载体,然后表达具N-末端组氨酸(His)标记的蛋白,所述标记可用于纯化表达的蛋白。得自Lifetech(Rockville,MD)的另一种昆虫细胞真核表达系统BAC-TO-BACTM系统也是一种优选的表达系统。BAC-TO-BACTM系统不是使用同源重组,而是依靠位点特异性转座在大肠杆菌中产生重组杆状病毒。基因表达由高活性多角体蛋白启动子驱动,因此在感染的昆虫细胞中可提供高达25%的细胞蛋白。VI.实施例I使用蛋白芯片分析酵母蛋白激酶A.前言以下的实施例例举了蛋白芯片生产的各个方面以及使用本发明蛋白芯片的方法。本发明的蛋白芯片技术适于快速分析大量的样品,因此该方法适于分析几乎所有的酵母蛋白激酶。蛋白激酶催化蛋白磷酸化,并在调节基础细胞功能(如细胞周期控制、信号转导、DNA复制、基因转录、蛋白翻译和能量代谢7)方面起关键性作用。完整基因组序列的可利用性使得有可能分析所有由生物体编码的蛋白激酶并测定其体外底物。酵母基因组已经完成测序,包含大约6200个长度超过100个密码子的可读框;预计其中有122个编码蛋白激酶。这些蛋白激酶基因中有24个先前还没有研究过8。除了两种组氨酸蛋白激酶之外,所有的酵母蛋白激酶都是Ser/Thr家族成员;尽管已经报道了7种磷酸化丝氨酸/苏氨酸和酪氨酸的蛋白激酶,但不存在酪氨酸激酶家族成员。随着本发明蛋白芯片技术的发展,已经可如本文所述对酿酒酵母的几乎所有蛋白激酶的生化活性进行高通量分析。使用的蛋白芯片为300nl孔的一次性阵列,所述孔位于放置于显微镜载玻片上面的硅氧烷弹性体层中。高密度小尺寸孔允许高通量分批处理和同时分析许多单独的样品,仅需要少量蛋白。使用本发明的蛋白芯片,将酿酒酵母激酶蛋白(总共119种不同的激酶)融合至在酵母中过表达的谷胱甘肽-S-转移酶(GST),然后纯化并测定其磷酸化17种不同底物的能力。几乎所有的测试激酶(93%)都对一种或多种底物表现出至少比对照高5倍的活性,包括24种以前未表征的激酶中的18种。32种激酶显示优先磷酸化一种或两种底物。27种激酶容易磷酸化多聚(Tyr-Glu)。因为这些激酶中仅有5种先前归类为双功能激酶(即它们既能磷酸化Ser/Thr,也能磷酸化Tyr),所以这些发现在所述激酶能够磷酸化酪氨酸残基方面极大地拓展了我们的认识。令人感兴趣的是,这些双重特异性激酶经常在催化区域附近共有相同的氨基酸残基。这些结果表明,本发明的蛋白芯片技术可用于蛋白生化活性的高通量筛选以及用于分析完整的蛋白质组。B.方法1.细胞培养、构建和蛋白纯化使用Hudson等的重组策略9,将122种酵母蛋白激酶基因中的119种克隆入高拷贝URA3表达载体(pEG(KG))中,该载体在半乳糖诱导型GAL10启动子控制下产生GST融合蛋白10。简而言之,由ResearchGenetics购买与每个ORF末端互补的引物;这些引物的末端包含通用的20bp序列。在第二轮PCR中,通过加入与载体同源的序列修饰这些产物的末端。将在其末端含载体序列的PCR产物连同所述载体一起转化入pep4酵母菌株(其缺少几种酵母蛋白酶)10,并选择Ura+菌落。在大肠杆菌中富集质粒,通过限制酶消化确认,使用与所述载体互补的引物测定涵盖载体-插入片段连接部分在内的DNA序列。对于GST∷Cla4构建物,移码突变位于N端编码区的poly(A)节段中。发现一个保持读框的正确克隆需要3个独立的克隆。对于这些基因中的5种,获得2个重叠的PCR产物,将其引入到酵母细胞中。将证实的质粒再引入到pep4酵母菌株中,以便进行激酶蛋白纯化。为使用96孔结构制备样品,在含2ml孔的盒中于含棉子糖的培养基中培养0.75ml细胞至O.D.(600)约0.5;每种菌株使用2个孔。加入半乳糖至终浓度为4%以诱导蛋白表达,并培养细胞4小时。合并相同菌株的培养物,用500ml裂解缓冲液清洗1次,在200ml裂解缓冲液中重悬浮,并转移至含100μl冷冻玻璃珠的96×0.5ml板(DotScientific,USA)中。通过在4℃重复涡旋裂解盒中的细胞,并使用谷胱甘肽珠和标准方法20在96孔结构中由这些菌株纯化GST融合蛋白。通过将纯化蛋白的考马斯染色图谱与使用抗GST抗体的免疫印迹分析获得的图谱进行对比测定5种纯化GST∷激酶蛋白(Swe1、Ptk2、Pkh1、Hog1、Pbs2)的纯度。结果表明,纯化蛋白纯度超过90%。为纯化活性形式的Hog1,用0.4MNaCl在诱导的最后5分钟处理所述细胞。蛋白激酶活性于-70℃可至少稳定2个月,激酶活性几乎没有或没有损失。2.芯片加工和蛋白连接由硅氧烷弹性体聚二甲基硅氧烷(PDMS)(DowChemical,USA)制备芯片,在微加工模上铸造。将液态PDMS倾注在模具上,固化(于65℃至少4小时)后由可重复使用的模板上刮下柔韧的硅氧烷弹性体阵列层。尽管PDMS可容易地铸造在微光刻加工结构上,但为了本文描述的激酶测定,用计算机控制的激光切削工具(UniversalLaserSystems,USA)定型、由丙烯酸层制备的模板足以满足要求。测试了超过30种不同的阵列。测试的可变因素是孔的宽度和深度(宽度范围为100μm至2.5mm,深度为100μm至1mm)、孔间间隔(100μm至1mm)、构型(或者矩形阵列,或者最紧密封装)和孔形(方形与圆形)。使用激光切削丙烯酸模板提供了一种快速廉价的获得大量参数不同的原型模板的方法。为确定使蛋白与孔的附着最大化的条件,用5MH2SO4、10MNaOH、过氧化氢或3-缩水甘油氧丙基三甲氧基硅烷(GPTS)(Aldrich,USA)连接体处理PDMS11,12。与未处理的PDMS或其它方式处理的PDMS相比,GPTS处理获得的蛋白与孔的吸附最大。简单来说,用100%EtOH于室温清洗3次后,将芯片浸入到1%GPTS溶液(95%EtOH,16mMHOAc)中,于室温振摇1小时。用95%EtOH清洗3次后,在真空下于135℃固化芯片2小时。固化的芯片可在干燥的氩气中储存数个月12。为使蛋白连接至芯片,将蛋白溶液加入到孔中,并在冰上温育1-2小时。用冷HEPES缓冲液(10mMHEPES,100mMNaCl,pH7.0)淋洗3次后,用1%BSA的PBS溶液(Sigma,USA)于冰上封闭孔1小时以上。由于使用了GPTS,避免了使用任何含伯胺基团的试剂。为确定可连接至已处理PDMS的蛋白浓度,使用连续稀释的酶液将辣根过氧化物酶(HRP)抗小鼠Ig(Amersham,USA)连接至芯片。用PBS彻底清洗后,使用增强型化学发光(ECL)检测法(Amersham,USA)检测结合的抗体。高达8×10-9μg/μm2的蛋白可连接至表面,用我们的免疫染色方法检测需要的最少量为8×10-13μg/μm2。3.免疫印迹、激酶测定和数据获得如所述进行免疫印迹分析34。使用33P-γ-ATP测试GST∷蛋白激酶的体外激酶活性13。在自磷酸化测定中,将GST∷激酶直接附着于GPTS处理的PDMS,并在合适的缓冲液中用33P-γ-ATP进行体外反应。在底物反应中,通过GPTS将底物粘附于孔,用HEPES缓冲液清洗孔并用1%BSA封闭,然后加入激酶、33P-γ-ATP和缓冲液。总反应体积保持在0.5μl/反应以下。于30℃温育30分钟以后彻底清洗芯片,使芯片对X光片和50μm分辨率的定量MolemularDynamicsPhosphorImager曝光。对于12种底物,每种激酶测定都重复至少2次;对于余下的5种底物,进行1次测定。为测定底物特异性,使用下式计算特异性指数(SI)SIir=Fir/[(Fi1+Fi2+......+Fir)/r],其中i表示所使用激酶的标识,r代表底物标识,而Fir代表与单独的GST相比激酶i对底物r作用的增加倍数。4.激酶序列比对和系统树使用Gonnet250打分矩阵36,用CLUSTALW算法35产生基于107种蛋白激酶的核心激酶催化结构域亚序列的多序列比对。由SWISS-PROT37、PIR38和GenBank39数据库获得激酶催化结构域序列。对于其催化结构域还没有注解的那些激酶(DBF4/YDR052C和SLN1/YIL147C),使用BLOSUM50打分矩阵42,用FASTA算法40,41由与数据组其它激酶亚序列比对推断可能的激酶亚序列。由所述比对提取出对应于11种核心催化亚结构域43的蛋白亚序列,用PROTPARS44程序由计算机确定系统树(图5a)。5.蛋白芯片数据的功能分组为显现蛋白激酶之间实验数据的大致功能关系,基于其磷酸化12种不同底物的能力对激酶进行系统排序(由web站点http//bioinfo.mbb.yale.edu/genome/yeast/chip获得从2000年8月17日起的数据)。记录对应于107种蛋白激酶对每种底物的-/+活性分布,离散值为。由实验谱之间的成对Hamming距离产生矩阵,使用PHYLIP软件包44的FITCH程序34执行的Fitch-Margoliash最小平方评价法45计算机计算未确定起源的系统发生。在每种情况下都对分类单位的输入顺序进行随机化,以便消除数据集组织中的任何固有偏倚,并通过树结构的整体重排获得最佳系统。C.结果1.酵母激酶克隆和蛋白纯化我们尝试使用重组定向克隆策略9在高拷贝表达载体(pEG(KG))中克隆122种酵母蛋白激酶基因的完整编码区,表达载体pEG(KG)在半乳糖诱导型GAL10启动子10(图1a)控制下生产GST融合蛋白。在大肠杆菌中导入GST∷激酶构建物,并测定每种构建物的5′末端序列。使用该策略按读框克隆了122种酵母蛋白激酶基因中的119种。三种未克隆的激酶基因非常大(4.5-8.3kb)。在酵母中过量生产GST∷激酶融合蛋白,使用谷胱甘肽珠和标准方法11由50ml培养物中纯化GST∷激酶融合蛋白。对于Hog1,用高盐处理酵母细胞,以在诱导的最后5分钟活化该酶;对于其它的激酶,使用合成培养基(URA-/棉子糖)。使用抗GST抗体免疫印迹分析全部119种融合蛋白揭示,105种酵母菌株产生可检测的GST∷融合蛋白;在大多数情况下融合蛋白为全长。每ml起始培养物获得高达1μg的融合蛋白(图1b)。但是,119种GST∷激酶样品中有14种未能通过免疫印迹分析检测到。估计这些蛋白在使用的pep4蛋白酶缺陷型菌株中不能稳定过量产生,或者这些蛋白可能形成使用我们的方法不能纯化的不溶性聚集物。尽管该方法是成功的,但使用50ml培养物纯化GST融合蛋白是一个耗时的过程,并且不能用于制备数以千计的样品。因此,发展出在96孔结构中培养细胞的方法(参见方法)。使用该方法制备出119种GST融合蛋白,并且在6小时内每ml起始培养物纯化的产量比所述50ml方法高出约2倍。2.蛋白芯片设计开发蛋白芯片对119种酵母蛋白激酶进行高通量生化测定(图2)。这些芯片由在一次性硅氧烷弹性体聚二甲基硅氧烷(PDMS)11中的孔阵列组成。孔阵列允许小体积的不同探针高密度装填在单个芯片上,而在随后的分批处理过程中仍保持隔离。使用连接体3-缩水甘油氧丙基三甲氧基硅烷(GPTS)12将蛋白共价连接至所述孔。连接至表面的蛋白可高达8×10-9μg/μm2(参见方法)。为进行蛋白激酶测定,使蛋白芯片技术与标准样品操作和记录设备相匹配。使用放射性同位素(33P)、以下描述的激酶测定和手动加样测试各种阵列配置。以下的芯片产生最佳结果1.4mm直径和300μm深(大约300nl)的圆孔,具有1.8mm间距的10×14矩形阵列构型。生产一个主模(12个阵列),重复铸造大量阵列进行蛋白激酶分析。为操作目的将芯片放置在显微镜载玻片上面(图2a);阵列覆盖面积稍稍超出标准显微镜载玻片的1/3,通常使用每个载玻片两个阵列(图2b)。尽管使用手动移液法将蛋白置于每个孔中,但也可以使用自动化技术。另外,这种蛋白芯片构型还可以使用其它标记方法,例如使用磷蛋白的荧光标记抗体,随后检测免疫荧光。3.使用蛋白芯片的大规模激酶测定使用33P-γ-ATP和17种不同芯片以17个不同测定测试全部119种GST∷蛋白激酶的体外激酶活性13。使用如下的不同底物测定每种芯片1)自磷酸化;2)牛组蛋白H1(共同激酶底物);3)牛酪蛋白(共同底物);4)髓磷脂碱性蛋白(共同底物);5)Axl2C末端-GST(Axl2是一种参与芽殖的跨膜磷蛋白)14;6)Rad9(一种参与DNA损伤关卡的磷蛋白)15;7)Gic2(一种参与芽殖的磷蛋白);8)Red1(对染色体联会很重要的一种减数分裂磷蛋白);9)Mek1(对染色体联会很重要的一种减数分裂蛋白激酶);10)多聚(酪氨酸-谷氨酸1∶4)(多聚(Tyr-Glu));一种酪氨酸激酶底物)19;11)Ptk2(一种小分子转运蛋白)20;12)Hsl1(一种参与细胞周期调节的蛋白激酶)21;13)Swi6(一种参与G1/S控制的磷酸转录因子)22;14)Tub4(一种参与微管成核的蛋白)23;15)Hog1(一种参与渗透压调节的蛋白激酶)24;16)Hog1(所述激酶的失活形式)和17)GST(对照)。对于自磷酸化测定,将所述激酶直接连接至处理的PDMS孔并加入33P-γ-ATP;对于底物反应,将所述底物结合至孔,然后加入激酶和33P-γ-ATP。反应完成后,清洗载玻片,使用高分辨率磷成象仪获得和定量磷酸化信号。实例示于图3。为鉴定激酶活性,将定量信号转化为相对于GST对照的增加倍数并作图,以便作图进行进一步的分析(图4a)。如图4a所示,大部分(93.3%)激酶对至少一种底物表现出超出背景5倍或更高的活性。正如预期一样,Hrr25、Pbs2和Mek1分别磷酸化其已知底物25-27Swi6(比GST对照高400倍)、Hog1(高10倍)和Red1(出10倍)。该测定的结果证明,24种预测的蛋白激酶中有先前还没有研究过的18种磷酸化一种或多种底物,几种非常规激酶也是如此8,包括组氨酸激酶(Sln1,Yi1042c)和磷脂激酶(例如Mec1)。为测定底物特异性,再将特定激酶活性对其对所有底物的平均活性归一化。几个实例示于图4b;全部数据都可由http//bioinfo.mbb.yale.edu/genome/yeast/chip获得。32种激酶对一种特定底物表现出特异性,特异性指数(SI,参见方法)等于或高于2,相反,一种特定蛋白激酶或一组激酶优先磷酸化大多数底物。例如,相对于其它蛋白来说,Dbf20、Kin2、Yak1和Ste20优先磷酸化Axl2(一种参与酵母细胞芽殖的蛋白)的C末端。令人感兴趣的是,前面的研究发现Ste20位于与Axl2相似的新生芽顶端,而ste20Δ/cla4ts突变体不能出芽或形成完全极化的肌动蛋白片或丝28。另一个实例是也参与芽殖的磷蛋白Gic216。Ste20和Skm1强烈磷酸化Gic2(图4b)。先前的研究提示,Cdc42与Gic2、Cla429、Ste20和Skm1相互作用。我们的结果增加了以下的可能性即Cdc42可能通过募集Ste20和/或Skm1促进Gic2磷酸化。4.酵母包含多种双功能特异性激酶特别令人感兴趣的是双功能特异性激酶,即既磷酸化Ser/Thr也磷酸化酪氨酸的那些酶。根据序列分析,除两种酵母蛋白激酶以外,所有激酶都属于Ser/Thr蛋白激酶家族;但是,在进行本研究时有人报道了7种蛋白激酶(Mps1、Rad53、Swe1、Ime2、Ste7、Hrr25和Mck1)为双功能特异性激酶19。我们证实,Swe1、Mps1、Ime2和Hrr25容易磷酸化多聚(Tyr-Glu),但我们未检测Ste7、Rad53或Mck1的任何酪氨酸激酶活性。Mck1在我们的任何一个测定中都不显示强活性;但是,Ste7和Rad53在其它测定中非常活跃。因此,它们不能磷酸化多聚(Tyr-Glu)表明,它们或者多半是很弱的酪氨酸激酶,或者至少对多聚(Tyr-Glu)底物弱。与后一种可能性相一致的是,其他人发现多聚(Tyr-Glu)是Rad53的非常弱的底物(Ref19;D.Stern,pers.comm.)。令人感兴趣的是,我们发现23种其它激酶也有效使用多聚(Tyr-Glu)作为底物,表明在酵母中存在至少27种激酶能够作为双功能特异性激酶在体外起作用。最近证实,其中一个激酶Rim1磷酸化其体内底物Ime2上的Tyr残基,表明其确实是双功能特异性激酶30。总之,本实验粗略地使能够起双功能特异性激酶作用的激酶数目增加3倍,并提出了有关其中一些激酶分类为双功能特异性激酶的问题。5.多聚(Tyr-Glu)激酶的功能特异性和氨基序列之间的关系酵母蛋白激酶的大规模分析使我们可以比较蛋白激酶互相之间的功能关系。我们发现,其中许多磷酸化多聚(Tyr-Glu)的激酶互相之间在氨基酸序列上相关70%的多聚(Tyr-Glu)激酶在系统树上聚簇为4个不同的组,其中所述激酶互相之间根据其保守蛋白激酶结构域的序列相似性编组(图5a)。氨基酸序列的其它测试揭示,相对于不使用多聚(Tyr-Glu)作为底物的激酶来说,4种类型的氨基酸偏好存在于多聚(Tyr-Glu)类激酶中(三种为赖氨酸,一种为甲硫氨酸);一种残基(天冬酰胺)偏好位于不容易使用多聚(Tyr-Glu)作为底物的激酶中(图5b)。所述残基中的大多数都位于所述分子的催化部分附近(图5b)31,提示它们可能在底物识别中起作用。D.讨论1.大规模分析蛋白激酶本研究使用新型蛋白芯片技术特征鉴定119种蛋白激酶对17种不同底物的活性。我们发现特定蛋白是特定蛋白激酶的优选底物,反之亦然,许多蛋白激酶优选特定底物。这些研究要考虑非目的酶的激酶有可能污染我们的制品。尽管这不能严格排除在外,但通过考马斯染色和用抗-GST免疫印迹染色对我们样品中的5种进行分析表明,我们的制品不存在任何不是GST融合蛋白的可检测条带(参见方法)。需要重点指出的是,体外测定不能确保特定激酶的体外底物能被该激酶体内磷酸化。相反,这些实验表明,某些蛋白能够用作特定激酶的底物,由此允许进一步的分析。在这方面,这些测定类似于检测候选相互作用的双杂交研究。测定该过程是否能正常地在体内发生必须其它的实验方法。与其中许多底物可能是体内真正底物的想法相一致的是,观察到三种激酶Hrr25、Pbs2和Mek1在我们的测定中磷酸化其已知底物。而且,许多激酶(例如Ste20)与其体外底物(例如Axl2)共定位。因此,我们预期,许多在我们的体外测定中磷酸化底物的激酶在体内可能也是如此。尽管其中大部分激酶在我们的测定中有活性,但有几种没有。推测我们制品中的后几种激酶或者缺乏足够量的活化物,或者在活化条件下不能纯化。例如,在我们的测定中无活性的Cdc28可能缺乏其活化细胞周期蛋白。对于Hog1,用高盐处理细胞以活化酶。因为我们的激酶制备物的确几乎全部都表现出活性,所以我们推测制备物中的至少部分酶已正确活化和/或包含必须的辅因子。有可能是这些酶在其天然生物中过表达对高度成功地获得活化酶起显著作用。使用蛋白芯片测定鉴定出许多利用多聚(Tyr-Glu)的激酶。大规模分析许多激酶提供了一种使多聚(Tyr-Glu)激酶的功能特异性与特异性氨基酸序列联系起来的新方法。磷酸化多聚(Tyr-Glu)的激酶中的许多残基都包含碱性残基。这可以预计得到,假如激酶残基和Glu残基之间是静电作用的话。但是,某些其它残基的作用不是显而易见的,例如磷酸化多聚(Tyr-Glu)的激酶上的Met残基,以及不磷酸化多聚(Tyr-Glu)的激酶上的Asn。这些激酶残基可通过其它机制提供底物特异性。无论如何,分析其它底物应当可以进一步使所有蛋白激酶的功能特异性和蛋白激酶序列关联起来。2.蛋白芯片技术除了快速分析大量样品之外,本文描述的蛋白芯片技术具有超越常规方法的显著优势。1)芯片型测定具有高信噪比。我们发现,使用蛋白芯片表现出的信噪比远远好于(>10倍)传统微量滴定板测定观察到的信噪比(未列出数据)。推测这是由于以下事实33P-γ-ATP与PDMS的结合未达到微量滴定板的程度。2)需要的材料量非常少。反应体积为384孔微量滴定板使用量的1/20-1/40;每次反应使用的蛋白激酶少于20ng。3)使用蛋白芯片的酶测定非常敏感。即使仅有105种融合蛋白可通过免疫印迹分析检测出来,但仍有112种融合蛋白对至少一种底物的酶活性显示超过背景5倍。例如,Mps1在许多激酶测定中始终如一地显示出最强活性,即使我们还不能够通过免疫印迹分析检测出该融合蛋白(参见图1b和3a)。4)最后,芯片廉价;每个阵列的材料成本低于8美分。微加工模也易于制备且廉价。除了分析蛋白激酶外,该蛋白芯片技术也适用于各种各样的其它测定,例如ATP和GTP结合测定、核酸酶测定、解螺旋酶测定和蛋白-蛋白作用测定。最近,在一个独立研究中,Phizicky和同事在非常弱的CUP1启动子控制下表达了为GST融合蛋白的酵母蛋白6。尽管其克隆的品质还没有确定,但他们能够使用含所述融合蛋白的酵母菌株库鉴定生化活性。我们的蛋白芯片方法的优势在于所有样品都可以在单一实验中进行分析。而且,尽管本研究使用具有聚集样品优势的孔,但也可以使用平面PDMS芯片和载玻片进行其它测定;其优势是可与标准点样针工具微阵列一起使用。该技术还可适用于促进高通量药物筛选,在该筛选中人们可筛选抑制或激活任何目的基因产物酶活性的化合物。因为这些测定将在蛋白水平上进行,所以结果对蛋白的分子功能更直接和更有意义。我们使用通常可获得的样品操作和记录设备配置用于特定蛋白激酶测定的蛋白芯片技术。为此,阵列尺寸相对比容易用微加工硅氧烷弹性体结构获得的尺寸要大32。我们铸造的PDMS结构的形状尺寸比本文报道的用微光刻加工模获得的结构小两个数量级,而其他人报道了微加工结构的亚微米形体尺寸33。这些结果表明,微加工蛋白芯片的孔密度可容易地增加几个数量级。本文报道的蛋白芯片技术易于放大。总之,开发了一种用于高通量筛选蛋白生化活性的廉价一次性蛋白芯片技术。通过测定酿酒酵母的119种蛋白激酶对17种不同底物的磷酸化进行分析,证明了其用途。这些蛋白芯片允许同时检测数以百计的蛋白样品。使用基于芯片技术的微加工孔阵列使阵列密度可容易地增加几个数量级。随着合适样品操作和检测技术的发展,这些蛋白芯片可用于同时测定几千至几百万种样品。E.参考文献1.Fields,S.,Kohara,Y.,和Lockhart,D.J.功能基因组,Proc.Natl.Acad.Sci.96,8825-26(1999)。2.Goffeau,A.,等,6000种基因的生命,Science274,563-567(1996)。3.DeRisi,J.L.,Iyer,V.R.和Brown,P.O.在基因组规模上探索基因表达的代谢和遗传控制,Science278,680-686(1997)。4.Winzeler,E.A.等,通过基因缺失和平行分析功能性特征鉴定酿酒酵母基因组,Science285,901-906(1999)。5.Heyman,J.A.,等,使用拓扑异构酶-I介导的连接对各个可读框进行基因组规模的克隆和表达,GenomeRes.9,383-392(1999)。6.Martzen,M.R.,等,通过其产物活性鉴定基因的生化基因组方法,Science286,1153-1155(1999)。7.PlowmanG.D.,SudarsanamS.,BinghamJ.,WhyteD.,和HunterT.,Caenorhabditiselegans蛋白激酶多细胞生物信号转导模型,Proc.Natl.Acad.Sci.96,13603-12610(1999)。8.Hunter,T.,&Plowman,G.D.,芽殖酵母蛋白激酶120种或更多,TIBS22,18-22(1997)。9.Hudson,J.R.,等,易用形式的酿酒酵母成套预测基因,GenomeRes.7,1169-1173(1997)。10.Mitchell,D.A.,Marshall,T.K.,和Deschenes,R.J.诱导谷胱甘肽S转移酶融合蛋白在酵母中过表达的载体,Yeast9,715-23(1993)。11.Rogers,Y.-H.,等,通过二硫键将寡核苷酸固定在玻璃支持体上DNA微阵列制备方法,Analy.Biochem.266,23-30(1999)。12.Stimpson,D.J.,等,通过使用光波指引实时检测寡核苷酸阵列上的DNA杂交和解链,Proc.Natl.Acad.Sci.92,6379-6383(1995)。13.Hunter,T.&Sefton,B.M.蛋白质磷酸化,Meth.inEnzym.200,35-83(1991)。14.Roemer,T.K.,等,在酵母中选择轴向生长位点需要一种新质膜糖蛋白Axl2p,Genes&Dev.10,777-793(1996)。15.Weinert,T.A.&Hartwell,L.H.cdc突变体的细胞周期停滞和RAD9关卡的特异性,Genetics134,63-80(1993)。16.Jaquenoud,M.,Gulli,M.P.,Peter,K.,和Peter,M.cdc42p效应物Gic2p是SCFGrrl复合物遍在蛋白依赖性降解的目标,EMBOJ.17,5360-5373(1998)。17.Menees,T.M.,Ross-MacDonald,P.B.,和Roeder,G.S.染色体联会需要一种减数分裂特异性酵母基因MEI4,Mol.CellBiol.12,1340-1351(1992)。18.Bailis,T.M.,&Roeder,G.S.联会复合体形态发生和姐妹染色单体粘合需要减数分裂染色体蛋白Mek1依赖性磷酸化,Genes&Dev.12,3551-3563(1998)。19.Stern,D.F.,Zheng,P.,Beidler,D.R.,和Zerillo,C.一种酿酒酵母新激酶Spk1磷酸化蛋白上的丝氨酸、苏氨酸和酪氨酸,Mol.CellBiol.11,987-1001(1991)。20.Kaouass,M.,等,在酿酒酵母中进行高亲和性亚精胺转运需要编码推定的Ser/Thr蛋白激酶的STK2基因,Mol.CellBiol.17,2994-3004(1997)。21.Barral,Y.,Parra,M.,Bidlingmaier,S.,和Snyder,M.Niml相关性激酶使酵母的细胞周期进展和外周细胞骨架形成相协调,Genes&Dev.13,176-187(1999)。22.Madden,K.,Sheu,Y.-J.,Baetz,K.,Andrews,B.,和Snyder,M.作为酵母PKC-MAP激酶途径靶的SBF细胞周期调节物,Science275,1781-1784(1997)。23.Sobel,S.G.&Snyder,M.高度趋异的γ-微管蛋白基因是酿酒酵母细胞生长和正确微管组织化必须的,J.CellBiol.131,1775-1788(1995)。24.Ferrigno,P.,Posas,F.,Koepp,D.,Saito,H.,和Silver,P.A.调节HOG1MAPK的核质/胞质交换需要输入蛋白β类似物NMD5和XPO1,EMBOJ.17,5606-5614(1998)。25.Ho,U.,Mason,S.,Kobayahi,R.,Heokstra,M.,和Andrew,B.酪蛋白激酶I型异构酶Hrr25和细胞周期调节转录因子SBF在酿酒酵母中对DNA损伤的转录应答的作用,Proc.Natl.Acad.Sci.94,581-586(1997)。26.Wurgler-Murphy,S.M.,Maeda,T.,Witten,E.A.,和Saito,H.通过PTP2和PTP3蛋白酪氨酸磷酸酶调节酿酒酵母HOG1有丝分裂原活化的蛋白激酶,Mol.CellBiol.17,1289-1297(1997)。27.Santos,T.&Hollingsworth,N.M.在酵母有丝分裂过程中与Hoplp物理性相互作用的MEK1依赖性磷蛋白Red1p,J.Biol.Chem.274,1783-1790(1999)。28.Holly,S.P.&Blumer,K.J.PAK家族激酶在酿酒酵母细胞周期的整个过程中调节细胞和肌动蛋白极化,J.CellBiol.147,845-856(1999)。29.Richman,T.J.,Sawyer,M.M.,和Johnson,D.I.cdc42pGTP酶在酵母中参与调节顶部各向同性开关和核分裂的G2/M形态发生关卡,J.Biol.Chem.274,16861-16870(1999)。30.Malathi,K.,Xiao,Y.,和Mitchell,A.P.酵母GSK3β/长柔毛类似物Rimllp在有丝分裂活化中的催化作用,Genetics153,1145-1152(1999)。31.Owen,D.J.,Noble,M.E.,Garman,E.F.,Papageorgiou,A.C.,和Johnson,L.N.磷酸化酶激酶催化结构域的两种结构与底物类似物和产物复合的活性蛋白激酶,Structure3,467-474(1995)。32.Xia,Y.&Whitesides,G.M.Angew.Chem.Int.Ed.37,550-(1997)。33.Jackman,R.J.,Duffy,D.C.,Cherniavskaya,O.,和Whitesides,G.M.使用弹性膜作为干燥保护层和干燥防护,Langmuir,15,2973-2984(1999)。34.Mylin,L.M.,Hofmann,K.J.,Schultz,L.D.,和Hopper,J.E.高拷贝半乳糖启动子在酵母中调节产量可控且高水平的GAL4表达盒,MethodsEnzymol.185,297-308(1990)。35.Higgins,D.G.,Thompson,J.D.,和Gibson,T.J.使用CLUSTAL进行多序列比对,MethodsEnzymol.266,383-402(1996)。36.Gonnet,G.H.,Cohen,M.A.,和Benner,S.A.完整蛋白序列数据库的完全匹配,Science.256,1443-1445(1992)。37.Bairoch,A.&Apweiler,R.SWISS-PROT蛋白质序列数据库及其增补TrEMBL,NucleicAcidsRes.27,49-54(1999)。38.Barker,W.C.,等,PIR国际蛋白序列数据库,NucleicAcidsRes.27(1),39-43(1999)。39.Benson,D.A.等,GenBank.NucleicAcidsRes.27,12-17(1999)。40.Lipman,D.J.&Pearson,W.R.快速且敏感的蛋白相似性检索,Science.277,1435-1441(1985)。41.Pearson,W.R.&Lipman,D.J.改进的生物序列对比工具,Proc.Natl.Acad.Sci.85,2444-2448(1988)。42.Dayhoff,M.O.,Schwartz,R.M.,和Orcutt,B.C.蛋白的革命性变化模型,载于AtlasofProteinSequenceandStructure,M.O.Dayhoff主编,Washington,DCNationalBiomedicalResearchFoundation.第345-352页(1978)。43.Hanks,S.K.&Hunter,T.蛋白激酶6,真核生物蛋白激酶亚家族激酶(催化)结构域结构和分类,FASEBJ.9,576-96(1995)。44.Felsenstein,J.PHYLIP-种系发生推断软件包(3.2版),Cladistics.5,164-166(1989)。45.Fitch,W.M.&Margoliash,E.系统树结构,Science.155,279-284(1967)。VII.实施例II使用蛋白芯片分析酵母蛋白激酶活性A.前言以下实施例提出了三种方案,这三种方案仅用于说明目的,提供了使用本发明蛋白芯片测定蛋白激酶活性的不同方法。1.蛋白激酶活性的测定方法i.自磷酸化活性(1)用100%EtOH于室温清洗蛋白芯片3次。然后用连接体GPTS(1%的95%EtOH溶液)于室温振摇包被芯片1小时。用100%EtOH清洗3次后,将芯片于130℃真空干燥1.5小时。(2)温育至少1小时,将GST∷酵母蛋白激酶(每孔一种激酶)结合至蛋白芯片孔。再用1%BSA封闭芯片。(3)向每个孔中加入激酶缓冲液和33P-γ-ATP探针,并于30℃温育30分钟。在磷酸化反应完成后彻底清洗芯片。(4)通过磷成象仪检测和定量代表自磷酸化的特异性33P-γ-ATP信号。ii.激酶活性-方案I(1)用100%EtOH于室温清洗蛋白芯片3次。然后用连接体GPTS(1%的95%EtOH溶液)于室温振摇包被芯片1小时。用100%EtOH清洗3次后,将芯片于130℃真空干燥1.5小时。(2)温育1小时或1小时以上,将底物(例如GST∷酵母蛋白)结合至芯片。再用1%BSA封闭芯片,并清洗芯片。(3)向蛋白芯片的每个孔中加入不同的蛋白激酶以及激酶缓冲液和33P-γ-ATP,并于30℃温育30分钟。在磷酸化反应完成后彻底清洗芯片。(4)通过磷成象仪检测和定量代表蛋白激酶探针磷酸化底物蛋白的特异性33P-γ-ATP信号。iii.激酶活性-方案II(1)用100%EtOH于室温清洗蛋白芯片3次。然后用连接体GPTS(1%的95%EtOH溶液)于室温振摇包被芯片1小时。用100%EtOH清洗3次后,将芯片于130℃真空干燥1.5小时。(2)温育1小时或1小时以上,将底物(例如GST∷酵母蛋白)结合至芯片。再用1%BSA封闭芯片,并清洗芯片。(3)向蛋白芯片的每个孔中加入不同的蛋白激酶以及激酶缓冲液和P-γ-ATP,并于30℃温育30分钟。在磷酸化反应完成后彻底清洗芯片。将芯片与碘乙酰-LC-生物素在黑暗中于室温过夜温育。(4)清洗后,用荧光标记的抗生物素蛋白探测芯片,以检测磷酸化信号。(5)然后用AxonGenepix4000A扫描仪扫描芯片,该扫描仪改装聚焦深度增加约300-400μm的透镜。改装允许扫描表面放在载玻片上(例如本发明的PDMS微阵列),否则将偏离聚焦面。使用改装的AxonGenepix4000A扫描仪扫描阵列获得并量化了荧光信号。VIII.实施例III使用蛋白芯片分析蛋白-蛋白相互作用使用标准方法在大肠杆菌中重组表达并纯化为标记融合蛋白的目的蛋白(“探针蛋白”)。将靶蛋白连接至芯片孔,每个孔中都有不同的靶蛋白。将纯化的探针蛋白加入到芯片的每个孔中并温育几小时或更长时间。清洗芯片并用以下的任一种物质探测a)探针蛋白的抗体或b)融合蛋白标记的抗体。用荧光标记如Cy3或Cy5标记抗体,或者使用检测一抗的荧光标记二抗检测。以下实施例提供了使用本发明蛋白芯片测定蛋白酶、核酸酶或G蛋白受体的方法,仅用于说明目的。通常可使用以下的方法或相似的方法测定蛋白-蛋白相互作用。A.分析蛋白酶活性以下述方式测定蛋白酶活性。首先,制备由各种氨基酸组合物构成的蛋白探针,C末端或N末端连接质谱标记,唯一的条件是标记的分子量应足够大,以便可以检测蛋白的所有标记切割产物。于37℃使蛋白探针与连接至蛋白芯片的蛋白酶接触。于37℃温育合适的时间并用乙腈和三氟乙酸清洗后,通过使用质谱分析检测蛋白水解产物检测蛋白酶活性。该测定提供了有关连接至蛋白芯片的蛋白酶水解活性和特异性这二者的信息。另一种分析蛋白酶活性的快速测定是将已知序列的蛋白连接至芯片。底物蛋白在结束时而不是连接至芯片时用荧光标记。当与目的蛋白酶温育时,一旦发生蛋白水解荧光标记就丢失,使得荧光下降可表示蛋白酶活性的存在与否和存在程度。可进行相同类型的测定,其中蛋白底物与放置在芯片孔中的珠相连接。B.分析核酸酶活性以和以上有关蛋白酶活性的描述相同的方式评价核酸酶活性,不同之处在于核酸探针/底物代替蛋白探针/底物。同样,可通过荧光检测核酸酶活性释放的荧光标记核酸片段,或者可通过质谱法直接检测核酸片段。C.分析G蛋白偶联受体在另一种类型的测定中,鉴定结合G蛋白偶联受体的化合物。开始,将G蛋白受体作为GST融合蛋白克隆,GST部分连接至G蛋白的C末端,因为C端通常不涉及决定探针特异性。优选通过与谷胱甘肽缔合将G蛋白∷GST融合蛋白连接至所述孔。然后将G蛋白受体与化合物的混合物(例如组合化学库或肽库)温育。清洗后例如通过加入25%乙腈/0.05%三氯乙酸洗脱结合的探针。然后将洗脱的物质上样至MALDL质谱仪,并鉴定结合探针的性质。IX.使用蛋白芯片分析特异性抑制剂对蛋白激酶的抑制以下的描述提供了使用本发明蛋白芯片检测蛋白激酶对蛋白激酶抑制剂敏感性的方法,仅用于说明目的。蛋白-蛋白相互作用一般可使用以下的方法或相似的方法进行测定。于室温将底物结合至蛋白芯片上GPTS处理的微孔表面达1小时,然后用1%BSA和100mMTrispH7.5封闭,并用TBS缓冲液清洗3次。在存在33P-γ-ATP时向微孔中加入激酶和不同浓度的激酶抑制剂。于30℃进行30分钟的磷酸化反应。反应完成后,用TBS缓冲液于室温彻底清洗蛋白芯片,然后使其干燥。通过使蛋白芯片对X光片或磷成象仪曝光获得磷酸化信号。使用不同浓度的PKIα(一种特异性人PKA抑制剂)或SB202190(一种MAPK抑制剂)测试人蛋白激酶A(PKA)、人促细胞分裂剂激活性蛋白激酶(MAPK)、三种酵母PKA类似物(TPK1、TPK2和TPK3)和其它两种酵母蛋白激酶(HSL1和RCK1)对两种底物(即PKA蛋白底物和常用的激酶底物MBP)的作用。如图7所示,PKIα特异性抑制PKA对肽和MBP底物二者的活性。然而,PKIα不抑制所测试的三种酵母PKA类似物(TPK1、TPK2和TPK3)或其它两种酵母蛋白激酶(HSL1和RCK1)。另外,SB202190不抑制PKA活性。X.实施例V在玻璃表面上进行激酶测定1.将载玻片(Fisher,USA)浸泡在28-30%氢氧化铵中,于室温(“RT”)振摇过夜。2.用超纯水清洗载玻片4次,每次5分钟(“min”),然后用大体积100%乙醇(“EtOH”)淋洗,以完全去除水。然后用95%乙醇淋洗载玻片3次。3.将载玻片浸入到1%3-缩水甘油氧丙基三甲氧基硅烷(GPST)的95%EtOH、16mM乙酸(“HOAc”)溶液中,于室温振摇1小时。用95%乙醇于室温淋洗载玻片3次。4.于135℃真空固化载玻片2小时。冷却后可将载玻片储存在氩气中直至使用,储存时间可达数月。5.将大约10μl的每种蛋白底物(40%的甘油溶液)点阵在冰上的96孔PCR板上。使用手动打点装置(V&PScientific,USA)于室温将大约3nl的每种样品点样在GPTS处理的载玻片上。在一个实施方案中,将786个样品点样在一个载玻片上。将载玻片置于有盖的干净容器中于室温温育1小时。6.用10ml封闭缓冲液(100mM甘氨酸、100mMTris,pH8.0、50mMNaCl)于室温封闭载玻片1小时。用TBS缓冲液(50mMTris,pH8.0、150mMNaCl)清洗载玻片3次,并以1500rpm旋转5分钟至干燥。7.用HybriWellSealingSystem(Schleicher&Schuell,Germany)覆盖在载玻片的底物表面,并将含蛋白激酶和作为标记试剂的33P-γ-ATP的40μl激酶混合物加入到在冰上的底物中。8.将反应物在潮湿箱中于30℃温育30分钟。将封条由载玻片上剥落,将载玻片浸入到含50mMEDTA的大体积PBS缓冲液中。再用相同的缓冲液于室温清洗载玻片3×15分钟。然后用Kimwipes干燥清洗的载玻片。9.为获得信号,将载玻片对磷成象仪屏幕曝光,使用ImageQuant软件分析数据。XI.引用的参考文献本文引用的所有参考文献都通过引用整体结合到本文中,均等同于每个具体而单独指明的单独出版物或专利或专利申请通过引用整体结合。可在不偏离本发明精神和范围的情况下对本发明进行多种修饰和改变,这对本领域技术人员而言是显而易见的。本文描述的具体实施方案仅仅是为了举例说明,本发明连同所附权利要求的等同方案的全部范围仅受所附权利要求书的限制。权利要求1.一种定位寻址阵列,其在固体支持体上包含多种不同物质,所述物质选自蛋白和包含所述蛋白功能域的分子,每种不同物质在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成,其中所述多种不同物质由全部表达蛋白或包含所述蛋白功能域的分子的至少50%构成,所述表达蛋白或分子在生物体基因组中具有相同类型的生物活性。2.权利要求1的阵列,其中所述多种不同物质的组成如下100-1,000种不同物质/cm2,1,000-10,000种不同物质/cm2,10,000-100,000种不同物质/cm2,10,000-100,000种不同物质/cm2或100,000-1,000,000种不同物质/cm2。3.权利要求1的阵列,其中所述固体支持体为载玻片。4.权利要求1的阵列,其中所述固体支持体由硅氧烷弹性体物构成。5.权利要求1的阵列,其中每种不同物质存在于固体支持体表面的不同孔中。6.权利要求5的阵列,其中在不同孔中的每种不同物质结合至所述固体支持体的表面。7.权利要求6的阵列,其中在不同孔中的每种不同物质共价结合至所述固体支持体表面。8.权利要求7的阵列,其中在不同孔中的每种不同物质都通过连接体共价结合至所述固体支持体表面。9.权利要求8的阵列,其中所述连接体为3-缩水甘油氧丙基三甲氧基硅烷。10.权利要求6的阵列,其中在不同孔中的每种不同物质非共价结合至所述固体支持体表面。11.权利要求6的阵列,其中在不同孔中的每种不同物质都不结合至所述固体支持体表面。12.权利要求5的阵列,其中在不同孔中的每种不同物质为溶液。13.权利要求5的阵列,其中每个孔都含有用于测定蛋白或分子生物活性的试剂。14.一种定位寻址阵列,其在固体支持体上包含多种不同蛋白或含所述蛋白功能域的分子,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种蛋白或分子由在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%构成。15.权利要求14的阵列,其中所述多种蛋白或分子由在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少75%或至少90%构成。16.权利要求14的阵列,其中所述具有目的生物活性的表达蛋白选自激酶、磷酸酶、蛋白酶、乙酰基转移酶、其它基团转移酶、核酸结合蛋白、激素结合蛋白和DNA结合蛋白。17.权利要求14的阵列,其中所述固体支持体选自陶瓷制品、无定形碳化硅、可铸氧化物、聚酰亚胺、聚甲基丙烯酸甲酯、聚苯乙烯和硅氧烷弹性体。18.权利要求17的阵列,其中所述固体支持体为聚二甲基硅氧烷。19.一种定位寻址阵列,其在固体支持体上包含多种物质,所述物质选自蛋白和包含所述蛋白功能域的分子,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质通过3-缩水甘油氧丙基三甲氧基硅烷连接体与固体支持体连接。20.一种在固体支持体表面包含多个孔的阵列,其中所述孔密度为至少100孔/cm2。21.权利要求20的阵列,其中所述孔密度为100-1,000孔/cm2,1,000-10,000孔/cm2,10,000-100,000孔/cm2,100,000-1,000,000孔/cm2或1,000,000-10,000,000孔/cm2。22.权利要求20的阵列,其中所述孔中存在多种不同物质,这些物质选自蛋白和包含所述蛋白功能域的分子,每种不同物质都存在于不同孔中。23.权利要求20的阵列,其中每个孔都含有用于测定蛋白或分子生物活性的试剂。24.权利要求20的阵列,其中所述孔体积为1pl-5μl。25.权利要求24的阵列,其中所述孔体积为1nl-1μl。26.一种制备在固体支持体表面含有多个孔的定位寻址阵列的方法,该方法包括以下步骤用设计用于在固体表面产生100孔/cm2以上密度孔的微加工模铸造阵列。27.一种制备在固体支持体表面含有多个孔的定位寻址阵列的方法,该方法包括以下步骤(a)用设计用于在固体表面产生100孔/cm2以上密度孔的微加工模铸造副模;(b)用所述副模铸造至少一种阵列。28.权利要求26或27的方法,其中所述阵列的铸造还包括以下步骤(a)用液态铸造材料覆盖模板;(b)固化铸造材料,直至铸造物成为固体。29.权利要求26-28任一项的方法,其还包括以下步骤在固体支持体上的孔中沉积多种不同物质,所述多种不同物质选自蛋白和含所述蛋白功能域的分子,每种不同物质都在固体支持体上的不同孔中。30.权利要求26-29任一项的方法,其中所述孔密度为100-1,000孔/cm2,1,000-10,000孔/cm2,10,000-100,000孔/cm2,100,000-1,000,000孔/cm2或1,000,000-10,000,000孔/cm2。31.权利要求26-30任一项的方法,其中所述阵列由硅氧烷弹性体铸造。32.权利要求28的方法,其中所述液态铸造材料为硅氧烷弹性体。33.一种使用权利要求1-25任一项的定位寻址阵列的方法,所述方法包括以下步骤(a)使探针与所述阵列接触;(b)检测蛋白/探针的相互作用。34.权利要求33的方法,其中所述探针为酶底物或抑制剂。35.权利要求34的方法,其中所述探针为选自以下的酶的底物或抑制剂激酶、磷酸酶、蛋白酶、乙酰基转移酶和其它基团转移酶。36.权利要求33的方法,其中所述探针选自蛋白、寡核苷酸、多核苷酸、DNA、RNA、小分子底物、药物侯选物、受体、抗原、类固醇、磷脂、抗体、谷胱甘肽、免疫球蛋白区、麦芽糖、镍、二氢胰蛋白酶和生物素。37.权利要求33-36任一项的方法,其中所述蛋白/探针相互作用的检测通过包括质谱法的方法检测。38.权利要求33-36任一项的方法,其中所述蛋白/探针相互作用的检测方法包括使用化学发光、荧光、放射性标记或原子力显微镜法。39.一种制备及使用权利要求1的定位寻址阵列的方法,该方法包括以下步骤(a)在固体支持体上沉积多种不同物质,所述多种不同物质选自蛋白和包含所述蛋白功能域的分子,每种不同物质都在固体支持体上的不同位置,其中所述多种不同物质由至少100种不同物质/cm2组成;(b)使探针与所述阵列接触;(c)检测蛋白/探针的相互作用。40.一种制备及使用权利要求14的定位寻址阵列的方法,该方法包括以下步骤(a)在固体支持体上沉积多种不同蛋白或含所述蛋白功能域的分子,每种不同的蛋白或分子都在固体支持体上的不同位置,其中所述多种蛋白或分子由在生物体基因组中具有相同类型生物活性的全部表达蛋白的至少50%构成;(b)使探针与所述阵列接触;(c)检测蛋白/探针的相互作用。41.权利要求39或40的方法,其中所述固体支持体为载玻片。42.一种鉴定活化淋巴细胞的抗原的方法,该方法包括以下步骤(a)使定位寻址阵列与多种淋巴细胞接触,所述阵列在固体支持体上含有多种潜在抗原,每种不同抗原都在固体支持体上的不同位置,其中不同抗原的密度为至少100种不同抗原/cm2;(b)检测固体支持体上发生淋巴细胞活化的位置。43.一种测定抗体制品特异性的方法,该方法包括以下步骤(a)使定位寻址阵列与抗体制品接触,所述阵列在固体支持体上含有多种潜在抗原,每种不同抗原都在固体支持体上的不同位置,其中不同抗原的密度为至少100种不同抗原/cm2;(b)检测在固体支持体上所述抗体制品中的抗体发生结合的位置,由此推断所述抗体制品的特异性。44.权利要求43的方法,其中所述抗体制品包括抗血清、单克隆抗体或多克隆抗体。45.权利要求43的方法,其中所述抗体制品包含Fab片段、嵌合抗体、单链抗体、人源化抗体或合成抗体。46.权利要求43的方法,其中抗体结合如下进行检测使所述阵列与结合所述抗体制品抗体的荧光标记二抗接触;去除未结合的二抗;检测所述阵列上的结合标记。47.一种鉴定有丝分裂原的方法,该方法包括以下步骤(a)使定位寻址阵列与细胞群接触;所述阵列在固体支持体上含多种不同物质,所述多种不同物质选自蛋白、含所述蛋白功能域的分子、完整细胞和含蛋白的细胞物质,每种不同物质都在固体支持体上的不同位置,其中所述不同物质的密度为至少100种不同物质/cm2;(b)检测固体支持体上诱导细胞有丝分裂活性的位置。48.一种试剂盒,该试剂盒包含(a)一种或多种权利要求1的阵列,其在固体支持体表面含有多个孔,其中所述孔密度为至少100孔/cm2;(b)在一个或多个容器中的一种或多种探针、试剂或其它分子。49.权利要求48的试剂盒,其中所述一个或多个容器包含用于测定蛋白生物活性的试剂。50.权利要求48的试剂盒,其中所述一个或多个容器包含用于测定探针和蛋白相互作用的试剂。51.一种试剂盒,该试剂盒包含(a)一种或多种权利要求1的定位寻址阵列;(b)在一个或多个容器中的一种或多种探针、试剂或其它分子。52.权利要求51的试剂盒,其中所述底物连接至所述固体支持体上的孔表面。53.权利要求51的试剂盒,其中所述蛋白或分子选自激酶、磷酸酶、蛋白酶、乙酰基转移酶、核酸结合蛋白和激素结合蛋白。54.权利要求48-53任一项的试剂盒,其中所述相同类型的生物活性选自激酶活性、磷酸酶活性、蛋白酶活性、糖苷酶活性、乙酰酶活性、基团转移酶活性、核酸结合活性、激素结合活性和DNA结合活性。55.权利要求1-25和57-58任一项的阵列,其中所述相同类型的生物活性选自激酶活性、磷酸酶活性、蛋白酶活性、糖苷酶活性、乙酰酶活性、基团转移酶活性、核酸结合活性、激素结合活性和DNA结合活性。56.权利要求40的方法,其中所述相同类型的生物活性选自激酶活性、磷酸酶活性、蛋白酶活性、糖苷酶活性、乙酰酶活性、基团转移酶活性、核酸结合活性、激素结合活性和DNA结合活性。57.一种定位寻址蛋白阵列,其在固体支持体上包含生物体的50种不同蛋白,每种不同蛋白在固体支持体上的不同位置,其中不同蛋白在阵列上的密度为至少100种蛋白/cm2,所述蛋白具有相同的生物活性。58.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的100种不同蛋白。59.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的61种不同激酶。60.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的92种不同激酶。61.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的107种不同激酶。62.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的116种不同激酶。63.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的119种不同激酶。64.权利要求57的定位寻址蛋白阵列,其中阵列包含生物体的122种不同激酶。65.权利要求57的定位寻址蛋白阵列,其中阵列主要由生物体的50-122种不同激酶组成。66.权利要求58-65任一项的定位寻址阵列,其中激酶是酵母激酶。67.权利要求57的定位寻址蛋白阵列,其中阵列主要由生物体的100种激酶的一个或几个拷贝组成。68.权利要求57的定位寻址蛋白阵列,其中阵列由生物体的基本上全部激酶的一个或几个拷贝组成。69.权利要求68的定位寻址蛋白阵列,其中阵列包含生物体的所有激酶,所述激酶由长度小于4.5kb的核酸编码序列编码。70.权利要求68的定位寻址蛋白阵列,其中阵列包含生物体的所有激酶,所述激酶由适当长度的核酸编码序列编码,使得激酶可以由重组DNA技术产生。71.权利要求57的定位寻址蛋白阵列,其中阵列上的大多数激酶具有激酶活性。72.权利要求57的定位寻址蛋白阵列,其中检测激酶活性的试剂与阵列接触。73.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的50种激酶。74.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的100种激酶。75.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的119种激酶。76.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的122种激酶。77.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的基本上全部激酶。78.权利要求65-68任一项的方法,其中定位寻址阵列包含生物体的所有激酶,所述激酶由长度小于4.5kb的核酸编码序列编码。79.权利要求65-68任一项的方法,其中蛋白/探针相互作用通过检测酶促活性来检测。80.权利要求79的方法,其中酶促活性是激酶活性。81.权利要求1的定位寻址阵列,其中阵列包含生物体的50种蛋白,所述蛋白具有相同类型的生物活性。82.权利要求1的定位寻址阵列,其中阵列包含生物体的100种蛋白,所述蛋白具有相同类型的生物活性。83.权利要求1的定位寻址阵列,其中阵列包含生物体的100种激酶。84.权利要求1的定位寻址阵列,其中阵列包含生物体的119种激酶。85.权利要求81-84的定位寻址阵列,其中激酶是酵母激酶。86.权利要求57的定位寻址阵列,其中不同蛋白在阵列上的密度是至少100种蛋白/cm2。87.权利要求57的定位寻址阵列,其中不同蛋白在阵列上的密度是至少400种蛋白/cm2。88.权利要求57的定位寻址阵列,其中不同蛋白在阵列上的密度是至少1000种蛋白/cm2。全文摘要本发明涉及用于大规模研究蛋白功能的蛋白芯片,其中所述芯片包含密集反应孔。本发明还涉及使用蛋白芯片同时测定蛋白样品中或一个蛋白芯片上蛋白的有无、多少和/或功能的方法,或者使用蛋白芯片测定该芯片上每种蛋白的探针混合物中每种探针的存在与否、相对特异性和结合亲和性的方法。本发明还涉及使用蛋白芯片进行高密度微量化学反应的方法。此外,本发明还涉及用作蛋白芯片支持物的聚合物和蛋白芯片的制备方法。本发明还涉及用于衍化蛋白芯片支持物的化合物。文档编号G01N33/566GK1654956SQ200510009560公开日2005年8月17日申请日期2001年5月4日优先权日2000年5月4日发明者M·斯尼德尔,M·雷德,H·朱,J·F·克勒米克申请人:耶鲁大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1